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ABSTRACT 
In large-scale distributed systems, node crashes are inevitable, and 
can happen at any time. As such, distributed systems are usually 
designed to be resilient to these node crashes via various crash 
recovery mechanisms, such as write-ahead logging in HBase and 
hinted handoffs in Cassandra. However, faults in crash recovery 
mechanisms and their implementations can introduce intricate 
crash recovery bugs, and lead to severe consequences. 

In this paper, we present CREB, the most comprehensive study 
on 103 Crash REcovery Bugs from four popular open-source dis-
tributed systems, including ZooKeeper, Hadoop MapReduce, Cas-
sandra and HBase. For all the studied bugs, we analyze their root 
causes, triggering conditions, bug impacts and fixing. Through 
this study, we obtain many interesting findings that can open up 
new research directions for combating crash recovery bugs. 
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1 INTRODUCTION 
Large-scale distributed systems have become pervasive and indis-
pensable to our daily lives. While enterprises leverage distributed 
systems such as scalable computing frameworks [8], storage sys-
tems [4][9][13], cluster management services [21][26] and syn-
chronization services [3], for cloud computing and big data ana-
lytics, consumers rely on distributed systems employed by large 
Internet companies such as Google and Alibaba to conveniently 
access popular services, e.g., online searching and shopping. Fail-
ures of such large-scale distributed systems can adversely impact 
billions of users and lead to huge financial losses [56][57]. There-
fore, the reliability of distributed systems is of critical importance. 

However, the reliability of large-scale distributed systems is 
threatened by node crashes -- a norm in these systems. Large-scale 
distributed systems are commonly built on farms of machines 
(nodes), comprising thousands of commodity machines. A ma-
chine (node) may suffer from power failures, hardware faults and 
software faults, and thus the node may become unavailable. As the 
number of nodes in a distributed system increases, node failures 
become normal. When a node crashes, the on-going tasks and in-
memory data in the node are lost. Other live nodes in the cluster 
may not work properly especially when the crash node is the dom-
inant node, e.g., the master node. To provide high reliability, the 
live nodes in the cluster should detect and handle node crashes in 
time. The crash node should correctly rejoin the cluster when it is 
rebooted. Therefore, automated recovery must be a first-class op-
eration of distributed systems [6]. 

To combat node crashes, developers have introduced sophisti-
cated crash recovery mechanisms into large-scale distributed sys-
tems, e.g., write-ahead logging in HBase [59] and hinted handoffs 
in Cassandra [55]. However, it is still challenging to handle node 
crashes in these distributed systems. Node crashes can happen un-
predictably on any node at any time, and cause many kinds of 
crash scenarios, such as partially-updated persistent states and in-
memory data loss. It is difficult for developers to contemplate all 
possible crash scenarios, and correctly implement corresponding 
crash recovery mechanisms. It is also impossible to inject crashes 
in all possible scenarios, and test a distributed system thoroughly 
[14]. As a result, inadequate crash recovery mechanisms and their 
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incorrect implementations can introduce intricate crash recovery 
bugs, and lead to severe consequences. For example, in our study, 
38% of our studied crash recovery bugs cause node downtimes (e.g., 
node hangs), and 21% of the bugs cause data-related failures. In 
this paper, crash recovery bugs refer to the bugs that exist in the 
crash recovery related mechanisms and implementations. 

To better combat crash recovery bugs in distributed systems, 
our community urgently needs a thorough understanding of them. 
Crash recovery bugs have been widely studied on single-machine 
systems [5][16][34][41][44]. In distributed systems, existing tech-
niques mainly focus on crash recovery bug detection through 
model checking and crash injection, e.g., MODIST [40], DEMETER 
[17], SAMC [27], PreFail [24], MOLLY [2], CORDS [12], PACE [1], 
FATE and DESTINI [14]. However, it is unknown whether there 
exist some patterns among crash recovery bugs. Although some 
empirical studies have been conducted for different kinds of bugs 
in distributed systems, e.g., CBS [15], TaxDC [28], and timeout is-
sues [7]. But none of them specially dissects crash recovery bugs. 
We believe that an in-depth study of crash recovery bugs can fur-
ther promote the reliability research in distributed systems. 

In this paper, we present CREB, the first (to the best of our 
knowledge) comprehensive analysis of 103 Crash REcovery Bugs 
from four popular large-scale distributed systems, including 
ZooKeeper [49], Hadoop MapReduce [47], Cassandra [45] and 
HBase [48]. We thoroughly study these bugs and try to answer the 
following research questions.  

 RQ1 (Root causes): What are the root causes for crash 
recovery bugs? 

 RQ2 (Triggering conditions): How is a crash recovery bug 
triggered? How complicated is it to trigger a bug? 

 RQ3 (Bug impacts): What impacts do crash recovery bugs 
have? 

 RQ4 (Fixing): How do developers fix crash recovery bugs? 
Through our in-depth analysis against the above four research 

questions, we obtain many interesting findings. We summarize 
our main findings as follows: 

 Crash recovery bugs are caused by five types of bug patterns, 
i.e., incorrect backup (17%), incorrect crash / reboot detection 
(18%), incorrect state identification (16%), incorrect state 
recovery (28%) and concurrency (21%). These bug patterns 

motivate new approaches to detect crash recovery bugs. For 
example, we can detect incorrect backup bugs by analyzing 
whether in-memory data are backed up in all program paths. 

 Almost all (97%) of crash recovery bugs involve no more than 
four nodes. This finding indicates that we can detect crash 
recovery bugs in a small set of nodes, rather than thousands. 

 A majority (87%) of crash recovery bugs require a 
combination of no more than three crashes and no more than 
one reboot. It suggests that we can systematically test almost 
all node crash scenarios with very limited crashes and reboots. 

 Crash recovery bugs are difficult to fix. 12% of the fixes are 
incomplete, and 6% of the fixes only reduce the possibility of 
bug occurrence. This indicates that new approaches to 
validate crash recovery bug fixes are necessary. 

In summary, we make the following main contributions: 
 We present CREB, the first comprehensive study of crash 

recovery bugs in large-scale distributed systems. Our in-depth 
analysis on four distributed systems reveals common 
vulnerabilities in their crash recovery processes. 

 The findings in our study open up new research directions. 
We hope our study can not only improve existing approaches, 
but also shed new light on combating crash recovery bugs. 

 We provide a large-scale benchmark of crash recovery bugs 
in distributed systems, which can be used to evaluate the 
effectiveness of tools in combating crash recovery bugs. 

2 CRASH RECOVERY MODEL 
To help understand crash recovery bugs, we build a general node 
crash recovery model for distributed systems by investigating 
crash recovery mechanisms in popular open-source distributed 
systems, e.g., ZooKeeper [49], Hadoop MapReduce [47], Cassandra 
[45] and HBase [48]. Note that these systems involve different ar-
chitectures and crash recovery mechanisms (see more details in 
Section 3.1). For example, Hadoop MapReduce uses a master / 
slave architecture, and Cassandra uses a peer-to-peer architecture. 

To simplify the presentation, we use a two-node distributed 
system in Figure 1 to demonstrate the general crash recovery 
model. A node in a distributed system usually contains five execu-
tion stages, shown as solid rectangles in Figure 1. Before providing 

 

Figure 1: The general crash recovery model for distributed systems. Steps 1-6 show a general crash recovery process. Green rounded 
rectangles denote seven crash recovery components. We use solid and thick arrows to denote that a node goes into a terminate state or starts up 
another execution process when encountering certain events. For example, when node1 encounters a crash event (step 1), node1 terminates 
immediately. When node2’s crash detection component detects a crash (step 2), the crash recovery process is started. We use solid and thin 
arrows to denote data reading and writing, and dotted arrows to denote messages among nodes. 

node1 node2

Startup

Local recovery

Crash/reboot detection

Serving

Backing up

Crash/reboot detection

Crash handling

Reboot handling

Network/
…

Persistent
Backups

Volatile 
memory

Volatile 
memory

1. Crash

3. Reboot

Remote synchronization

Node monitoring/reporting Node monitoring/reporting

Crash tolerance

Reboot tolerance

2. Detect  a crash

4. Detect a reboot

5. Activate node monitoring / reporting 

6. Activate  serving



An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA 
 

 

normal services (serving stage), e.g., computing, a node first goes 
into a startup stage to prepare its work environment. As the serv-
ing stage provides normal services, a node usually has specific 
mechanisms to report its liveness and monitor the availability of 
other relevant nodes in the cluster (node monitoring / reporting 
stage). The node monitoring / reporting stage is relatively inde-
pendent and usually works in conjunction with its counterparts at 
other relevant nodes via direct network connection or other me-
diations. Crash tolerance stage and reboot tolerance stage will be 
triggered respectively when a crash and a reboot are detected in 
the node monitoring / reporting stage. 

In the five execution stages, seven crash recovery components 
(green rounded rectangles in Figure 1) are introduced to handle 
potential node crashes. We describe these components as follows. 

In the serving stage of node1, the backing up component persists 
node1’s important in-memory data into backups (e.g., transaction 
logs in ZooKeeper [22]). These backups can be persisted in local 
disk or remote servers in underlying storage systems, e.g., HDFS 
[54]. If node1 comes back from a crash, it can recover its in-
memory data according to these backups. 

When node1 crashes due to certain event (step 1), e.g., a power 
failure, it loses all its in-memory data and stops execution instantly. 
This crash can be detected by other live nodes who care about 
node1’s state, e.g., node2, through certain detection mechanisms in 
the crash detection component, e.g., heartbeats. Then, node2 starts 
to handle the crash of node1 (step 2). For example, the crash han-
dling component may clean up stale information left by node1 and 
take over node1’s tasks. Finally, the whole system goes back into a 
consistent state, without node1. 

In some cases, node1 will be rebooted. It first goes into the 
startup stage (step 3). In this stage, a local recovery component re-
trieves backups that are written by node1 before crash, and up-
dates node1’s state. The remote synchronization component reports 
node1’s current state to other relevant nodes (e.g., node2) and syn-
chronizes with them. In the last, node monitoring / reporting stage 
and serving stage are activated (steps 5 and 6), and then node1 can 
provide normal services. 

During the startup of node1, some live nodes who care about 
node1’s state may detect node1’s reboot. For example, the reboot 
detection component in node2 reports the reboot and starts the re-
boot tolerance stage (step 4). The reboot handling component will 
update the corresponding states and takes actions for the reboot. 
For example, node2 may work out a recovery plan for node1 and 
synchronizes node1’s state with other nodes, especially when 
node2 is the master node. 

Note that, in our general crash recovery model, we do not dis-
tinguish the architectures (e.g., master / slave in MapReduce [47] 
and peer-to-peer in Cassandra [45]) and crash recovery mecha-
nisms (e.g., write-ahead logging [59] and hinted handoff [55]). Our 
general crash recovery model can be instantiated as different crash 
recovery mechanisms in different distributed systems. A node may 
not involve all execution stages and crash recovery components 
when handling a crash and the corresponding reboot. For example, 
if node1 and node2 are both slave nodes in HBase, they do not care 
about each other. Thus, they will not have node monitoring / re-
porting stages for each other. But if the master node detects the 
crash of node1 and then transfers node1’s data to node2, the crash 
handling component in node2 is triggered by the master node to 
take over node1’s data. If node1 and node2 are both peer nodes in 

Cassandra, the node monitoring / reporting stage in node2 will de-
tect node1’s crash when it does not receive acknowledges of gossip 
messages sending to node1 in the timeout period or it receives gos-
sip messages from other nodes that mark node1 as dead. Then 
node2 starts its crash tolerance stage to update node1 as dead in its 
local state. 

3 METHODOLOGY 

3.1 Target Systems 
We select crash recovery bugs from four popular open-source dis-
tributed systems: ZooKeeper [49], Hadoop MapReduce [47], Cas-
sandra [45], and HBase [48]. These systems represent different 
kinds of distributed systems: Hadoop MapReduce for distributed 
computing frameworks, Cassandra and HBase for storage systems, 
and ZooKeeper for coordination services. As shown in Table 1, 
these four systems cover two common architecture models: peer-
to-peer and master / slave. To combat node crashes, these systems 
contain various sophisticated crash recovery mechanisms. In the 
following, we briefly introduce the four target systems and their 
crash recovery mechanisms. 

ZooKeeper (ZK for short) is a centralized coordination service 
for distributed applications. A Zookeeper cluster has a master 
node (i.e., leader) and several slave nodes (i.e., followers). 
ZooKeeper adopts an agreement protocol to handle write requests. 
When the leader crashes, all followers will restart the leader elec-
tion. The election ends with a new leader if it has a majority of 
supporters. Each node in a ZooKeeper cluster maintains some in-
memory states, along with transaction logs and snapshots in disk. 
Writes from clients are first serialized to log files before being ap-
plied to in-memory states. Periodically, a node takes a snapshot of 
its in-memory states, to ease crash recovery. 

Hadoop MapReduce (MR for short) is a distributed computa-
tion framework for processing large data in a reliable manner. The 
second-generation MapReduce (MRv2) adopts YARN [26] to sepa-
rates resource management from job scheduling. In MRv2, there is 
a ResourceManager (RM), a NodeManager (NM) per server, and an 
AppMaster (AM) per application. MRv2 restarts an AM for a failed 
job or reschedule a failed task. Most crash recovery bugs in 
MapReduce in our study belong to MRv2. 

HBase (HB for short) is a distributed big data storage system 
with a master / slave architecture. HBase uses HDFS to store its 
data files, e.g., write-ahead logging files (i.e., HLog), etc. HBase1 
uses ZooKeeper to monitor its nodes and store some metadata, e.g., 
region transition state. In an HBase cluster, the master node 
HMaster (HM) is responsible for monitoring all RegionServers, 

1 Our studied HBase bugs belong to HBase 0.90 up to 1.0. In these versions, HBase 
uses ZooKeeper to maintain state consistence among nodes. 

Table 1: Target Distributed Systems and Studied Crash 
Recovery Bugs 

System Domain Architecture # of bugs 

ZooKeeper Coordination Master/slave based on 
leader election 

22 

Hadoop 
MapReduce 

Computing 
framework 

Master/slave 22 

Cassandra Storage Peer-to-peer 27 
HBase Storage Master/slave 32 
Total - - 103 
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and all metadata must be changed through HMaster. A Region-
Server (RS) is responsible for managing data and providing ser-
vices for clients. When the HM crashes, one of backup master 
nodes will be activated. When a RS crashes, the HM detects the RS 
crash, and reassigns its regions to other RSs. 

Cassandra (CA for short) is a scalable database based on a peer-
to-peer architecture. Each node in a Cassandra cluster plays the 
same role. Cassandra adopts the Gossip protocol to communicate 
among nodes. In Cassandra, each piece of data has more than one 
(e.g., 3) replica. A write operation is first serialized to the commit 
log before being written to the in-memory data structure memta-
ble for crash recovery. When the memtable is full, it will be flushed 
into the SSTable data file. If a node crashes, updates to the dead 
node can be kept as hinted handoffs in a coordinator node. When 
the dead node comes back, updates in hinted handoffs will be ap-
plied to the node to carry out the recovery process. 

3.2 Collecting Crash Recovery Bugs 
Our four target distributed systems all have well-organized and 
publicly available issue repositories (i.e., JIRA). So far, there are 
about 42,000 issues in these systems. Investigating all these issues 
is a daunting and time-consuming task. Instead, we start our study 
from an existing cloud bug study database, CBS [15]. CBS contains 
3,655 vital issues from six distributed systems (ZooKeeper [49], 
Hadoop MapReduce [47], Cassandra [45], HBase [48], HDFS [54] 
and Flume [46]), reported from January 2011 to January 2014. We 
select CBS as our study base due to the following two reasons. First, 
CBS has covered all our target distributed systems. Second, CBS 
provides some labels that can help us classify and understand bugs. 

Unfortunately, we cannot find out all crash recovery bugs in 
CBS by simply searching labels such as “crash” and “reboot”. Thus, 
we select crash recovery bugs via the following steps. (1) We read 
the description in each issue report and keep the issue once it sat-
isfies the following conditions: available fixes, clear description, 
and related to crash recovery. To decide if an issue is related to 
crash recovery, we look for relevant keywords in the bug reports, 
e.g., “crash”, “kill”, “fail”, “stop”, “shutdown”, “leave”, “reboot”, “re-
start”, “failover”, “recovery”, and system-specific keywords, e.g., 
“ServerShutdownHandler” in HBase and “hinted handoffs” in Cas-
sandra. In some issue reports, developers have provided bug sce-
narios, which can help us determine if they are related to crash 
recovery. (2) We carefully read the issue description, developer 
comments and patches, and rebuild bug scenarios step by step. We 
keep an issue as a crash recovery bug if it needs at least one crash 
to trigger. If a bug has to be triggered through a “stop” command 
rather than a crash, which means the bug is caused by faults in the 
stopping process, then we do not take the bug as a crash recovery 
bug. For example, in bug c2072,2 a client sends a decommission 
command to a node to remove it from the cluster. The node cannot 
be marked as “left” due to a concurrency issue in the leaving pro-
cess. In this case, we cannot use a crash to replace the decommis-
sion command. So, it is not considered as a crash recovery bug. 
Furthermore, we only keep crash recovery bugs that we can com-
pletely understand. As shown in Table 1, we collect 103 crash re-
covery bugs, including 22 from ZooKeeper, 22 from Hadoop 
MapReduce, 27 from Cassandra and 32 from HBase. 

3.3 Analyzing Crash Recovery Bugs 
To answer our four research questions, we perform an in-depth 
analysis of the 103 crash recovery bugs, according to their details, 
e.g., comments, patches and source code. In this process, we write 
down detailed bug scenarios step by step for each bug. We further 
assign them into different categories according to root causes, bug 
manifestation, bug impacts and bug fixing. 

Note that a crash recovery bug usually causes system failures 
after a long propagation chain. So, we only categorize its root 
cause according to its initial fault. For example, under an unex-
pected crash, a non-atomic update to backups may leave some cor-
rupted files, and then the recovery process cannot handle these 
corrupted files and throws exceptions. We categorize this bug into 
incorrect backing up although the incorrect handling of corrupted 
files in the recovery process triggers system failures. For bug man-
ifestation and bug impacts, we refer to related work [15][28] for 
initial categorization, e.g., the number of crashes and reboots, and 
performance degradation. In this process, we also create new cat-
egories for bugs that do not belong to any known categories, delete 
useless categories, and refine categories. 

Through analyzing these 103 crash recovery bugs, we obtain 
many interesting findings (Section 4-7). Based on these findings, 
we further summarize lessons learned and implications to existing 
approaches in combating crash recovery bugs in Section 8. 

3.4 Threats to Validity 
We only select bugs from CBS [15] in four open-source distributed 
systems. They do not cover crash recovery bugs in all kinds of dis-
tributed systems, and new bugs submitted after January 2014 are 
not included. Nonetheless, these four systems are widely used and 
cover a diverse set of architectures. Their mechanisms for combat-
ing crashes, e.g., write-ahead logging, hinted handoffs and replicas, 
are also commonly used by other systems. Therefore, our studied 
bugs are representative. 

For each bug, we carefully study its description, patches and 
discussions among developers, and read source code to have a 
deep understanding. We then write down all steps to reproduce 
the bug. Finally, we make sure that crashes or restarts are an es-
sential condition for the bug. All studied bugs have been discussed 
and confirmed by at least two authors in this paper. Thus, we be-
lieve that all studied bugs are true positives and have been thor-
oughly studied. Note that we exclude bugs without clear descrip-
tions and fixes to maintain the accuracy of our study results. 

4 ROOT CAUSE 

4.1 Bug Pattern 
We classify our studied crash recovery bugs into five bug patterns 
according to their root causes as shown in Table 2. 

4.1.1 Incorrect Backup 

Finding 1: In 17/103 crash recovery bugs, in-memory data are not 
backed up, or backups are not properly managed. 

When a node crashes, all its in-memory data are lost. Thus, a 
node needs to back up its important in-memory data to facilitate 
crash recovery. Backups can be stored in local disk, or a distributed 
file system, such as HDFS [54]. When a crash node is rebooted, it 

2 “c” denotes Cassandra. 2072 is bug ID. All bugs in the paper are represented in this 
form. “m” denotes Hadoop MapReduce. “h” denotes HBase. “c” denotes Cassandra. 
All bug examples in this paper have accessible links. 

https://issues.apache.org/jira/browse/CASSANDRA-2072
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may restore its data from its backups. Developers need to consider 
what data should be backed up, how to perform backups, and 
where to store backups. Faults in the above processes can make 
crash recovery fail. We further classify them into two categories. 

No backup (6 bugs). In-memory data that are necessary for 
crash recovery should be backed up. Forgetting to back up im-
portant data can cause bad consequences when suffering from 
node crashes. Take bug z1264 in Figure 2 as an example. In 
ZooKeeper, every transaction should be persisted in the transac-
tion log before being applied in memory. In the startup stage, the 
follower performs synchronization with the leader. During this 
process, a commit message TXN_A arrives in the follower side and 
is applied directly in memory without being persisted in the trans-
action log due to the incorrect design of the protocol. In the serv-
ing stage, another transaction TXN_B arrives, and is persisted cor-
rectly. If the follower crashes after TXN_B, and then reboots, it 
cannot recover TXN_A, since it considers all transactions before 
TXN_B have been correctly recovered through backups. Therefore, 
TXN_A is lost in the follower. 

Incorrect backup management (11 bugs). Backups should 
be updated and managed correctly. Otherwise, the backup data be-
come incorrect, and distributed systems cannot recover from these 
incorrect backups. There are two bug scenarios here. 

 Backups are not updated correctly. (1) The update logic is 
incorrectly implemented. For example, in bug z1489, 
appending a transaction into the transaction log file after a 
truncate command without reopening the log file leaves a 
“hole” in the log file. 2 bugs belong to this case. (2) Backups 
should be updated in an atomic way. However, a crash can 
break this atomicity. For example, in bug z1427, two update 
operations on a backup file is broken by a crash, and the 
backup file is corrupted [34][44]. In bug z1653, two backup 
files are expected to be updated atomically. Unfortunately, a 
crash may happen in between. In this case, the first file is 
updated, and the second is not updated timely. 6 bugs belong 
to this case. 

 To save disk space, stale backups need to be cleaned up. 
However, premature removal of backups can cause crash 
recovery to fail. 3 bugs belong to this case. For example, in bug 
m5476, after a job is finished, the AM first deletes its staging 
directory and then unregisters itself with the RM. If a crash 
occurs in between, then the RM restarts a new AM. The new 
AM fails since the staging directory has already been removed. 

4.1.2 Incorrect Crash/Reboot Detection 

Finding 2: In 18/103 crash recovery bugs, crashes and reboots are 
not detected or not timely detected. 

When a node crash / reboot occurs, other relevant live nodes 
should detect the crash / reboot through certain mechanisms, e.g., 
timeout, heartbeat, or Gossip. If a node crash / reboot is not de-
tected in a timely manner, the corresponding crash recovery will 
not be applied. 18 bugs are caused by incorrect crash / reboot de-
tection. We further classify them into two sub-categories. 

No crash detection (14 bugs). Although our four studied dis-
tributed systems all have dedicated mechanisms to detect crashes, 
some crashes are not detected in the following three cases. 

 When a node crashes, some other relevant nodes may access 
the crash node without perceiving that the node has crashed. 
These relevant nodes may hang or throw errors. 9 bugs belong 
to this case. In bug m3228, a MapReduce job is executing some 
tasks in containers managed by a NM. Then, the server that 
holds the NM and tasks crashes. After a while, the AM marks 
these tasks as timeout since it does not receive heartbeats 
from tasks in a given time and notifies the NM to stop the 
containers in which these tasks run. However, the AM keeps 
waiting for the response from the NM forever since the NM is 
down. 

 If a crash node reboots very quickly, then the crash may be 
overlooked by the crash detection component based on 
timeout. Thus, the crash node may contain corrupted states, 
and no one knows it. 2 bugs belong to this case. In bug m3186, 
the RM loses all its metadata about jobs after a quick reboot. 
However, the AM does not know the crash and the reboot, 
and still commits jobs to the RM, resulting failures. 

 Crashes have been detected, however, no crash recovery can 
be applied. We classify this case into no crash detection, since 
their induced results are the same. 3 bugs belong to this case. 
In bug h5918, if the HM crashes and reboots, it will try to 
assign the ROOT region and the META region3 in the startup 
stage. The ROOT region is assigned to RS1 first. Then the HM 
tries to assign the META region. This assignment needs to 
access the ROOT region. If RS1 crashes at this time, the ROOT 
region will become unavailable and cannot be recovered since 
the crash recovery handler ServerShutdownHandler is not 
enabled yet. Thus, the assignment of META region will wait 
for an available ROOT region forever. 

Untimely crash / reboot detection (4 bugs). A crash / reboot 
should be detected as soon as possible. If it takes a very long time 
3 ROOT tracks META region; META region stores information about data regions. 

Table 2: Bug Patterns 

Bug patterns ZK MR CA HB Total 

Backup 
No backup 4 2 0 0 6 
Incorrect backup 
management 

3 3 4 1 11 

Crash/re-
boot de-
tection 

No crash detection 0 5 2 7 14 
Untimely crash/re-
boot detection 

0 1 2 1 4 

Incorrect state identification 5 4 5 3 17 
Incorrect state recovery 5 4 11 9 29 
Concurrency 5 3 3 11 22 

 

 
Figure 2: Bug z1264. The dashed cylinders denote data is stored 
in memory, and solid ones denotes data is stored in files. 
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to confirm a crash, the crash recovery will be delayed. For example, 
in bug c3273, nodes in Cassandra use the accrual failure detector 
[20] to detect node crashes. The timeout threshold is decided dy-
namically and related to history time intervals of message arrival. 
In corner scenarios, the timeout threshold can become large (e.g., 
10 minutes), and a node crash cannot be detected timely. Another 
scenario is once a node is rebooted, distributed systems should 
make it available to serve as soon as possible. In bug h4397, all RSs 
are down, and thus all region assignments cannot be processed. So, 
the TimeoutMonitor takes over, and checks if there are available 
RSs after 30 minutes. Some RSs may come back in less than 30 
minutes. However, the TimeoutMonitor still waits for at least 30 
minutes, and no region assignment can be processed. 

4.1.3 Incorrect State Identification 

Finding 3: In 17/103 crash recovery bugs, the states after crashes / 
reboots are incorrectly identified. 

When a node crashes unexpectedly, it may leave some stale in-
formation, e.g., unfinished tasks and stale states. These leftovers 
(i.e., stale information) can be persisted files, in-memory data or 
threads / processes in other live nodes. A crash recovery process 
should precisely identify these leftovers after a crash happens. 
When a node reboots, it should correctly identify its final state and 
the state of current cluster. Meanwhile, other relevant live nodes 
should correctly identify the state of the reboot node. Incorrect 
state identification can make the crash recovery process adopt in-
correct recovery decisions. There are three cases in this category. 

 The recovery process misses the correct states (3 bugs). For 
example, in bug z582, a new leader needs to restore the most 
recent state from backups, i.e., transaction logs and snapshots. 
However, it only considers transaction logs. If the transaction 
logs are deleted, the state cannot be restored correctly. 

 The recovery process mistakenly considers wrong states as 
correct (12 bugs). For example, in bug z975, node1 crashes after 
it is voted as the leader. When node1 is rebooted, it may 
receive stale vote messages for node1. Then, node1 mistakenly 
takes these stale messages and sets itself as the leader. 

 Two bugs are caused by incorrect data parser logic. In bug 
c4842, the recovery process cannot retrieve a column family 
containing metadata DateType in CompositeType, since it 
cannot separate DateType from CompositeType correctly. 

4.1.4 Incorrect State Recovery 

Finding 4: The states after crashes / reboots are incorrectly recovered 
in 29/103 crash recovery bugs. Among them, 14 bugs are caused by 
no handling or untimely handling of certain leftovers. 

When a crash or a reboot happens, four recovery components 
in Figure 1, i.e., local recovery, remote synchronization, crash han-
dling and reboot handling, will try to recover the cluster to a con-
sistent state. Wrong state recovery will introduce crash recovery 
bugs. 29 bugs belong to this case. 

We are more interested in the leftovers of a crash node. When 
a node crashes suddenly, the information maintained by the crash 
node may need to be transferred, and the states left in the cluster 
may be corrupted, etc. These leftovers should be correctly handled, 
e.g., deleted or updated. Among 29 bugs caused by incorrect state 
recovery, 15 bugs are caused by incorrectly handling of leftovers. 
Among them, we find two interesting patterns, covering 14 bugs. 

 No handling of leftovers (11 bugs). For example, in bug m3858, 
a task node crashes in the commit phase, and leaves a taskID 
in the commit attempt list in the AM. When recovering from 
the crash, the AM starts another task node to complete the 
task without deleting this taskID. When the new task node 
attempts to commit the task, it fails since the taskID already 
exists in the commit list. 

 Untimely handling of leftovers (3 bugs). For example, in bug 
h6060, a RS is opening a region R1, and a crash happens to the 
RS while R1 is still in opening state. The crash recovery 
component ServerShutdownHandler does not reassign R1 to 
another live RS immediately, but leaves it to be reassigned by 
the TimeoutMonitor after 30 minutes. 

4.1.5 Concurrency 

Finding 5: The concurrency caused by crash recovery processes is 
responsible for 22/103 crash recovery bugs. 

Distributed systems execute many protocols concurrently on 
thousands of nodes with no common clocks and may trigger vari-
ous concurrency issues. When a node crashes / reboots, the recov-
ery process is usually concurrent with other normal processes. 
Concurrency bugs can manifest in these concurrent processes. 22 
bugs belong to this category. We further classify them into 3 sub-
categories according to their involved processes. 

 Concurrency in one recovery process (5 bugs). Take bug c2083 
as an example. In Cassandra, after node1 crashes and then 
reboots, its coordinator node node2 will recover node1’s data 
through hinted handoffs. During node1’s downtime, a column 
family is created, and new data are inserted into the column 
family. After node1 reboots, the column family creation 
message and the new data are sent to node1 concurrently. 
Thus, if the new data arrive at node1 earlier than the column 
family creation message, then a failure will happen, since the 
column family is not created yet. 

 Concurrency between two recovery processes (4 bugs). For 
example, in bug h5179, a standby HM is activated since the 
primary HM is down. The standby HM first performs a startup 
process. During this process, a RS crashes. The crash handling 
component ServerShutdownHandler starts handling the RS 
crash. At the same time, the startup stage in HM finds that the 
RS is dead and also tries to handle it, and thus the double 
assignment for the RS is triggered. 

 Concurrency between a recovery process and a normal 
execution (13 bugs). For example, in bug h9514, a RS crashes 
and the HM handles the crash using ServerShutdownHandler. 
This handler first splits the log for the dead RS and then 
reassigns regions on the RS to other RSs. When a client 
request that wants to assign a region on the dead RS arrives 
concurrently and is executed before splitting the log in 
ServerShutdownHandler, some data could be lost. 

4.2 Components of Root Causes 
Finding 6: All the seven recovery components in our crash recovery 
model can be incorrect and introduce bugs. About one third of bugs 
are caused in crash handling component. 

As shown in Section 2, we separate the crash recovery process 
into seven crash recovery components. We wonder whether crash 
recovery bugs can be easily introduced in some components. Thus, 
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we put the 103 bugs into their corresponding crash recovery com-
ponents according to their root causes. The result is shown in Ta-
ble 3. Note that, the total number exceeds 103 since some bugs in-
volve more than one recovery component. 

As shown in Table 3, all the seven crash recovery components 
can be incorrect and introduce bugs. Overall, the crash handling 
component is the most error-prone (34%). The next top three com-
ponents, backing up (19%), local recovery (17%) and crash detec-
tion (13%) also occupy a large portion. But all four systems have 
few bugs in reboot detection components. For ZooKeeper, about a 
half of the crash recovery bugs are rooted in the backing up com-
ponent. For MapReduce, we do not find bugs in the remote syn-
chronization component. For HBase, over two thirds of its bugs 
are caused by the crash handling component. 

4.3 Crashes on/during Recovery 
Finding 7: In 15/103 crash recovery bugs, new relevant crashes occur 
on / during the crash recovery process, and thus trigger failures. 

Crashes can happen at any time. New node crashes can happen 
when a node crash / reboot is being handled, i.e., crash handling, 
reboot handling, local recovery and remote synchronization in 
Figure 1. The new crashes can complicate the current recovery 
process, and cause failures. 15 bugs fall into this category. 

 The node executing the recovery process crashes, and the 
crash recovery process is interrupted (7 bugs). For example, in 
bug h3596, RS1 first crashes. RS2 tries to take over RS1’s 
regions and sets a lock znode in ZooKeeper. Now, RS2 crashes 
before releasing the lock. Regions in RS1 will be locked forever. 

 During the recovery process of a node, another node crashes 
(8 bugs). This mainly involves two kinds of scenarios: (1) 
Current crash recovery process may need to access other 
nodes, but the accessed nodes crash. Then, the crash recovery 
process hangs or fails. For example, in bug h3446, the META-
RS crashes when handling a normal RS’s crash. Then the 
recovery process for the normal RS encounters a server-not-
running exception and orphans lots of regions. (2) The two 
crash recovery processes may access share data and introduce 
bugs. For example, in bug h5179 we have discussed in Section 
4.1.5, during the startup stage of HM, a RS crashes. The RS 
crash is handled twice, and thus causes data loss. 

5 TRIGGERING CONDITIONS 
To trigger a crash recovery bug, only crashes and reboots may not 
be sufficient. We should consider other input conditions. We 
measure the complexity of input conditions (Section 5.1) to trigger 
a bug, e.g., the number of nodes and special configurations. We 
further discuss the timing about crashes and reboots (Section 5.2). 

5.1 Input Conditions 
Finding 8: Almost all (97%) crash recovery bugs involve four nodes 
or fewer. 

Finding 9: No more than three crashes can trigger almost all (99%) 
crash recovery bugs. No more than one reboot can trigger 87% of the 
bugs. In total, a combination of no more than three crashes and no 
more than one reboot can trigger 87% (90 out of 103) of the bugs. 

Finding 10: 63% of crash recovery bugs require at least one client 
request, but 92% of the bugs require no more than 3 user requests. 

First, we count the basic input conditions of crash recovery 
bugs, i.e., the minimum numbers of nodes, crashes, reboots and 
user requests involved in triggering a bug. As show in Figure 3, we 
find that 85% (88 out of 103) of bugs involve no more than three 
nodes. 74% (76 out of 103) of bugs can be reproduced by only in-
jecting one crash. Almost all bugs (99%) can be triggered by no 
more than three crashes. 36% of bugs do not need to inject any 
reboot, and 51% bugs only need one reboot. 87% (90 out of 103) of 
bugs can be triggered with a combination of no more than three 
crashes and no more than one reboot. For client requests, 37% (38 
out of 103) of bugs do not need client requests. 37% of bugs only 
need one client request. That means crash recovery bugs can be 
triggered by simple client inputs. Note that there are five bugs that 
need large number of client requests, e.g., thousands. 

Finding 11: 38% of crash recovery bugs require complicated input 
conditions, e.g., special configurations or background services. 

Besides the basic conditions as shown above, 39 bugs require 
complicated input conditions. We summarize these complicated 
input conditions in Figure 4, and briefly explain them as follows. 

Special configurations. 18 crash recovery bugs only manifest 
themselves under special configurations. For example, bug c2083 
can only be manifested when the hinted handoff is enabled. 

Background services. 11 bugs need background services, e.g., 
load balancing, or compaction of persistent files, and snapshotting. 
These background services usually happen non-deterministically. 
For example, bug z1573 requires that the crash node is snapshot-
ting its in-memory state. The snapshotting process rarely happens 
since it occurs only when the transaction log file is full. 

There are other types of triggering conditions. For example, 5 
bugs need man-made corrupted data, 4 bugs need one or several 
nodes to start from scratch, and 2 bugs need a network partition. 

5.2 Crash / Reboot Triggering Window 
Finding 12: The timing of crashes / reboots is important for repro-
ducing crash recovery bugs. 

Table 3: Statistics of Involved Crash Recovery Compo-
nents 

Components ZK MR CA HB Total 
Crash handling 2 6 3 24 35 
Backing up 10 5 4 1 20 
Local recovery 4 5 7 1 17 
Crash detection 0 6 3 4 13 
Remote synchronization 3 0 3 4 10 
Reboot handling 3 1 6 0 10 
Reboot detection 0 0 1 1 2 

 

 
Figure 3: Basic input conditions. It shows the minimum num-
bers of nodes, crashes, reboots and client requests required by the 103 
crash recovery bugs. H means a large number, e.g., 1000. 
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Only node crashes that happen at certain system states can 
trigger crash recovery bugs. Accordingly, the difficulty levels of 
triggering crash recovery bugs are different. We use crash / reboot 
windows to measure such difficulty levels, as shown in Table 4. 

We divide the crash triggering window into 3 categories, ac-
cording to the follow rules. 

 Easy (32 bugs). To trigger a crash recovery bug, the crash can 
occur at a consistent global state, e.g., the ZooKeeper cluster 
finishes the leader election, or a client request has been 
processed. In this case, we do not need to control the internal 
states of some nodes and can easily inject crashes when the 
cluster stays in a consistent state. 

 Moderate (53 bugs). The node crash needs to occur when the 
node stays in certain states. That is, the timing of the crash 
only relates to the events happening in the same node. Thus, 
we only need to consider the internal states in one node. 

 Difficult (18 bugs). The node crash needs to occur when other 
nodes are in certain states. Thus, we need to inject the crash 
after checking the states of other nodes. 

While reproducing each bug requires at least one crash, only 
66 bugs need reboots. We divide reboot triggering windows into 2 
categories, according to the follow rules. Note that, we do not have 
a moderate level for reboot triggering windows since a dead node 
does not have a chance to change its states. 

 Easy (57 bugs). The reboot can happen at any time or after a 
fixed amount of time. For example, in bug c2115, the reboot 
should happen after the node stays down for a fixed time. We 
can easily control this downtime. 

 Difficult (9 bugs). The reboot needs to occur when other nodes 
stay in certain states. Thus, we need to inject the reboot after 
checking the states of other nodes. 

Note that our decision about how difficult to inject a crash / 
reboot is based on the above rules. We believe our results can in-
dicate the difficulty of reproducing crash recovery bugs. 

6 BUG IMPACTS 
Finding 13: Crash recovery bugs always have severe impacts on re-
liability and availability of distributed systems. 38% of the bugs can 
cause node downtimes, including cluster out of service and unavail-
able nodes. 

To better understand how severe a crash recovery bug is, we 
study the failure symptom of each bug. The crash recovery bugs 
influence availability, reliability, and performance of the target 
systems. We classify them into five categories. 

Cluster out of service. 11 bugs (11%) take down the whole 
cluster. Bugs in the dominant nodes (e.g., master) are more likely 
to cause a cluster out of service. For example, bug z1419 causes 
endless leader election, and the whole cluster cannot serve clients. 

Unavailable nodes. 28 bugs (27%) cause unavailable nodes, 
e.g., node hangs and missing a live node. However, the cluster can 
still provide services. 

Data related failures. 22 bugs (21%) cause data related fail-
ures such as data loss, data inconsistency, and data staleness. 

Performance degradation. 13 bugs (13%) cause performance 
degradation, e.g., much more time for crash recovery. 

Operation failures. 29 bugs (28%) cause operation failures, 
e.g., failures or hangs in an operation. We only put a bug into op-
eration failures when it does not cause other failures above to 
avoid double counting. 

Note that, 38% of crash recovery bugs can cause downtimes of 
the cluster or some nodes. Compared to the bugs in CBS [15] (18%) 
and TaxDC [28] (17%), crash recovery bugs are more likely to 
cause fatal failures. 

7 BUG FIXING 
In this section, we discuss how developers fix crash recovery bugs, 
whether the fixes are complete, and how difficult to fix them. 

7.1 Fix Strategies 
Fixes of crash recovery bugs are highly related to their root causes 
and system-specific. We have not extracted clear fix patterns in 
our study. Thus, we only briefly discuss some fixing examples. 

For bugs caused by no crash detection, a simple fix is adding a 
timer. For example, bug m3228 discussed in Section 4.1.2 was fixed 
by adding a timer when waiting for the NM to stop containers. 
Bugs caused by non-atomic updates to backups can be fixed by 
using a temporary file, e.g., bug z1427. But, the similar bug z1653 
we discussed in Section 4.1.1 was fixed by detecting the unex-
pected crash between file updates and fixing inconsistency in two 
files. The fix of bug z1653 creates a special file before starting to 
write files, and then deletes the file after all files have been updated. 
If a crash happens between two file updates, the special file will be 
left in disk. Thus, after reboot, the system will know the crash and 
rewrite the unfinished file rather than stopping itself. 

7.2 Fix Completeness 
Finding 14: Crash recovery bugs are difficult to fix. 12% of the fixes 
are incomplete, and 6% of the fixes only reduce the possibility of bug 
occurrence. 

Fixes of crash recovery bugs from developers may not be per-
fect. As shown in Table 5, we find that the fixes of 12 crash recov-
ery bugs are incomplete. After applying the fixes, crash recovery 
bugs can still occur. 

 
Figure 4: Special input conditions. It shows the numbers (in the 
parentheses) of crash recovery bugs that require specific configura-
tion, background services, corrupt data, start from scratch, network 
partition, and other conditions, respectively. 
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Omit some cases. The fixes of 2 bugs omit to consider some 
new crash scenarios. For example, in the fix of bug z1264 in Figure 
2, developers add backups for update transactions, but forget to 
consider new session transactions committed during the synchro-
nization process. Thus, this fix cannot avoid bug z1367. 

Introduce new bugs. The fixes of 4 bugs introduce new bugs. 
For example, the fix of bug z596 makes a leader to load data twice 
during startup process. But developers forget to clean up all data 
between these two loads. Thus, the fix introduces a new bug z1448. 

Reduce probability of bug occurrence. The fixes of 6 bugs 
only reduce the chance of bug occurrence, instead of eliminating 
the bugs. Figure 5 shows an example, bug m5169. The JobTracker4 
crashes after it updates the job-info file and before it stores the 
jobToken. After reboot, it tries to recover the job according to the 
job-info file but fails because it cannot find the jobToken. This bug 
is fixed by generating the jobToken along with the job-info file to 
reduce the chance of unexpected crashes between them. 

7.3 Fix Complexity 
Finding 15: Crash recovery bug fixing is complicated. Amounts of 
developer efforts were spent on these fixes. 

We measure the fix complexity using five metrics: (1) the num-
ber of discussion comments; (2) the number of watchers; (3) the 
number of days to fix bugs; (4) the number of patches submitted; 
and (5) the lines of code changed in the final patch. 

We show the results in Table 6. On average, crash recovery 
bugs involve 26 discussion comments, 5 watchers, 92 days to fix, 4 
patches submitted, and 117 lines of code change. 

8 LESSONS LEARNED 
In this section, we discuss lessons learned, implications to existing 
approaches and opportunities for new research in combating crash 
recovery bugs in distributed systems. 

8.1 Crash Recovery Bug Detection 
Crash recovery bugs in distributed systems can cause severe con-
sequences (Finding 13), and thus resolving these bugs is of great 
significance for the reliability of distributed systems. Existing 
crash recovery bug detection approaches, e.g., SAMC [27], PACE 
[1] and ELEVEN82 [25] mainly focus on model checking and test-
ing, and do not understand bug patterns behind these bugs. Our 
study reveals that crash recovery bugs can be summarized into 5 
kinds of bug patterns, i.e., incorrect backup (Finding 1), incorrect 
crash / reboot detection (Finding 2), incorrect state identification 
(Finding 3), incorrect state recovery (Finding 4) and concurrency 
(Finding 5). These bug patterns shed new light and guidance on 
crash recovery bug detection based on program analysis. 

Backup-guided bug detection. To recover from crashes, im-
portant in-memory data should be persisted. Finding 1 implies that 
no backup of such data can introduce crash recovery bugs. This 
suggests that it is possible to detect bugs by analyzing the backing 
up component, without injecting crashes / reboots. The key chal-
lenge is to understand what in-memory data should be backed up. 
We find that some in-memory data are backed up in some program 
paths and not in other program paths. This indicates that the data 
may be backed up incorrectly (e.g., bug z1264). From another per-
spective, developers can annotate what data should be backed up, 
and then we use the annotations to analyze whether they are 
backed up properly. Although this requires some efforts from de-
velopers, it will greatly help bug detection.  

Crash / reboot detection analysis. Crashes and reboots can 
happen at any time in any node. However, if crashes / reboots are 
not detected properly, no crash recovery mechanisms will be ap-
plied. Finding 2 indicates that many crash recovery bugs are 
caused by incorrect crash / reboot detection. Our study shows that 
a crash / reboot at any time should be detected. We can use these 
patterns to detect bugs with incorrect crash / reboot detection. 

State inconsistency guided detection. To recover from a 
crash or reboot, correct states must be identified first. Finding 3 
indicates that states can be incorrectly identified, leading to crash 
recovery bugs. We can compare the states before crashes / reboots 
with the states in crash recovery, to identify inconsistencies. These 
inconsistencies may indicate crash recovery bugs. Finding 4 indi-
cates states can be incorrectly updated during crash recovery, e.g., 
leftovers of a crash node are not cleaned up / updated. This pattern 
can be used to detect incorrect state recovery bugs. 

Concurrency analysis in crash recovery bugs. Finding 5 
implies that crash recovery processes can introduce more concur-
rency into distributed systems, and thus trigger more complicated 
concurrency bugs. We notice that when the recovery process con-
currently accesses the same resources (e.g., a region in HBase), it 
can easily trigger bugs. However, existing concurrency detection 
tools cannot handle crashes / reboots, e.g., DCatch [30]. Further 4 It is a concept from MRv1. It can be seen as a combination of AM and RM. 

 
Figure 5: Incomplete fix for bug m5169. The left part shows the 
buggy execution. The right part shows the fix. 
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Table 5: Fix Completeness 
 

Complete 
fixes 

Incomplete fixes 

Omit cases 
Introduce 
new bugs 

Reduce 
probability 

ZK 17 2 2 1 
MR 19 0 2 1 
CA 24 0 0 3 
HB 31 0 0 1 
Total 91 2 4 6 
 

Table 6: Fix Complexity 

 25th per-
centile 

Median 75th per-
centile 

Max 

# of comments  11 19 29 168 
# of watchers 3 4 7 28 
Time (# of days) 5 13 61 1121 
# of patches 1 3 5 24 
LOC of final patch 10 34 95 1839 
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studies can be performed to handle concurrency during crash re-
covery. We also need to consider more concurrency scenarios, e.g., 
concurrency among two crash recovery processes. 

Bug fix oriented detection. Fixing crash recovery bugs is 
complicated (Finding 15). Finding 14 implies that fixes for crash 
recovery bugs have a fairly high probability of being incorrect. 
Some fixes only reduce the possibility of bug occurrences. This 
shows a unique opportunity for developing new techniques to de-
tect bugs in fixes and verify fixes for crash recovery bugs. 

8.2 Testing of Distributed Systems 
Software testing is crucial in exposing bugs for complex software 
systems. Few techniques [14][36] have been proposed for distrib-
uted system testing. Our study reveals some implications for fu-
ture studies in distributed system testing. 

In our study, we find that crash recovery mechanisms can con-
tain simple errors, e.g., the backup data parse error in bug c4842. 
This indicates that crash recovery implementations may not be 
sufficiently tested. Finding 6 indicates that system testing should 
cover all 7 crash recovery components. Finding 8 implies that it is 
not necessary to utilize a large cluster to expose crash recovery 
bugs. Instead, a small cluster (e.g., 4 nodes) can reveal most crash 
recovery bugs. Finding 9 implies that we can test distributed sys-
tems via a small number of injected crashes and reboots. Finding 
10 and Finding 11 imply that test input design needs to consider 
user requests, configurations, and so on. 

8.3 Crash / Reboot Injection Strategy 
Finding 12 implies that crash/reboot timing is important for ex-
posing crash recovery bugs. Thus, randomly exploring possible 
crash scenarios [24][40][50][52][53] should not work well, since 
most of the randomly explored scenarios may not prone to trigger 
bugs. Additionally, Finding 9 implies that we only need to inject a 
limited number (e.g., 3) of crashes and reboots. Thus, a proper in-
jection strategy can detect crash recovery bugs efficiently and ef-
fectively. Our study reveals some crash injection scenarios that 
can easily trigger crash recovery bugs, e.g., crash in the process of 
writing a file or a group of I/O operations, crashing the node that 
users are accessing, quickly restart within a timeout setting, crash-
ing the underlying systems, and crashing related nodes after back-
ups are deleted. Finding 7 indicates that crashes on / during crash 
recovery can easily trigger bugs, crash / reboot injection should 
also consider this scenario. Future tools should further explore 
more crash inject scenarios in our study and apply these scenarios 
to speed up crash recovery bug manifestation. 

9 RELATED WORK 
Empirical studies in distributed systems. Guo et al. [18] clas-
sified several crash recovery misbehaviors, and concluded that 
failure recovery must be engineered explicitly according to a “do 
no harm” requirement. Gunawi et al. presented CBS [15] that con-
tains over 3,000 vital issues in six distributed systems. The crash 
recovery bugs we studied are selected from CBS. We further per-
form in-depth analysis on these bugs, which is not done by CBS. 
Leesatapornwongsa et al. [28] studied 104 distributed concurrency 
bugs from four distributed systems. Unlike our study, their work 
focuses on concurrency bugs, and does not try to understand why 

and how crashes / reboots can trigger bugs. Dai et al. [7] analyzed 
156 real-world timeout issues from 11 cloud systems. Yuan et al. 
[42] looked deeply into 198 production failures in distributed sys-
tems to understand how one or multiple faults eventually evolve 
into a user-visible failure. Wang et al. [37] studied 290,000 hard-
ware failure reports in hundreds of thousands of servers. 

Bug detection in distributed systems. Some approaches 
have been developed to combat bugs in distributed systems. MO-
DIST [40] is a distributed model checker that can systematically 
check system behaviors under all kinds of actions. SAMC [27] de-
tects intricate bugs in distributed systems based on semantic-
aware model checking. D3S [32] detects bugs by checking predi-
cates specified by developers at runtime. Xu et al. [39] automati-
cally finds out problems at runtime by mining console logs. PACE 
[1] identifies correlated crash vulnerabilities in distributed sys-
tems. DCatch [30] adopts dynamic analysis to detect concurrency 
bugs in distributed systems. CloudRaid [33] detects concurrency 
bugs in distributed systems by flipping the order of a pair of con-
current messages that always happen in a fixed order. FCatch [31] 
predicts time-of-fault bugs by observing possible conflicting oper-
ations under crashes. Our study sheds new light on bug detection 
in distributed system as discussed in Section 8. 

Testing and verification. SETSUD [23] exposes system-level 
defects by precisely controlling the timing of perturbations with 
the awareness of system-internal states. PreFail [24] allows testers 
to write failure injection policies for space reduction. CORDS [12] 
tests if a distributed storage system can correctly recover from file-
system faults. DEMi [35] combines DPOR [10] and delta debug-
ging [43] to automatically minimize buggy executions. FATE and 
DESTINE [14] aims to exercise multiple and diverse failures by 
avoiding exercising the same recovery behaviors. Verdi [38], 
IronFleet [19] and Chapar [29] can verify distributed systems in 
Coq [58] and Dafny [51]. However, these formally verified systems 
are not totally reliable [11]. ELEVEN82 [25] tries to prove storage 
systems to be crash recoverable by reducing crash recoverability 
to reachability, in case of one crash. 

10 CONCLUSIONS 
Although automated recovery has been treated as a first-class op-
eration of distributed systems, crash recovery is still complicated 
and error-prone. This paper presents CREB, an in-depth study of 
103 crash recovery bugs in four popular open-source distributed 
systems. Our study reveals a number of interesting findings and 
implications. We hope our study can inspire more researchers to 
combat crash recovery bugs in distributed systems. The CREB da-
taset is available at http://www.tcse.cn/~wsdou/project/CREB. 
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