
An Empirical Study on Crash Recovery Bugs in Large-Scale
Distributed Systems

Yu Gao, Wensheng Dou†
State Key Lab of Computer Science, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences, China

{gaoyu15, wsdou}@otcaix.iscas.ac.cn

Feng Qin
Dept. of Computer Science and Engineering

The Ohio State University, United States
qin.34@osu.edu

Chushu Gao, Dong Wang, Jun Wei†
State Key Lab of Computer Science, Institute of Software,

Chinese Academy of Sciences
University of Chinese Academy of Sciences, China
{gaochushu, wangdong18, wj}@otcaix.iscas.ac.cn

Ruirui Huang, Li Zhou, Yongming Wu
Alibaba Group, China

{ruirui.huang, celly.zl, yongming.wym}@alibaba-inc.com

ABSTRACT
In large-scale distributed systems, node crashes are inevitable, and
can happen at any time. As such, distributed systems are usually
designed to be resilient to these node crashes via various crash
recovery mechanisms, such as write-ahead logging in HBase and
hinted handoffs in Cassandra. However, faults in crash recovery
mechanisms and their implementations can introduce intricate
crash recovery bugs, and lead to severe consequences.

In this paper, we present CREB, the most comprehensive study
on 103 Crash REcovery Bugs from four popular open-source dis-
tributed systems, including ZooKeeper, Hadoop MapReduce, Cas-
sandra and HBase. For all the studied bugs, we analyze their root
causes, triggering conditions, bug impacts and fixing. Through
this study, we obtain many interesting findings that can open up
new research directions for combating crash recovery bugs.

CCS CONCEPTS
• Software and its engineering → Cloud computing; Soft-
ware reliability; Software testing and debugging

KEYWORDS
Distributed systems, crash recovery bugs, empirical study

ACM Reference format:

Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei,
Ruirui Huang, Li Zhou, and Yongming Wu. 2018. An Empirical Study on
Crash Recovery Bugs in Large-Scale Distributed Systems. In Proceedings of
the 26th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE’18), November
4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3236024.3236030

1 INTRODUCTION
Large-scale distributed systems have become pervasive and indis-
pensable to our daily lives. While enterprises leverage distributed
systems such as scalable computing frameworks [8], storage sys-
tems [4][9][13], cluster management services [21][26] and syn-
chronization services [3], for cloud computing and big data ana-
lytics, consumers rely on distributed systems employed by large
Internet companies such as Google and Alibaba to conveniently
access popular services, e.g., online searching and shopping. Fail-
ures of such large-scale distributed systems can adversely impact
billions of users and lead to huge financial losses [56][57]. There-
fore, the reliability of distributed systems is of critical importance.

However, the reliability of large-scale distributed systems is
threatened by node crashes -- a norm in these systems. Large-scale
distributed systems are commonly built on farms of machines
(nodes), comprising thousands of commodity machines. A ma-
chine (node) may suffer from power failures, hardware faults and
software faults, and thus the node may become unavailable. As the
number of nodes in a distributed system increases, node failures
become normal. When a node crashes, the on-going tasks and in-
memory data in the node are lost. Other live nodes in the cluster
may not work properly especially when the crash node is the dom-
inant node, e.g., the master node. To provide high reliability, the
live nodes in the cluster should detect and handle node crashes in
time. The crash node should correctly rejoin the cluster when it is
rebooted. Therefore, automated recovery must be a first-class op-
eration of distributed systems [6].

To combat node crashes, developers have introduced sophisti-
cated crash recovery mechanisms into large-scale distributed sys-
tems, e.g., write-ahead logging in HBase [59] and hinted handoffs
in Cassandra [55]. However, it is still challenging to handle node
crashes in these distributed systems. Node crashes can happen un-
predictably on any node at any time, and cause many kinds of
crash scenarios, such as partially-updated persistent states and in-
memory data loss. It is difficult for developers to contemplate all
possible crash scenarios, and correctly implement corresponding
crash recovery mechanisms. It is also impossible to inject crashes
in all possible scenarios, and test a distributed system thoroughly
[14]. As a result, inadequate crash recovery mechanisms and their

† Wensheng Dou and Jun Wei are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESEC/FSE '18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11...$15.00
https://doi.org/10.1145/3236024.3236030

mailto:wsdou%7d@otcaix.iscas.ac.cn
https://doi.org/10.1145/3236024.3236030

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

incorrect implementations can introduce intricate crash recovery
bugs, and lead to severe consequences. For example, in our study,
38% of our studied crash recovery bugs cause node downtimes (e.g.,
node hangs), and 21% of the bugs cause data-related failures. In
this paper, crash recovery bugs refer to the bugs that exist in the
crash recovery related mechanisms and implementations.

To better combat crash recovery bugs in distributed systems,
our community urgently needs a thorough understanding of them.
Crash recovery bugs have been widely studied on single-machine
systems [5][16][34][41][44]. In distributed systems, existing tech-
niques mainly focus on crash recovery bug detection through
model checking and crash injection, e.g., MODIST [40], DEMETER
[17], SAMC [27], PreFail [24], MOLLY [2], CORDS [12], PACE [1],
FATE and DESTINI [14]. However, it is unknown whether there
exist some patterns among crash recovery bugs. Although some
empirical studies have been conducted for different kinds of bugs
in distributed systems, e.g., CBS [15], TaxDC [28], and timeout is-
sues [7]. But none of them specially dissects crash recovery bugs.
We believe that an in-depth study of crash recovery bugs can fur-
ther promote the reliability research in distributed systems.

In this paper, we present CREB, the first (to the best of our
knowledge) comprehensive analysis of 103 Crash REcovery Bugs
from four popular large-scale distributed systems, including
ZooKeeper [49], Hadoop MapReduce [47], Cassandra [45] and
HBase [48]. We thoroughly study these bugs and try to answer the
following research questions.

 RQ1 (Root causes): What are the root causes for crash
recovery bugs?

 RQ2 (Triggering conditions): How is a crash recovery bug
triggered? How complicated is it to trigger a bug?

 RQ3 (Bug impacts): What impacts do crash recovery bugs
have?

 RQ4 (Fixing): How do developers fix crash recovery bugs?
Through our in-depth analysis against the above four research

questions, we obtain many interesting findings. We summarize
our main findings as follows:

 Crash recovery bugs are caused by five types of bug patterns,
i.e., incorrect backup (17%), incorrect crash / reboot detection
(18%), incorrect state identification (16%), incorrect state
recovery (28%) and concurrency (21%). These bug patterns

motivate new approaches to detect crash recovery bugs. For
example, we can detect incorrect backup bugs by analyzing
whether in-memory data are backed up in all program paths.

 Almost all (97%) of crash recovery bugs involve no more than
four nodes. This finding indicates that we can detect crash
recovery bugs in a small set of nodes, rather than thousands.

 A majority (87%) of crash recovery bugs require a
combination of no more than three crashes and no more than
one reboot. It suggests that we can systematically test almost
all node crash scenarios with very limited crashes and reboots.

 Crash recovery bugs are difficult to fix. 12% of the fixes are
incomplete, and 6% of the fixes only reduce the possibility of
bug occurrence. This indicates that new approaches to
validate crash recovery bug fixes are necessary.

In summary, we make the following main contributions:
 We present CREB, the first comprehensive study of crash

recovery bugs in large-scale distributed systems. Our in-depth
analysis on four distributed systems reveals common
vulnerabilities in their crash recovery processes.

 The findings in our study open up new research directions.
We hope our study can not only improve existing approaches,
but also shed new light on combating crash recovery bugs.

 We provide a large-scale benchmark of crash recovery bugs
in distributed systems, which can be used to evaluate the
effectiveness of tools in combating crash recovery bugs.

2 CRASH RECOVERY MODEL
To help understand crash recovery bugs, we build a general node
crash recovery model for distributed systems by investigating
crash recovery mechanisms in popular open-source distributed
systems, e.g., ZooKeeper [49], Hadoop MapReduce [47], Cassandra
[45] and HBase [48]. Note that these systems involve different ar-
chitectures and crash recovery mechanisms (see more details in
Section 3.1). For example, Hadoop MapReduce uses a master /
slave architecture, and Cassandra uses a peer-to-peer architecture.

To simplify the presentation, we use a two-node distributed
system in Figure 1 to demonstrate the general crash recovery
model. A node in a distributed system usually contains five execu-
tion stages, shown as solid rectangles in Figure 1. Before providing

Figure 1: The general crash recovery model for distributed systems. Steps 1-6 show a general crash recovery process. Green rounded
rectangles denote seven crash recovery components. We use solid and thick arrows to denote that a node goes into a terminate state or starts up
another execution process when encountering certain events. For example, when node1 encounters a crash event (step 1), node1 terminates
immediately. When node2’s crash detection component detects a crash (step 2), the crash recovery process is started. We use solid and thin
arrows to denote data reading and writing, and dotted arrows to denote messages among nodes.

node1 node2

Startup

Local recovery

Crash/reboot detection

Serving

Backing up

Crash/reboot detection

Crash handling

Reboot handling

Network/
…

Persistent
Backups

Volatile
memory

Volatile
memory

1. Crash

3. Reboot

Remote synchronization

Node monitoring/reporting Node monitoring/reporting

Crash tolerance

Reboot tolerance

2. Detect a crash

4. Detect a reboot

5. Activate node monitoring / reporting

6. Activate serving

An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

normal services (serving stage), e.g., computing, a node first goes
into a startup stage to prepare its work environment. As the serv-
ing stage provides normal services, a node usually has specific
mechanisms to report its liveness and monitor the availability of
other relevant nodes in the cluster (node monitoring / reporting
stage). The node monitoring / reporting stage is relatively inde-
pendent and usually works in conjunction with its counterparts at
other relevant nodes via direct network connection or other me-
diations. Crash tolerance stage and reboot tolerance stage will be
triggered respectively when a crash and a reboot are detected in
the node monitoring / reporting stage.

In the five execution stages, seven crash recovery components
(green rounded rectangles in Figure 1) are introduced to handle
potential node crashes. We describe these components as follows.

In the serving stage of node1, the backing up component persists
node1’s important in-memory data into backups (e.g., transaction
logs in ZooKeeper [22]). These backups can be persisted in local
disk or remote servers in underlying storage systems, e.g., HDFS
[54]. If node1 comes back from a crash, it can recover its in-
memory data according to these backups.

When node1 crashes due to certain event (step 1), e.g., a power
failure, it loses all its in-memory data and stops execution instantly.
This crash can be detected by other live nodes who care about
node1’s state, e.g., node2, through certain detection mechanisms in
the crash detection component, e.g., heartbeats. Then, node2 starts
to handle the crash of node1 (step 2). For example, the crash han-
dling component may clean up stale information left by node1 and
take over node1’s tasks. Finally, the whole system goes back into a
consistent state, without node1.

In some cases, node1 will be rebooted. It first goes into the
startup stage (step 3). In this stage, a local recovery component re-
trieves backups that are written by node1 before crash, and up-
dates node1’s state. The remote synchronization component reports
node1’s current state to other relevant nodes (e.g., node2) and syn-
chronizes with them. In the last, node monitoring / reporting stage
and serving stage are activated (steps 5 and 6), and then node1 can
provide normal services.

During the startup of node1, some live nodes who care about
node1’s state may detect node1’s reboot. For example, the reboot
detection component in node2 reports the reboot and starts the re-
boot tolerance stage (step 4). The reboot handling component will
update the corresponding states and takes actions for the reboot.
For example, node2 may work out a recovery plan for node1 and
synchronizes node1’s state with other nodes, especially when
node2 is the master node.

Note that, in our general crash recovery model, we do not dis-
tinguish the architectures (e.g., master / slave in MapReduce [47]
and peer-to-peer in Cassandra [45]) and crash recovery mecha-
nisms (e.g., write-ahead logging [59] and hinted handoff [55]). Our
general crash recovery model can be instantiated as different crash
recovery mechanisms in different distributed systems. A node may
not involve all execution stages and crash recovery components
when handling a crash and the corresponding reboot. For example,
if node1 and node2 are both slave nodes in HBase, they do not care
about each other. Thus, they will not have node monitoring / re-
porting stages for each other. But if the master node detects the
crash of node1 and then transfers node1’s data to node2, the crash
handling component in node2 is triggered by the master node to
take over node1’s data. If node1 and node2 are both peer nodes in

Cassandra, the node monitoring / reporting stage in node2 will de-
tect node1’s crash when it does not receive acknowledges of gossip
messages sending to node1 in the timeout period or it receives gos-
sip messages from other nodes that mark node1 as dead. Then
node2 starts its crash tolerance stage to update node1 as dead in its
local state.

3 METHODOLOGY

3.1 Target Systems
We select crash recovery bugs from four popular open-source dis-
tributed systems: ZooKeeper [49], Hadoop MapReduce [47], Cas-
sandra [45], and HBase [48]. These systems represent different
kinds of distributed systems: Hadoop MapReduce for distributed
computing frameworks, Cassandra and HBase for storage systems,
and ZooKeeper for coordination services. As shown in Table 1,
these four systems cover two common architecture models: peer-
to-peer and master / slave. To combat node crashes, these systems
contain various sophisticated crash recovery mechanisms. In the
following, we briefly introduce the four target systems and their
crash recovery mechanisms.

ZooKeeper (ZK for short) is a centralized coordination service
for distributed applications. A Zookeeper cluster has a master
node (i.e., leader) and several slave nodes (i.e., followers).
ZooKeeper adopts an agreement protocol to handle write requests.
When the leader crashes, all followers will restart the leader elec-
tion. The election ends with a new leader if it has a majority of
supporters. Each node in a ZooKeeper cluster maintains some in-
memory states, along with transaction logs and snapshots in disk.
Writes from clients are first serialized to log files before being ap-
plied to in-memory states. Periodically, a node takes a snapshot of
its in-memory states, to ease crash recovery.

Hadoop MapReduce (MR for short) is a distributed computa-
tion framework for processing large data in a reliable manner. The
second-generation MapReduce (MRv2) adopts YARN [26] to sepa-
rates resource management from job scheduling. In MRv2, there is
a ResourceManager (RM), a NodeManager (NM) per server, and an
AppMaster (AM) per application. MRv2 restarts an AM for a failed
job or reschedule a failed task. Most crash recovery bugs in
MapReduce in our study belong to MRv2.

HBase (HB for short) is a distributed big data storage system
with a master / slave architecture. HBase uses HDFS to store its
data files, e.g., write-ahead logging files (i.e., HLog), etc. HBase1
uses ZooKeeper to monitor its nodes and store some metadata, e.g.,
region transition state. In an HBase cluster, the master node
HMaster (HM) is responsible for monitoring all RegionServers,

1 Our studied HBase bugs belong to HBase 0.90 up to 1.0. In these versions, HBase
uses ZooKeeper to maintain state consistence among nodes.

Table 1: Target Distributed Systems and Studied Crash
Recovery Bugs

System Domain Architecture # of bugs

ZooKeeper Coordination Master/slave based on
leader election

22

Hadoop
MapReduce

Computing
framework

Master/slave 22

Cassandra Storage Peer-to-peer 27
HBase Storage Master/slave 32
Total - - 103

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

and all metadata must be changed through HMaster. A Region-
Server (RS) is responsible for managing data and providing ser-
vices for clients. When the HM crashes, one of backup master
nodes will be activated. When a RS crashes, the HM detects the RS
crash, and reassigns its regions to other RSs.

Cassandra (CA for short) is a scalable database based on a peer-
to-peer architecture. Each node in a Cassandra cluster plays the
same role. Cassandra adopts the Gossip protocol to communicate
among nodes. In Cassandra, each piece of data has more than one
(e.g., 3) replica. A write operation is first serialized to the commit
log before being written to the in-memory data structure memta-
ble for crash recovery. When the memtable is full, it will be flushed
into the SSTable data file. If a node crashes, updates to the dead
node can be kept as hinted handoffs in a coordinator node. When
the dead node comes back, updates in hinted handoffs will be ap-
plied to the node to carry out the recovery process.

3.2 Collecting Crash Recovery Bugs
Our four target distributed systems all have well-organized and
publicly available issue repositories (i.e., JIRA). So far, there are
about 42,000 issues in these systems. Investigating all these issues
is a daunting and time-consuming task. Instead, we start our study
from an existing cloud bug study database, CBS [15]. CBS contains
3,655 vital issues from six distributed systems (ZooKeeper [49],
Hadoop MapReduce [47], Cassandra [45], HBase [48], HDFS [54]
and Flume [46]), reported from January 2011 to January 2014. We
select CBS as our study base due to the following two reasons. First,
CBS has covered all our target distributed systems. Second, CBS
provides some labels that can help us classify and understand bugs.

Unfortunately, we cannot find out all crash recovery bugs in
CBS by simply searching labels such as “crash” and “reboot”. Thus,
we select crash recovery bugs via the following steps. (1) We read
the description in each issue report and keep the issue once it sat-
isfies the following conditions: available fixes, clear description,
and related to crash recovery. To decide if an issue is related to
crash recovery, we look for relevant keywords in the bug reports,
e.g., “crash”, “kill”, “fail”, “stop”, “shutdown”, “leave”, “reboot”, “re-
start”, “failover”, “recovery”, and system-specific keywords, e.g.,
“ServerShutdownHandler” in HBase and “hinted handoffs” in Cas-
sandra. In some issue reports, developers have provided bug sce-
narios, which can help us determine if they are related to crash
recovery. (2) We carefully read the issue description, developer
comments and patches, and rebuild bug scenarios step by step. We
keep an issue as a crash recovery bug if it needs at least one crash
to trigger. If a bug has to be triggered through a “stop” command
rather than a crash, which means the bug is caused by faults in the
stopping process, then we do not take the bug as a crash recovery
bug. For example, in bug c2072,2 a client sends a decommission
command to a node to remove it from the cluster. The node cannot
be marked as “left” due to a concurrency issue in the leaving pro-
cess. In this case, we cannot use a crash to replace the decommis-
sion command. So, it is not considered as a crash recovery bug.
Furthermore, we only keep crash recovery bugs that we can com-
pletely understand. As shown in Table 1, we collect 103 crash re-
covery bugs, including 22 from ZooKeeper, 22 from Hadoop
MapReduce, 27 from Cassandra and 32 from HBase.

3.3 Analyzing Crash Recovery Bugs
To answer our four research questions, we perform an in-depth
analysis of the 103 crash recovery bugs, according to their details,
e.g., comments, patches and source code. In this process, we write
down detailed bug scenarios step by step for each bug. We further
assign them into different categories according to root causes, bug
manifestation, bug impacts and bug fixing.

Note that a crash recovery bug usually causes system failures
after a long propagation chain. So, we only categorize its root
cause according to its initial fault. For example, under an unex-
pected crash, a non-atomic update to backups may leave some cor-
rupted files, and then the recovery process cannot handle these
corrupted files and throws exceptions. We categorize this bug into
incorrect backing up although the incorrect handling of corrupted
files in the recovery process triggers system failures. For bug man-
ifestation and bug impacts, we refer to related work [15][28] for
initial categorization, e.g., the number of crashes and reboots, and
performance degradation. In this process, we also create new cat-
egories for bugs that do not belong to any known categories, delete
useless categories, and refine categories.

Through analyzing these 103 crash recovery bugs, we obtain
many interesting findings (Section 4-7). Based on these findings,
we further summarize lessons learned and implications to existing
approaches in combating crash recovery bugs in Section 8.

3.4 Threats to Validity
We only select bugs from CBS [15] in four open-source distributed
systems. They do not cover crash recovery bugs in all kinds of dis-
tributed systems, and new bugs submitted after January 2014 are
not included. Nonetheless, these four systems are widely used and
cover a diverse set of architectures. Their mechanisms for combat-
ing crashes, e.g., write-ahead logging, hinted handoffs and replicas,
are also commonly used by other systems. Therefore, our studied
bugs are representative.

For each bug, we carefully study its description, patches and
discussions among developers, and read source code to have a
deep understanding. We then write down all steps to reproduce
the bug. Finally, we make sure that crashes or restarts are an es-
sential condition for the bug. All studied bugs have been discussed
and confirmed by at least two authors in this paper. Thus, we be-
lieve that all studied bugs are true positives and have been thor-
oughly studied. Note that we exclude bugs without clear descrip-
tions and fixes to maintain the accuracy of our study results.

4 ROOT CAUSE

4.1 Bug Pattern
We classify our studied crash recovery bugs into five bug patterns
according to their root causes as shown in Table 2.

4.1.1 Incorrect Backup

Finding 1: In 17/103 crash recovery bugs, in-memory data are not
backed up, or backups are not properly managed.

When a node crashes, all its in-memory data are lost. Thus, a
node needs to back up its important in-memory data to facilitate
crash recovery. Backups can be stored in local disk, or a distributed
file system, such as HDFS [54]. When a crash node is rebooted, it

2 “c” denotes Cassandra. 2072 is bug ID. All bugs in the paper are represented in this
form. “m” denotes Hadoop MapReduce. “h” denotes HBase. “c” denotes Cassandra.
All bug examples in this paper have accessible links.

https://issues.apache.org/jira/browse/CASSANDRA-2072

An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

may restore its data from its backups. Developers need to consider
what data should be backed up, how to perform backups, and
where to store backups. Faults in the above processes can make
crash recovery fail. We further classify them into two categories.

No backup (6 bugs). In-memory data that are necessary for
crash recovery should be backed up. Forgetting to back up im-
portant data can cause bad consequences when suffering from
node crashes. Take bug z1264 in Figure 2 as an example. In
ZooKeeper, every transaction should be persisted in the transac-
tion log before being applied in memory. In the startup stage, the
follower performs synchronization with the leader. During this
process, a commit message TXN_A arrives in the follower side and
is applied directly in memory without being persisted in the trans-
action log due to the incorrect design of the protocol. In the serv-
ing stage, another transaction TXN_B arrives, and is persisted cor-
rectly. If the follower crashes after TXN_B, and then reboots, it
cannot recover TXN_A, since it considers all transactions before
TXN_B have been correctly recovered through backups. Therefore,
TXN_A is lost in the follower.

Incorrect backup management (11 bugs). Backups should
be updated and managed correctly. Otherwise, the backup data be-
come incorrect, and distributed systems cannot recover from these
incorrect backups. There are two bug scenarios here.

 Backups are not updated correctly. (1) The update logic is
incorrectly implemented. For example, in bug z1489,
appending a transaction into the transaction log file after a
truncate command without reopening the log file leaves a
“hole” in the log file. 2 bugs belong to this case. (2) Backups
should be updated in an atomic way. However, a crash can
break this atomicity. For example, in bug z1427, two update
operations on a backup file is broken by a crash, and the
backup file is corrupted [34][44]. In bug z1653, two backup
files are expected to be updated atomically. Unfortunately, a
crash may happen in between. In this case, the first file is
updated, and the second is not updated timely. 6 bugs belong
to this case.

 To save disk space, stale backups need to be cleaned up.
However, premature removal of backups can cause crash
recovery to fail. 3 bugs belong to this case. For example, in bug
m5476, after a job is finished, the AM first deletes its staging
directory and then unregisters itself with the RM. If a crash
occurs in between, then the RM restarts a new AM. The new
AM fails since the staging directory has already been removed.

4.1.2 Incorrect Crash/Reboot Detection

Finding 2: In 18/103 crash recovery bugs, crashes and reboots are
not detected or not timely detected.

When a node crash / reboot occurs, other relevant live nodes
should detect the crash / reboot through certain mechanisms, e.g.,
timeout, heartbeat, or Gossip. If a node crash / reboot is not de-
tected in a timely manner, the corresponding crash recovery will
not be applied. 18 bugs are caused by incorrect crash / reboot de-
tection. We further classify them into two sub-categories.

No crash detection (14 bugs). Although our four studied dis-
tributed systems all have dedicated mechanisms to detect crashes,
some crashes are not detected in the following three cases.

 When a node crashes, some other relevant nodes may access
the crash node without perceiving that the node has crashed.
These relevant nodes may hang or throw errors. 9 bugs belong
to this case. In bug m3228, a MapReduce job is executing some
tasks in containers managed by a NM. Then, the server that
holds the NM and tasks crashes. After a while, the AM marks
these tasks as timeout since it does not receive heartbeats
from tasks in a given time and notifies the NM to stop the
containers in which these tasks run. However, the AM keeps
waiting for the response from the NM forever since the NM is
down.

 If a crash node reboots very quickly, then the crash may be
overlooked by the crash detection component based on
timeout. Thus, the crash node may contain corrupted states,
and no one knows it. 2 bugs belong to this case. In bug m3186,
the RM loses all its metadata about jobs after a quick reboot.
However, the AM does not know the crash and the reboot,
and still commits jobs to the RM, resulting failures.

 Crashes have been detected, however, no crash recovery can
be applied. We classify this case into no crash detection, since
their induced results are the same. 3 bugs belong to this case.
In bug h5918, if the HM crashes and reboots, it will try to
assign the ROOT region and the META region3 in the startup
stage. The ROOT region is assigned to RS1 first. Then the HM
tries to assign the META region. This assignment needs to
access the ROOT region. If RS1 crashes at this time, the ROOT
region will become unavailable and cannot be recovered since
the crash recovery handler ServerShutdownHandler is not
enabled yet. Thus, the assignment of META region will wait
for an available ROOT region forever.

Untimely crash / reboot detection (4 bugs). A crash / reboot
should be detected as soon as possible. If it takes a very long time
3 ROOT tracks META region; META region stores information about data regions.

Table 2: Bug Patterns

Bug patterns ZK MR CA HB Total

Backup
No backup 4 2 0 0 6
Incorrect backup
management

3 3 4 1 11

Crash/re-
boot de-
tection

No crash detection 0 5 2 7 14
Untimely crash/re-
boot detection

0 1 2 1 4

Incorrect state identification 5 4 5 3 17
Incorrect state recovery 5 4 11 9 29
Concurrency 5 3 3 11 22

Figure 2: Bug z1264. The dashed cylinders denote data is stored
in memory, and solid ones denotes data is stored in files.

Follower Leader

“NEWLEADER” (Start sync)

“UPTODATE” (End sync)

“Commit TXN_B”

“Last transaction is
TXN_B”

“You are already newest!”

Lose TXN_A!

“Commit TXN_A”

The newest transaction
is TXN_B

Startup stage
Serving stage

X

Bug

Snapshot

TXN_A

Take snapshot

TXN_B

TXN_B

https://issues.apache.org/jira/browse/ZOOKEEPER-1264
https://issues.apache.org/jira/browse/ZOOKEEPER-1489
https://issues.apache.org/jira/browse/ZOOKEEPER-1427
https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://issues.apache.org/jira/browse/MAPREDUCE-5476
https://issues.apache.org/jira/browse/MAPREDUCE-3228
https://issues.apache.org/jira/browse/MAPREDUCE-3186
https://issues.apache.org/jira/browse/HBASE-5918
https://issues.apache.org/jira/browse/ZOOKEEPER-1264

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

to confirm a crash, the crash recovery will be delayed. For example,
in bug c3273, nodes in Cassandra use the accrual failure detector
[20] to detect node crashes. The timeout threshold is decided dy-
namically and related to history time intervals of message arrival.
In corner scenarios, the timeout threshold can become large (e.g.,
10 minutes), and a node crash cannot be detected timely. Another
scenario is once a node is rebooted, distributed systems should
make it available to serve as soon as possible. In bug h4397, all RSs
are down, and thus all region assignments cannot be processed. So,
the TimeoutMonitor takes over, and checks if there are available
RSs after 30 minutes. Some RSs may come back in less than 30
minutes. However, the TimeoutMonitor still waits for at least 30
minutes, and no region assignment can be processed.

4.1.3 Incorrect State Identification

Finding 3: In 17/103 crash recovery bugs, the states after crashes /
reboots are incorrectly identified.

When a node crashes unexpectedly, it may leave some stale in-
formation, e.g., unfinished tasks and stale states. These leftovers
(i.e., stale information) can be persisted files, in-memory data or
threads / processes in other live nodes. A crash recovery process
should precisely identify these leftovers after a crash happens.
When a node reboots, it should correctly identify its final state and
the state of current cluster. Meanwhile, other relevant live nodes
should correctly identify the state of the reboot node. Incorrect
state identification can make the crash recovery process adopt in-
correct recovery decisions. There are three cases in this category.

 The recovery process misses the correct states (3 bugs). For
example, in bug z582, a new leader needs to restore the most
recent state from backups, i.e., transaction logs and snapshots.
However, it only considers transaction logs. If the transaction
logs are deleted, the state cannot be restored correctly.

 The recovery process mistakenly considers wrong states as
correct (12 bugs). For example, in bug z975, node1 crashes after
it is voted as the leader. When node1 is rebooted, it may
receive stale vote messages for node1. Then, node1 mistakenly
takes these stale messages and sets itself as the leader.

 Two bugs are caused by incorrect data parser logic. In bug
c4842, the recovery process cannot retrieve a column family
containing metadata DateType in CompositeType, since it
cannot separate DateType from CompositeType correctly.

4.1.4 Incorrect State Recovery

Finding 4: The states after crashes / reboots are incorrectly recovered
in 29/103 crash recovery bugs. Among them, 14 bugs are caused by
no handling or untimely handling of certain leftovers.

When a crash or a reboot happens, four recovery components
in Figure 1, i.e., local recovery, remote synchronization, crash han-
dling and reboot handling, will try to recover the cluster to a con-
sistent state. Wrong state recovery will introduce crash recovery
bugs. 29 bugs belong to this case.

We are more interested in the leftovers of a crash node. When
a node crashes suddenly, the information maintained by the crash
node may need to be transferred, and the states left in the cluster
may be corrupted, etc. These leftovers should be correctly handled,
e.g., deleted or updated. Among 29 bugs caused by incorrect state
recovery, 15 bugs are caused by incorrectly handling of leftovers.
Among them, we find two interesting patterns, covering 14 bugs.

 No handling of leftovers (11 bugs). For example, in bug m3858,
a task node crashes in the commit phase, and leaves a taskID
in the commit attempt list in the AM. When recovering from
the crash, the AM starts another task node to complete the
task without deleting this taskID. When the new task node
attempts to commit the task, it fails since the taskID already
exists in the commit list.

 Untimely handling of leftovers (3 bugs). For example, in bug
h6060, a RS is opening a region R1, and a crash happens to the
RS while R1 is still in opening state. The crash recovery
component ServerShutdownHandler does not reassign R1 to
another live RS immediately, but leaves it to be reassigned by
the TimeoutMonitor after 30 minutes.

4.1.5 Concurrency

Finding 5: The concurrency caused by crash recovery processes is
responsible for 22/103 crash recovery bugs.

Distributed systems execute many protocols concurrently on
thousands of nodes with no common clocks and may trigger vari-
ous concurrency issues. When a node crashes / reboots, the recov-
ery process is usually concurrent with other normal processes.
Concurrency bugs can manifest in these concurrent processes. 22
bugs belong to this category. We further classify them into 3 sub-
categories according to their involved processes.

 Concurrency in one recovery process (5 bugs). Take bug c2083
as an example. In Cassandra, after node1 crashes and then
reboots, its coordinator node node2 will recover node1’s data
through hinted handoffs. During node1’s downtime, a column
family is created, and new data are inserted into the column
family. After node1 reboots, the column family creation
message and the new data are sent to node1 concurrently.
Thus, if the new data arrive at node1 earlier than the column
family creation message, then a failure will happen, since the
column family is not created yet.

 Concurrency between two recovery processes (4 bugs). For
example, in bug h5179, a standby HM is activated since the
primary HM is down. The standby HM first performs a startup
process. During this process, a RS crashes. The crash handling
component ServerShutdownHandler starts handling the RS
crash. At the same time, the startup stage in HM finds that the
RS is dead and also tries to handle it, and thus the double
assignment for the RS is triggered.

 Concurrency between a recovery process and a normal
execution (13 bugs). For example, in bug h9514, a RS crashes
and the HM handles the crash using ServerShutdownHandler.
This handler first splits the log for the dead RS and then
reassigns regions on the RS to other RSs. When a client
request that wants to assign a region on the dead RS arrives
concurrently and is executed before splitting the log in
ServerShutdownHandler, some data could be lost.

4.2 Components of Root Causes
Finding 6: All the seven recovery components in our crash recovery
model can be incorrect and introduce bugs. About one third of bugs
are caused in crash handling component.

As shown in Section 2, we separate the crash recovery process
into seven crash recovery components. We wonder whether crash
recovery bugs can be easily introduced in some components. Thus,

https://issues.apache.org/jira/browse/CASSANDRA-3273
https://issues.apache.org/jira/browse/HBASE-4397
https://issues.apache.org/jira/browse/ZOOKEEPER-582
https://issues.apache.org/jira/browse/ZOOKEEPER-975
https://issues.apache.org/jira/browse/CASSANDRA-4842
https://issues.apache.org/jira/browse/MAPREDUCE-3858
https://issues.apache.org/jira/browse/HBASE-6060
https://issues.apache.org/jira/browse/CASSANDRA-2083
https://issues.apache.org/jira/browse/HBASE-5179
https://issues.apache.org/jira/browse/HBASE-9514

An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

we put the 103 bugs into their corresponding crash recovery com-
ponents according to their root causes. The result is shown in Ta-
ble 3. Note that, the total number exceeds 103 since some bugs in-
volve more than one recovery component.

As shown in Table 3, all the seven crash recovery components
can be incorrect and introduce bugs. Overall, the crash handling
component is the most error-prone (34%). The next top three com-
ponents, backing up (19%), local recovery (17%) and crash detec-
tion (13%) also occupy a large portion. But all four systems have
few bugs in reboot detection components. For ZooKeeper, about a
half of the crash recovery bugs are rooted in the backing up com-
ponent. For MapReduce, we do not find bugs in the remote syn-
chronization component. For HBase, over two thirds of its bugs
are caused by the crash handling component.

4.3 Crashes on/during Recovery
Finding 7: In 15/103 crash recovery bugs, new relevant crashes occur
on / during the crash recovery process, and thus trigger failures.

Crashes can happen at any time. New node crashes can happen
when a node crash / reboot is being handled, i.e., crash handling,
reboot handling, local recovery and remote synchronization in
Figure 1. The new crashes can complicate the current recovery
process, and cause failures. 15 bugs fall into this category.

 The node executing the recovery process crashes, and the
crash recovery process is interrupted (7 bugs). For example, in
bug h3596, RS1 first crashes. RS2 tries to take over RS1’s
regions and sets a lock znode in ZooKeeper. Now, RS2 crashes
before releasing the lock. Regions in RS1 will be locked forever.

 During the recovery process of a node, another node crashes
(8 bugs). This mainly involves two kinds of scenarios: (1)
Current crash recovery process may need to access other
nodes, but the accessed nodes crash. Then, the crash recovery
process hangs or fails. For example, in bug h3446, the META-
RS crashes when handling a normal RS’s crash. Then the
recovery process for the normal RS encounters a server-not-
running exception and orphans lots of regions. (2) The two
crash recovery processes may access share data and introduce
bugs. For example, in bug h5179 we have discussed in Section
4.1.5, during the startup stage of HM, a RS crashes. The RS
crash is handled twice, and thus causes data loss.

5 TRIGGERING CONDITIONS
To trigger a crash recovery bug, only crashes and reboots may not
be sufficient. We should consider other input conditions. We
measure the complexity of input conditions (Section 5.1) to trigger
a bug, e.g., the number of nodes and special configurations. We
further discuss the timing about crashes and reboots (Section 5.2).

5.1 Input Conditions
Finding 8: Almost all (97%) crash recovery bugs involve four nodes
or fewer.

Finding 9: No more than three crashes can trigger almost all (99%)
crash recovery bugs. No more than one reboot can trigger 87% of the
bugs. In total, a combination of no more than three crashes and no
more than one reboot can trigger 87% (90 out of 103) of the bugs.

Finding 10: 63% of crash recovery bugs require at least one client
request, but 92% of the bugs require no more than 3 user requests.

First, we count the basic input conditions of crash recovery
bugs, i.e., the minimum numbers of nodes, crashes, reboots and
user requests involved in triggering a bug. As show in Figure 3, we
find that 85% (88 out of 103) of bugs involve no more than three
nodes. 74% (76 out of 103) of bugs can be reproduced by only in-
jecting one crash. Almost all bugs (99%) can be triggered by no
more than three crashes. 36% of bugs do not need to inject any
reboot, and 51% bugs only need one reboot. 87% (90 out of 103) of
bugs can be triggered with a combination of no more than three
crashes and no more than one reboot. For client requests, 37% (38
out of 103) of bugs do not need client requests. 37% of bugs only
need one client request. That means crash recovery bugs can be
triggered by simple client inputs. Note that there are five bugs that
need large number of client requests, e.g., thousands.

Finding 11: 38% of crash recovery bugs require complicated input
conditions, e.g., special configurations or background services.

Besides the basic conditions as shown above, 39 bugs require
complicated input conditions. We summarize these complicated
input conditions in Figure 4, and briefly explain them as follows.

Special configurations. 18 crash recovery bugs only manifest
themselves under special configurations. For example, bug c2083
can only be manifested when the hinted handoff is enabled.

Background services. 11 bugs need background services, e.g.,
load balancing, or compaction of persistent files, and snapshotting.
These background services usually happen non-deterministically.
For example, bug z1573 requires that the crash node is snapshot-
ting its in-memory state. The snapshotting process rarely happens
since it occurs only when the transaction log file is full.

There are other types of triggering conditions. For example, 5
bugs need man-made corrupted data, 4 bugs need one or several
nodes to start from scratch, and 2 bugs need a network partition.

5.2 Crash / Reboot Triggering Window
Finding 12: The timing of crashes / reboots is important for repro-
ducing crash recovery bugs.

Table 3: Statistics of Involved Crash Recovery Compo-
nents

Components ZK MR CA HB Total
Crash handling 2 6 3 24 35
Backing up 10 5 4 1 20
Local recovery 4 5 7 1 17
Crash detection 0 6 3 4 13
Remote synchronization 3 0 3 4 10
Reboot handling 3 1 6 0 10
Reboot detection 0 0 1 1 2

Figure 3: Basic input conditions. It shows the minimum num-
bers of nodes, crashes, reboots and client requests required by the 103
crash recovery bugs. H means a large number, e.g., 1000.

0 (36%)

0 (37%)

1 (13%)

1 (74%)

1 (51%)

1 (37%)

2 (34%)

2 (17%)

2

2 (14%)

3 (38%)

3

3

3

4 (12%)

5 H

Node

Crash

Reboot

Request

0 1 2 3 >3 4 >4 5 Huge

https://issues.apache.org/jira/browse/HBASE-3596
https://issues.apache.org/jira/browse/HBASE-3446
https://issues.apache.org/jira/browse/HBASE-5179
https://issues.apache.org/jira/browse/CASSANDRA-2083
https://issues.apache.org/jira/browse/ZOOKEEPER-1573

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

Only node crashes that happen at certain system states can
trigger crash recovery bugs. Accordingly, the difficulty levels of
triggering crash recovery bugs are different. We use crash / reboot
windows to measure such difficulty levels, as shown in Table 4.

We divide the crash triggering window into 3 categories, ac-
cording to the follow rules.

 Easy (32 bugs). To trigger a crash recovery bug, the crash can
occur at a consistent global state, e.g., the ZooKeeper cluster
finishes the leader election, or a client request has been
processed. In this case, we do not need to control the internal
states of some nodes and can easily inject crashes when the
cluster stays in a consistent state.

 Moderate (53 bugs). The node crash needs to occur when the
node stays in certain states. That is, the timing of the crash
only relates to the events happening in the same node. Thus,
we only need to consider the internal states in one node.

 Difficult (18 bugs). The node crash needs to occur when other
nodes are in certain states. Thus, we need to inject the crash
after checking the states of other nodes.

While reproducing each bug requires at least one crash, only
66 bugs need reboots. We divide reboot triggering windows into 2
categories, according to the follow rules. Note that, we do not have
a moderate level for reboot triggering windows since a dead node
does not have a chance to change its states.

 Easy (57 bugs). The reboot can happen at any time or after a
fixed amount of time. For example, in bug c2115, the reboot
should happen after the node stays down for a fixed time. We
can easily control this downtime.

 Difficult (9 bugs). The reboot needs to occur when other nodes
stay in certain states. Thus, we need to inject the reboot after
checking the states of other nodes.

Note that our decision about how difficult to inject a crash /
reboot is based on the above rules. We believe our results can in-
dicate the difficulty of reproducing crash recovery bugs.

6 BUG IMPACTS
Finding 13: Crash recovery bugs always have severe impacts on re-
liability and availability of distributed systems. 38% of the bugs can
cause node downtimes, including cluster out of service and unavail-
able nodes.

To better understand how severe a crash recovery bug is, we
study the failure symptom of each bug. The crash recovery bugs
influence availability, reliability, and performance of the target
systems. We classify them into five categories.

Cluster out of service. 11 bugs (11%) take down the whole
cluster. Bugs in the dominant nodes (e.g., master) are more likely
to cause a cluster out of service. For example, bug z1419 causes
endless leader election, and the whole cluster cannot serve clients.

Unavailable nodes. 28 bugs (27%) cause unavailable nodes,
e.g., node hangs and missing a live node. However, the cluster can
still provide services.

Data related failures. 22 bugs (21%) cause data related fail-
ures such as data loss, data inconsistency, and data staleness.

Performance degradation. 13 bugs (13%) cause performance
degradation, e.g., much more time for crash recovery.

Operation failures. 29 bugs (28%) cause operation failures,
e.g., failures or hangs in an operation. We only put a bug into op-
eration failures when it does not cause other failures above to
avoid double counting.

Note that, 38% of crash recovery bugs can cause downtimes of
the cluster or some nodes. Compared to the bugs in CBS [15] (18%)
and TaxDC [28] (17%), crash recovery bugs are more likely to
cause fatal failures.

7 BUG FIXING
In this section, we discuss how developers fix crash recovery bugs,
whether the fixes are complete, and how difficult to fix them.

7.1 Fix Strategies
Fixes of crash recovery bugs are highly related to their root causes
and system-specific. We have not extracted clear fix patterns in
our study. Thus, we only briefly discuss some fixing examples.

For bugs caused by no crash detection, a simple fix is adding a
timer. For example, bug m3228 discussed in Section 4.1.2 was fixed
by adding a timer when waiting for the NM to stop containers.
Bugs caused by non-atomic updates to backups can be fixed by
using a temporary file, e.g., bug z1427. But, the similar bug z1653
we discussed in Section 4.1.1 was fixed by detecting the unex-
pected crash between file updates and fixing inconsistency in two
files. The fix of bug z1653 creates a special file before starting to
write files, and then deletes the file after all files have been updated.
If a crash happens between two file updates, the special file will be
left in disk. Thus, after reboot, the system will know the crash and
rewrite the unfinished file rather than stopping itself.

7.2 Fix Completeness
Finding 14: Crash recovery bugs are difficult to fix. 12% of the fixes
are incomplete, and 6% of the fixes only reduce the possibility of bug
occurrence.

Fixes of crash recovery bugs from developers may not be per-
fect. As shown in Table 5, we find that the fixes of 12 crash recov-
ery bugs are incomplete. After applying the fixes, crash recovery
bugs can still occur.

Figure 4: Special input conditions. It shows the numbers (in the
parentheses) of crash recovery bugs that require specific configura-
tion, background services, corrupt data, start from scratch, network
partition, and other conditions, respectively.

ZK

ZK

ZK

ZK

MR CA

CA

CA

CA

CA

HB

HB

HB

Configurations (18)

Background services…

Corrupt data (5)

Start from scratch (4)

Network partition (2)

Others (3)

ZK MR CA HB Table 4: Crash / Reboot Triggering Windows

Triggering window ZK MR CA HB Total

Crash window
Easy 10 2 17 3 32
Moderate 12 16 9 16 53
Difficult 0 4 1 13 18

Reboot window
Easy 21 5 21 10 57
Difficult 0 3 3 3 9

https://issues.apache.org/jira/browse/CASSANDRA-2115
https://issues.apache.org/jira/browse/ZOOKEEPER-1419
https://issues.apache.org/jira/browse/MAPREDUCE-3228
https://issues.apache.org/jira/browse/ZOOKEEPER-1427
https://issues.apache.org/jira/browse/ZOOKEEPER-1653
https://issues.apache.org/jira/browse/ZOOKEEPER-1653

An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Omit some cases. The fixes of 2 bugs omit to consider some
new crash scenarios. For example, in the fix of bug z1264 in Figure
2, developers add backups for update transactions, but forget to
consider new session transactions committed during the synchro-
nization process. Thus, this fix cannot avoid bug z1367.

Introduce new bugs. The fixes of 4 bugs introduce new bugs.
For example, the fix of bug z596 makes a leader to load data twice
during startup process. But developers forget to clean up all data
between these two loads. Thus, the fix introduces a new bug z1448.

Reduce probability of bug occurrence. The fixes of 6 bugs
only reduce the chance of bug occurrence, instead of eliminating
the bugs. Figure 5 shows an example, bug m5169. The JobTracker4
crashes after it updates the job-info file and before it stores the
jobToken. After reboot, it tries to recover the job according to the
job-info file but fails because it cannot find the jobToken. This bug
is fixed by generating the jobToken along with the job-info file to
reduce the chance of unexpected crashes between them.

7.3 Fix Complexity
Finding 15: Crash recovery bug fixing is complicated. Amounts of
developer efforts were spent on these fixes.

We measure the fix complexity using five metrics: (1) the num-
ber of discussion comments; (2) the number of watchers; (3) the
number of days to fix bugs; (4) the number of patches submitted;
and (5) the lines of code changed in the final patch.

We show the results in Table 6. On average, crash recovery
bugs involve 26 discussion comments, 5 watchers, 92 days to fix, 4
patches submitted, and 117 lines of code change.

8 LESSONS LEARNED
In this section, we discuss lessons learned, implications to existing
approaches and opportunities for new research in combating crash
recovery bugs in distributed systems.

8.1 Crash Recovery Bug Detection
Crash recovery bugs in distributed systems can cause severe con-
sequences (Finding 13), and thus resolving these bugs is of great
significance for the reliability of distributed systems. Existing
crash recovery bug detection approaches, e.g., SAMC [27], PACE
[1] and ELEVEN82 [25] mainly focus on model checking and test-
ing, and do not understand bug patterns behind these bugs. Our
study reveals that crash recovery bugs can be summarized into 5
kinds of bug patterns, i.e., incorrect backup (Finding 1), incorrect
crash / reboot detection (Finding 2), incorrect state identification
(Finding 3), incorrect state recovery (Finding 4) and concurrency
(Finding 5). These bug patterns shed new light and guidance on
crash recovery bug detection based on program analysis.

Backup-guided bug detection. To recover from crashes, im-
portant in-memory data should be persisted. Finding 1 implies that
no backup of such data can introduce crash recovery bugs. This
suggests that it is possible to detect bugs by analyzing the backing
up component, without injecting crashes / reboots. The key chal-
lenge is to understand what in-memory data should be backed up.
We find that some in-memory data are backed up in some program
paths and not in other program paths. This indicates that the data
may be backed up incorrectly (e.g., bug z1264). From another per-
spective, developers can annotate what data should be backed up,
and then we use the annotations to analyze whether they are
backed up properly. Although this requires some efforts from de-
velopers, it will greatly help bug detection.

Crash / reboot detection analysis. Crashes and reboots can
happen at any time in any node. However, if crashes / reboots are
not detected properly, no crash recovery mechanisms will be ap-
plied. Finding 2 indicates that many crash recovery bugs are
caused by incorrect crash / reboot detection. Our study shows that
a crash / reboot at any time should be detected. We can use these
patterns to detect bugs with incorrect crash / reboot detection.

State inconsistency guided detection. To recover from a
crash or reboot, correct states must be identified first. Finding 3
indicates that states can be incorrectly identified, leading to crash
recovery bugs. We can compare the states before crashes / reboots
with the states in crash recovery, to identify inconsistencies. These
inconsistencies may indicate crash recovery bugs. Finding 4 indi-
cates states can be incorrectly updated during crash recovery, e.g.,
leftovers of a crash node are not cleaned up / updated. This pattern
can be used to detect incorrect state recovery bugs.

Concurrency analysis in crash recovery bugs. Finding 5
implies that crash recovery processes can introduce more concur-
rency into distributed systems, and thus trigger more complicated
concurrency bugs. We notice that when the recovery process con-
currently accesses the same resources (e.g., a region in HBase), it
can easily trigger bugs. However, existing concurrency detection
tools cannot handle crashes / reboots, e.g., DCatch [30]. Further 4 It is a concept from MRv1. It can be seen as a combination of AM and RM.

Figure 5: Incomplete fix for bug m5169. The left part shows the
buggy execution. The right part shows the fix.

JobTracker Client
“Submit a job in
recovery mode”

submitJob()

initJob()

Fail to recover without jobToken!

JobTracker Client
“Submit a job in
recovery mode”

submitJob()

Buggy execution: Fix:

Bug

Job-info

jobToken

Job-info

jobToken

X X

Table 5: Fix Completeness

Complete
fixes

Incomplete fixes

Omit cases
Introduce
new bugs

Reduce
probability

ZK 17 2 2 1
MR 19 0 2 1
CA 24 0 0 3
HB 31 0 0 1
Total 91 2 4 6

Table 6: Fix Complexity

 25th per-
centile

Median 75th per-
centile

Max

of comments 11 19 29 168
of watchers 3 4 7 28
Time (# of days) 5 13 61 1121
of patches 1 3 5 24
LOC of final patch 10 34 95 1839

https://issues.apache.org/jira/browse/ZOOKEEPER-1264
https://issues.apache.org/jira/browse/ZOOKEEPER-1367
https://issues.apache.org/jira/browse/ZOOKEEPER-596
https://issues.apache.org/jira/browse/ZOOKEEPER-1448
https://issues.apache.org/jira/browse/MAPREDUCE-5169
https://issues.apache.org/jira/browse/ZOOKEEPER-1264
https://issues.apache.org/jira/browse/MAPREDUCE-5169

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

studies can be performed to handle concurrency during crash re-
covery. We also need to consider more concurrency scenarios, e.g.,
concurrency among two crash recovery processes.

Bug fix oriented detection. Fixing crash recovery bugs is
complicated (Finding 15). Finding 14 implies that fixes for crash
recovery bugs have a fairly high probability of being incorrect.
Some fixes only reduce the possibility of bug occurrences. This
shows a unique opportunity for developing new techniques to de-
tect bugs in fixes and verify fixes for crash recovery bugs.

8.2 Testing of Distributed Systems
Software testing is crucial in exposing bugs for complex software
systems. Few techniques [14][36] have been proposed for distrib-
uted system testing. Our study reveals some implications for fu-
ture studies in distributed system testing.

In our study, we find that crash recovery mechanisms can con-
tain simple errors, e.g., the backup data parse error in bug c4842.
This indicates that crash recovery implementations may not be
sufficiently tested. Finding 6 indicates that system testing should
cover all 7 crash recovery components. Finding 8 implies that it is
not necessary to utilize a large cluster to expose crash recovery
bugs. Instead, a small cluster (e.g., 4 nodes) can reveal most crash
recovery bugs. Finding 9 implies that we can test distributed sys-
tems via a small number of injected crashes and reboots. Finding
10 and Finding 11 imply that test input design needs to consider
user requests, configurations, and so on.

8.3 Crash / Reboot Injection Strategy
Finding 12 implies that crash/reboot timing is important for ex-
posing crash recovery bugs. Thus, randomly exploring possible
crash scenarios [24][40][50][52][53] should not work well, since
most of the randomly explored scenarios may not prone to trigger
bugs. Additionally, Finding 9 implies that we only need to inject a
limited number (e.g., 3) of crashes and reboots. Thus, a proper in-
jection strategy can detect crash recovery bugs efficiently and ef-
fectively. Our study reveals some crash injection scenarios that
can easily trigger crash recovery bugs, e.g., crash in the process of
writing a file or a group of I/O operations, crashing the node that
users are accessing, quickly restart within a timeout setting, crash-
ing the underlying systems, and crashing related nodes after back-
ups are deleted. Finding 7 indicates that crashes on / during crash
recovery can easily trigger bugs, crash / reboot injection should
also consider this scenario. Future tools should further explore
more crash inject scenarios in our study and apply these scenarios
to speed up crash recovery bug manifestation.

9 RELATED WORK
Empirical studies in distributed systems. Guo et al. [18] clas-
sified several crash recovery misbehaviors, and concluded that
failure recovery must be engineered explicitly according to a “do
no harm” requirement. Gunawi et al. presented CBS [15] that con-
tains over 3,000 vital issues in six distributed systems. The crash
recovery bugs we studied are selected from CBS. We further per-
form in-depth analysis on these bugs, which is not done by CBS.
Leesatapornwongsa et al. [28] studied 104 distributed concurrency
bugs from four distributed systems. Unlike our study, their work
focuses on concurrency bugs, and does not try to understand why

and how crashes / reboots can trigger bugs. Dai et al. [7] analyzed
156 real-world timeout issues from 11 cloud systems. Yuan et al.
[42] looked deeply into 198 production failures in distributed sys-
tems to understand how one or multiple faults eventually evolve
into a user-visible failure. Wang et al. [37] studied 290,000 hard-
ware failure reports in hundreds of thousands of servers.

Bug detection in distributed systems. Some approaches
have been developed to combat bugs in distributed systems. MO-
DIST [40] is a distributed model checker that can systematically
check system behaviors under all kinds of actions. SAMC [27] de-
tects intricate bugs in distributed systems based on semantic-
aware model checking. D3S [32] detects bugs by checking predi-
cates specified by developers at runtime. Xu et al. [39] automati-
cally finds out problems at runtime by mining console logs. PACE
[1] identifies correlated crash vulnerabilities in distributed sys-
tems. DCatch [30] adopts dynamic analysis to detect concurrency
bugs in distributed systems. CloudRaid [33] detects concurrency
bugs in distributed systems by flipping the order of a pair of con-
current messages that always happen in a fixed order. FCatch [31]
predicts time-of-fault bugs by observing possible conflicting oper-
ations under crashes. Our study sheds new light on bug detection
in distributed system as discussed in Section 8.

Testing and verification. SETSUD [23] exposes system-level
defects by precisely controlling the timing of perturbations with
the awareness of system-internal states. PreFail [24] allows testers
to write failure injection policies for space reduction. CORDS [12]
tests if a distributed storage system can correctly recover from file-
system faults. DEMi [35] combines DPOR [10] and delta debug-
ging [43] to automatically minimize buggy executions. FATE and
DESTINE [14] aims to exercise multiple and diverse failures by
avoiding exercising the same recovery behaviors. Verdi [38],
IronFleet [19] and Chapar [29] can verify distributed systems in
Coq [58] and Dafny [51]. However, these formally verified systems
are not totally reliable [11]. ELEVEN82 [25] tries to prove storage
systems to be crash recoverable by reducing crash recoverability
to reachability, in case of one crash.

10 CONCLUSIONS
Although automated recovery has been treated as a first-class op-
eration of distributed systems, crash recovery is still complicated
and error-prone. This paper presents CREB, an in-depth study of
103 crash recovery bugs in four popular open-source distributed
systems. Our study reveals a number of interesting findings and
implications. We hope our study can inspire more researchers to
combat crash recovery bugs in distributed systems. The CREB da-
taset is available at http://www.tcse.cn/~wsdou/project/CREB.

ACKNOWLEDGMENTS
We thank Kang Yin, Jie Wang, Hui Li and Feng Yang for their con-
tributions in bug analysis. This work was partially supported by
National Key Research and Development Program of China
(2017YFB1001804), National Natural Science Foundation of China
(61732019, 61702490), Frontier Science Project of Chinese Acad-
emy of Sciences (QYZDJ-SSW-JSC036), National Science Founda-
tion (CNS-1513120), Youth Innovation Promotion Association at
Chinese Academy of Sciences, CAS/SAFEA International Partner-
ship Program for Creative Research Teams, and Alibaba Group
through Alibaba Innovative Research (AIR) Program.

https://issues.apache.org/jira/browse/CASSANDRA-4842
http://www.tcse.cn/~wsdou/project/CREB

An Empirical Study on Crash Recovery Bugs ... ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanumalayan

Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2016. Correlated Crash Vulnerabilities. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation (OSDI).
151–167.

[2] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. 2015. Lineage-driven
Fault Injection. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD). 331–346.

[3] Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. In Proceedings of the 7th Symposium on Operating Systems Design and
Implementation (OSDI). 335–350.

[4] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
2008. Bigtable: A Distributed Storage System for Structured Data. ACM
Transactions on Computer Systems 26, 2 (2008), 1–26.

[5] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. 2015. Using Crash Hoare logic for certifying the FSCQ
file system. Proceedings of the 25th Symposium on Operating Systems Principles -
SOSP ’15 (2015), 18–37.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud Computing (SOCC). 143–154.

[7] Ting Dai, Jingzhu He, Xiaohui Gu, and Shan Lu. 2018. Understanding Real-
World Timeout Problems in Cloud Server Systems. In Proceeding of the IEEE
International Conference on Cloud Engineering (IC2E). 1–11.

[8] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of 6th Symposium on Operating
Systems Design and Implementation (OSDI). 137–149.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-
value Store. In Proceedings of the 21th ACM Symposium on Operating Systems
Principles (SOSP). 205–220.

[10] Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order
Reduction for Model Checking Software. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL).
110–121.

[11] Pedro Fonseca. 2017. An Empirical Study on the Correctness of Formally
Verified Distributed Systems. In Proceedings of the 12th European Conference on
Computer Systems (EuroSys). 328–343.

[12] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C Arpaci-dusseau, and
Remzi H Arpaci-dusseau. 2017. Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and Corruptions. In
Proceedings of the 15th Usenix Conference on File and Storage Technologies (FAST).
149–165.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the 9th ACM Symposium on Operating Systems
Principles (SOSP). 29–43.

[14] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter Alvaro, Joseph M. Hellerstein,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Koushik Sen, and Dhruba
Borthakur. 2011. FATE and DESTINI: A Framework for Cloud Recovery Testing.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation (NSDI). 238–252.

[15] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat
Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,
Jeffrey F. Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs
Live in the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of
the ACM Symposium on Cloud Computing (SOCC). 1–14.

[16] Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-dusseau, and Remzi
H Arpaci-dusseau. 2008. SQCK : A Declarative File System Checker. In
Proceedings of the 8th USENIX Symposium on Operating System Design and
Implementation (OSDI). 131–146.

[17] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lintao
Zhang. 2011. Practical Software Model Checking via Dynamic Interface
Reduction. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP). 265–278.

[18] Zhenyu Guo, Sean Mcdirmid, Mao Yang, Li Zhuang, Pu Zhang, and Yingwei Luo.
2013. Failure Recovery: When the Cure is Worse Than the Disease. In
Proceedings of 14th Workshop on Hot Topics in Operating Systems (HotOS). 1–6.

[19] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno,
Michael L Roberts, Srinath Setty, and Brian Zill. 2015. IronFleet : Proving
Practical Distributed Systems Correct. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP). 1–17.

[20] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. 2004. The ϕ accrual
failure detector. In Proceedings of the 23rd IEEE International Symposium on
Reliable Distributed Systems. 66–78.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011. Mesos: A Platform for
Fine-grained Resource Sharing in the Data Center. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Implementation (NSDI).
295–308.

[22] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
the USENIX Conference on USENIX Annual Technical Conference (USENIX ATC).
11–11.

[23] Pallavi Joshi, Malay Ganai, Gogul Balakrishnan, Aarti Gupta, and Nadia
Papakonstantinou. 2013. SETSUDO: Perturbation-based Testing Framework for
Scalable Distributed Systems Pallavi. In Conference on Timely Results in
Operating Systems (TRIOS). 1–14.

[24] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. 2011. PREFAIL : A
Programmable Tool for Multiple-Failure Injection. In Proceedings of the 2011
ACM international conference on Object oriented programming systems languages
and applications (OOPSLA). 171–188.

[25] Eric Koskinen and Junfeng Yang. 2016. Reducing Crash Recoverability to
Reachability. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL). 97–108.

[26] Vinod Kumar Vavilapalli et al. 2013. Apache Hadoop YARN: Yet Another
Resource Negotiator. In Proceedings of the 4th annual Symposium on Cloud
Computing (SOCC). 1–16.

[27] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F Lukman,
and Haryadi S Gunawi. 2014. SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI). 399–414.

[28] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and Haryadi S.
Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic Concurrency Bugs in
Datacenter Distributed Systems. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 517–530.

[29] Mohsen Lesani, Christian J Bell, and Adam Chlipala. 2016. Chapar: Certified
Causally Consistent Distributed Key-Value Stores. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). 357–370.

[30] Haopeng Liu, Guangpu Li, Jeffrey F. Lukman, Jiaxin Li, Shan Lu, Haryadi S.
Gunawi, and Chen Tian. 2017. DCatch : Automatically Detecting Distributed
Concurrency Bugs in Cloud Systems Cloud systems. In Proceedings of the 22nd
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 677–691.

[31] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. 2018.
FCatch : Automatically Detecting Time-of-fault Bugs in Cloud Systems. In
Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[32] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,
Ming Wu, M. Frans Kaashoek, and Zheng Zhang. 2008. D3S: Debugging
Deployed Distributed Systems. In Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation (NSDI). 423–437.

[33] Jie Lu, Feng Li, Lian Li, and Xiaobing Feng. 2018. CloudRaid : Hunting
Concurrency Bugs in the Cloud via Log-Mining. In Proceedings of the 26th ACM
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). To appear.

[34] Thanumalayan Sankaranarayana Pillaic, Vijay Chidambaram, Ramnatthan
Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2014. All File Systems Are Not Created Equal: On the
Complexity of Crafting Crash-Consistent Applications. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (OSDI).
433–448.

[35] Colin Scott, Aurojit Panda, Arvind Krishnamurthy, Vjekoslav Brajkovic, George
Necula, and Scott Shenker. 2016. Minimizing Faulty Executions of Distributed
Systems. In Proceedings of 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI). 291–309.

[36] Koushik Sen and Gul Agha. 2006. Automated Systematic Testing of Open
Distributed Programs. In Proceedings of the 9th International Conference on
Fundamental Approaches to Software Engineering (FASE). 339–356.

[37] Guosai Wang, Wei Xu, and Lifei Zhang. 2017. What Can We Learn from Four
Years of Data Center Hardware Failures ? In Proceedings of 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 25–36.

[38] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Framework for
Implementing and Formally Verifying Distributed Systems. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). 357–368.

[39] Wei Xu, Armando Fox, David Patterson, and Michael I. Jordan. 2009. Detecting
Large-Scale System Problems by Mining Console Logs. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles (SOSP). 117–132.

[40] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST:

ESEC/FSE’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yu Gao et al.

Transparent Model Checking of Unmodified Distributed Systems. In Proceedings
of the 6th USENIX symposium on Networked systems design and implementation
(NSDI). 213–228.

[41] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. 2004.
Using Model Checking to Find Serious File System Errors. In Proceedings ofthe
Sixth Symposium on Operating Systems Design and Implementation (OSDI). 273–
288.

[42] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI). 249–265.

[43] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Transactions on Software Engineering (TSE) 8, 2 (2002), 183–
200.

[44] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng Qin, Mark Lillibridge,
Elizabeth S. Yang, Bill W. Zha, and Shashank Singh. 2014. Torturing Databases
for Fun and Profit. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (OSDI). 449–464.

[45] Apache Cassandra. Retrieved from http://cassandra.apache.org.
[46] Apache Flume Project. Retrieved from http://flume.apache.org.
[47] Apache Hadoop. Retrieved from http://hadoop.apache.org.
[48] Apache HBase. Retrieved from http://hadoop.apache.org/hbase.
[49] Apache ZooKeeper. Retrieved from http://zookeeper.apache.org.

[50] Chaos Monkey. Retrieved from
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey.

[51] Dafny is a verification-aware programming language. Retrieved from
https://github.com/Microsoft/dafny.

[52] Fault Injection Framework and Development Guide. Retrieved from
https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-
hdfs/FaultInjectFramework.html.

[53] FIT: Failure Injection Testing. Retrieved from https://medium.com/netflix-
techblog/fit-failure-injection-testing-35d8e2a9bb2.

[54] HDFS Architecture. Retrieved from
http://hadoop.apache.org/%0Adocs/current/hadoop-project-dist/hadoop-hdfs/
HdfsDesign.html.

[55] HintedHandoff. Retrieved from
https://wiki.apache.org/cassandra/HintedHandoff.

[56] 2016. The 10 Biggest Cloud Outages of 2016. Retrieved from
http://www.crn.com/slide-shows/cloud/300083247/the-10-biggest-cloud-
outages-of-2016.htm.

[57] 2017. The 10 Biggest Cloud Outages of 2017 (So Far). Retrieved from
http://www.crn.com/slide-shows/cloud/300089786/the-10-biggest-cloud-
outages-of-2017-so-far.htm.

[58] The Coq Proof Assistant. Retrieved from https://coq.inria.fr/.
[59] Write Ahead Log (WAL). Retrieved from

http://hbase.apache.org/book.html#wal.

