
Coverage Guided Fault Injection for Cloud Systems
Yu Gao∗†, Wensheng Dou∗†‡§, Dong Wang∗†, Wenhan Feng∗†, Jun Wei∗†‡§, Hua Zhong∗†, Tao Huang∗†

∗State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
†University of Chinese Academy of Sciences

‡University of Chinese Academy of Sciences Nanjing College
§Nanjing Institute of Software Technology

{gaoyu15, wsdou, wangdong18, fengwenhan21, wj, zhonghua, tao}@otcaix.iscas.ac.cn

Abstract—To support high reliability and availability, modern
cloud systems are designed to be resilient to node crashes and
reboots. That is, a cloud system should gracefully recover from
node crashes/reboots and continue to function. However, node
crashes/reboots that occur under special timing can trigger crash
recovery bugs that lie in incorrect crash recovery protocols and
their implementations. To ensure that a cloud system is free from
crash recovery bugs, some fault injection approaches have been
proposed to test whether a cloud system can correctly recover
from various crash scenarios. These approaches are not effective
in exploring the huge crash scenario space without developers’
knowledge.

In this paper, we propose CrashFuzz, a fault injection testing
approach that can effectively test crash recovery behaviors and
reveal crash recovery bugs in cloud systems. CrashFuzz mutates
the combinations of possible node crashes and reboots according
to runtime feedbacks, and prioritizes the combinations that are
prone to increase code coverage and trigger crash recovery
bugs for smart exploration. We have implemented CrashFuzz
and evaluated it on three popular open-source cloud systems,
i.e., ZooKeeper, HDFS and HBase. CrashFuzz has detected 4
unknown bugs and 1 known bug. Compared with other fault
injection approaches, CrashFuzz can detect more crash recovery
bugs and achieve higher code coverage.

Index Terms—cloud system, crash recovery bug, fault injection,
bug detection, fuzzing

I. INTRODUCTION

Cloud systems [1]–[7] have become the backbones of
modern Internet applications. To achieve high reliability and
availability, cloud systems should correctly recover from node
crashes and reboots and continue to function. Therefore,
complex crash recovery protocols and implementations are
introduced to tolerate node crashes and reboots, and play an
important role in cloud systems.

However, crash recovery bugs that lie in incorrect crash
recovery protocols and implementations pose key challenges
for the reliability of cloud systems [8], [9]. Cloud systems
usually involve complex protocols and implementations, and
each node in a cloud system may crash or reboot at any time.
Therefore, the crash scenarios (i.e., the combinations of node
crashes and reboots) in a cloud system can be very huge. Node
crashes and reboots that occur under special timing can trigger
crash recovery bugs, and make cloud systems fail to recover. It
is challenging for developers to anticipate all crash scenarios,
and to expose crash recovery bugs through in-house testing.

Wensheng Dou and Tao Huang are the corresponding authors.

By injecting crashes and reboots into cloud systems, fault in-
jection approaches can test the protocols and implementations
in cloud systems, especially crash recovery behaviors. Random
fault injection frameworks [10], [11] inject crashes randomly,
but they are difficult to hit corner-case crash recovery bugs, in
which crashes should occur under specific timing. Exhaustive
fault injection approaches, e.g., FATE [12], combine brute-
force search with heuristics to explore the combinations of
multiple node crashes. It is not effective in exploring the huge
space of crash scenarios. Some fault injection tools further
allow developers to express their own fault injection strategies
[13], [14]. Similar to exhaustive fault injection approaches,
distributed system model checkers [15]–[17] enumerate the
orders of non-deterministic events (including node crashes),
and suffer from the state space explosion problem. Some
approaches, e.g., FCatch [18] and CrashTuner [19] focus
on specific crash scenarios. Although existing fault injection
approaches have achieved great progresses, they still struggle
at searching through the huge state space of cloud systems.
Therefore, some of them can only test limited crash scenarios
[18], [19], or cannot support node reboots [11]–[13], [15].

In this paper, we propose a novel coverage guided fault
injection approach for cloud systems CrashFuzz, which can
effectively test crash scenarios in a cloud system, i.e., pos-
sible combinations of node crashes and reboots, and reveal
crash recovery bugs. Compared with exhaustive fault injec-
tion approaches, CrashFuzz can smartly generate unique and
suspicious crash scenarios. To be specific, CrashFuzz takes I/O
points in cloud systems as potential fault injection points, and
treats crash scenarios occurring on I/O points as the special
inputs of cloud systems. Guided by the system runtime feed-
backs, e.g., coverage and I/O information, CrashFuzz adjusts
the injection of node crashes and reboots, and prioritizes crash
scenarios that can trigger new crash recovery behaviors. Thus,
CrashFuzz can potentially reveal new crash recovery bugs.

We have implemented CrashFuzz and evaluated it on three
popular open-source cloud systems, i.e., HDFS [20], HBase
[21] and ZooKeeper [22]. CrashFuzz has detected 4 unknown
bugs and 1 known bug in these systems. Compared with alter-
native fault injection approaches, e.g., random and brute-force
fault injection approaches, CrashFuzz can expose more crash
recovery bugs and achieve higher code coverage. We have
made CrashFuzz publicly available at https://github.com/tcse-
iscas/crashfuzz.

https://github.com/tcse-iscas/crashfuzz
https://github.com/tcse-iscas/crashfuzz

(b)

Node A Node B

𝑂𝐵4: R(A, hb)

Node C

𝑂𝐴1: W(B, hb)
𝑂𝐵2: R(A, hb)

𝑂𝐶2: W(B, hb)

𝑂𝐶3: W(B, hb)

𝑂𝐵3: R(C, hb)

𝑂𝐵5: R(C, hb)

𝑂𝐵6:R(A, msg-x)

𝑂𝐴2: W(B, hb)

𝑂𝐴3: W(B, msg-x)

(a)

𝑂𝐶1: W(B, hb)
𝑂𝐵1: R(C, hb)

Node A Node B

𝑂𝐵4: R(A, hb)

Node C

𝑂𝐴1: W(B, hb)
𝑂𝐵2: R(A, hb)

𝑂𝐶2: W(B, hb)

𝑂𝐶3: W(B, hb)

𝑂𝐵3: R(C, hb)

𝑂𝐵5: R(C, hb)

𝑂𝐵6:R(A, msg-x)

Recovery𝐴

𝑂𝐵7 : W(C, msg-y)

𝑂𝐴2: W(B, hb)

𝑂𝐴3: W(B, msg-x)

𝑂𝐶4: R(B, msg-y)

𝑂𝐵8: R(C, msg-z)

𝑂𝐶1: W(B, hb)
𝑂𝐵1: R(C, hb)

𝑂𝐶5: W(Disk, buf)

(c)

𝑂𝐶6: W(B, msg-z)

Node A Node B

𝑂𝐵4: R(A, hb)

Node C

𝑂𝐴1: W(B, hb)
𝑂𝐵2: R(A, hb)

𝑂𝐶2: W(B, hb)

𝑂𝐶3: W(B, hb)

𝑂𝐵3: R(C, hb)

𝑂𝐵5: R(C, hb)

𝑂𝐵6:R(A, msg-x)

Recovery𝐴

𝑂𝐵7 : W(C, msg-y)

𝑂𝐴2: W(B, hb)

𝑂𝐴3: W(B, msg-x)

𝑂𝐶4: R(B, msg-y)

𝑂𝐵8: R(C, msg-z)

𝑂𝐶1: W(B, hb)
𝑂𝐵1: R(C, hb)

𝑂𝐶5: W(Disk, buf)

𝑂𝐶6: W(B, msg-z)

Fig. 1. An illustrative example. W denotes write, R denotes read, hb denotes heartbeat, → denotes message sending, OA1 denotes the first I/O operation
on node A, W (B, hb) denotes writing a heartbeat message to node B, and R(A, hb) denotes reading a heartbeat message from node A.

In summary, we make the following contributions.
• We propose CrashFuzz, a novel coverage guided fault

injection approach to expose crash recovery bugs in cloud
systems. Based on runtime feedbacks of cloud systems,
CrashFuzz prioritizes to test the combinations of node
crashes and reboots that are prone to cover new crash
recovery behaviors and trigger crash recovery bugs.

• We implement CrashFuzz, and evaluate it on the newest
stable versions of three popular cloud systems, i.e.,
ZooKeeper, HBase and HDFS. CrashFuzz has detected
4 previously-unknown bugs and 1 known bug in them.

II. MOTIVATION

In this section, we use an illustrative example to explain the
need for smart fault injection testing for cloud systems, and
our solutions.

A. An Illustrative Example

Real-world cloud systems are usually very complex. It is
challenging to explain crash recovery by utilizing a real-world
cloud system. Therefore, we construct some abstract crash
scenarios in Fig. 1 as our illustrative example to show the crash
recovery procedure and how a crash recovery bug occurs.

In Fig. 1(a), three nodes, i.e., node A, B, and C, form a
master-slave cloud system. Here, node B is the master node,
and node A and C are two slave nodes. Node A and C
maintain connection with node B through heartbeat messages,
e.g., OA1, OB2, OC1 and OB1. When node A submits a task
through a message (e.g., OA3), mater node B reads the related
data from the message (i.e., OB6) and further processes the
data.

Nodes in a cloud system may crash or reboot, and trigger
crash recovery procedures. Fig. 1(b) shows a crash scenario
and its recovery procedure. In this scenario, node A crashes
after OA3, and master node B notifies slave node C to
take over node A’s task and update corresponding data (This

recovery procedure is similar to region reassignment in HBase,
in which the master node reassigns the data regions on a
dead slave node to another slave node). Thus, the recovery
procedure of node A results in communication between node
B and C (i.e., OB7, OB8, OC4 and OC6), and a disk update
operation OC5. Note tha, this crash scenario in Fig. 1(b) can
be correctly recovered by the system, and cannot result in a
crash recovery bug.

In cloud systems, node crashes and reboots can result in
specific crash states (i.e., the states of a cloud system after a
crash/reboot), which should be correctly recovered to normal
states by cloud systems. If a cloud system cannot correctly
recover from such crash states, crash recovery bugs manifest
[8]. Fig. 1(c) shows such a crash scenario, which can trigger a
crash recovery bug. In this scenario, node A crashes after OA3,
and then node A reboots after OC5, while node C crashes
before OC6. This crash scenario cannot be correctly recovered
by the system, and triggers a crash recovery bug.

Note that, node crashes/reboots occurring on other system
states in our illustrative example can be correctly recovered
by the system, and cannot trigger crash recovery bugs. For
example, if node A crashes before OA2 (a heartbeat operation),
node B only removes node A from its alive node list (e.g., the
leader node in ZooKeeper removes a dead follower node from
its follower list), and the operations OB7, OB8, OC4, OC5

and OC6 will not appear since different recovery behavior is
triggered. In Fig. 1(c), if node C crashes after OC6, the system
can still correctly recover from this new crash scenario, and
will not trigger a crash recovery bug.

B. Crash Scenario Space in Cloud Systems

In cloud systems, any node can crash or reboot at any
time. However, crashes/reboots on I/O points can create crit-
ical crash scenarios. An I/O operation in cloud systems can
produce persistent states (e.g., data in files) or store states
into other nodes (e.g., send messages). Computation operations

(e.g., a+1) can only produce in-memory states. When a node
crashes, all in-memory states caused by computation opera-
tions disappear, while the impacts caused by I/O operations
are left in the cloud system. Therefore, node crashes that
occur on different I/O points can produce different crash states,
while node crashes that happen between two consecutive I/O
operations on the same node produce the same crash state.
Therefore, similar to existing approaches [12], [13], we only
focus on I/O points for fault injection in cloud systems.
In Fig. 1, we only show I/O operations, and ignore other
computation operations.

A crash scenario contains one or more node crashes and
reboots that occur on I/O points of a cloud system. Such
combination of crashes and reboots can cause huge crash
scenario space for cloud systems. Take the three-node cloud
system in Fig. 1(a) as an example. Without injecting any faults,
there are 12 I/O operations in the system (three operations on
node A, six operations on node B, and three operations on
node C). We can produce (3 + 6 + 3) = 12 crash scenarios
by injecting only one crash in the system, and (3*6 + 3*3
+ 6*3) = 45 crash scenarios by injecting two crashes on two
different nodes. In our experiment, we run HDFS [20] on a 5-
node cluster. Without injecting any faults, running a workload
for HDFS can produce around 400 I/O operations for each
node. We can produce 2,000 crash scenarios by injecting only
one crash, about 4002 * C2

5 = 1,600,000 crash scenarios by
injecting two crashes on two different nodes, and about 4003

* C3
5 = 640,000,000 crash scenarios by injecting three crashes

on three different nodes. If we further consider injecting
reboots, the possible crash scenarios could increase quickly.
Therefore, testing cloud systems by enumerating all possible
crash scenarios is time-consuming, and may be impossible.

We observe that some crash scenarios may result in similar
crash states, and cloud systems take these states equally and
use the same recovery behaviors to handle them. For example,
in Fig. 1(a), a crash after OA1 and a crash after OA2 (these
two I/O operations send heartbeat messages, and do not change
system states) can cause similar crash states and trigger the
same recovery behavior, e.g., node B removes the dead node A
from its alive node list. This observation inspires us to propose
CrashFuzz for smart fault injection testing in cloud systems.

C. Challenges and Solutions

To tackle the huge crash scenario space in cloud systems,
and effectively test crash recovery behaviors, we propose a
novel fault injection approach CrashFuzz, which can smartly
explore various crash scenarios, i.e., the combinations of
multiple node crashes and reboots, and reveal crash recovery
bugs faster.

Similar to program inputs, injecting node crashes/reboots
can also affect the execution of a cloud system. Therefore,
a crash scenario can be treated as a special input for cloud
systems. Inspired by fuzz testing, i.e., adjusting program
inputs according to the feedbacks from program execution,
we intentionally mutate the combination of node crashes and
reboots according to the system runtime feedbacks, e.g., I/O

and coverage information, to guide a cloud system to cover
different crash recovery behaviors and increase the chance of
triggering crash recovery bugs.

To apply our approach on real-world cloud systems, we need
to address the following two challenges.

First, how to generate valid crash scenarios, i.e., the
combinations of node crashes and reboots? Given all the
I/O points executed in a fault-free cloud system run, we cannot
simply enumerate node crashes and reboots on all the I/O
points. Some combinations of node crashes and reboots may
be invalid, e.g., crashing a dead node. In addition, we aim to
test whether a cloud system can tolerate partial node crashes
that cannot fail the whole system and are expected to be
correctly recovered. Therefore, we do not test crash scenarios
that fail the whole system, e.g., crashing all the nodes in
Fig. 1(a). To generate such valid crash scenarios, we generate
each new crash scenario by injecting only one fault (a node
crash or reboot) to an existing crash scenario. The newly
injected fault should satisfy some constraints, e.g., only alive
nodes can crash.

Second, how to identify and prioritize suspicious crash
scenarios? A cloud system may have a tremendous number
of crash scenarios, making it impractical to enumerate all
of them. To address this challenge, we generate new crash
scenarios from existing ones, and design special selection
strategies to prioritize suspicious crash scenarios, which are
prone to cover new crash recovery behaviors and trigger
crash recovery bugs. We prefer to test crashes on unique
I/O points. For example, if the crash on OA1 in Fig. 1(a)
has been tested, we prefer to test the crash on OA3 next
rather than crashes on OA2, OC1, OC2 and OC3. We also
prioritize the crash scenarios that inject faults during recovery
procedures and contain multiple faults. For example, the crash
scenario shown in Fig. 1(c) can be tested earlier. With our
prioritization strategies, we can identify and prompt suspicious
crash scenarios to perform a more effective fault injection
testing.

III. FAULT MODEL

In this section, we describe CrashFuzz’s fault model.

A. Fault Point

As discussed in Section II-B, we focus on I/O points for
fault injection in cloud systems.

A fault point (we also refer to it as an I/O point in this
paper) can be expressed by following information: (1) Node
ID, which refers to the node that performs the I/O operation.
(2) Call stack for the I/O operation. (3) Source, which refers
to the node that sends a message or the file path for a disk
read operation. (4) Destination, which refers to the node that
receives a message or the file path for a disk write operation.
(5) Timestamp. (6) Event type. In our fault model, three types
of events can happen on an I/O point: a node crash event
(Crashnode), a node reboot event (Rebootnode) and a fault-
free event. Here, node refers to the node affected by the fault.

B. Fault Sequence

We use fault sequences to represent various crash scenarios.
A fault sequence indicates when and where to inject a node
crash or reboot to the cloud system under test.

We sort all the fault points executed in a system run
according to their timestamp and obtain a fault sequence. A
fault sequence can be expressed as follows:

FaultSeq = [FtPt1nx
, F tP t2ny

, ..., F tP tnnz
]

A fault point FtPtinode in the fault sequence indicates that
the fault point is executed by node node, and it is the ith fault
point in the sequence.

By default, the event type of every fault point in a fault
sequence is the fault-free event, which refers to a fault-free
scenario. For a crash scenario that contains one or more node
crashes and reboots, we set the event type of specific fault
points in a fault sequence to node crash or reboot.

A fault sequence should satisfy the following constraints:
• Only alive nodes can crash. When an alive node crashes,

it stops immediately and becomes a dead node.
• Only dead nodes can be rebooted.
• A fault sequence must meet system-specific constraints,

i.e., the number of dead nodes should not exceed the
maximum number of dead nodes that the target system
can tolerate. For example, a fault sequence cannot make
all the nodes in the target system crash at the same time.

• A fault sequence must meet user-specified constraints,
i.e., the number of total faults in a fault sequence can-
not exceed the maximum number of faults specified by
developers.

The number of faults contained in a fault sequence can be
infinite. For example, we can crash and then reboot a node in
the cloud system repeatedly. By using a fault sequence, a crash
scenario can be represented as the combination of several node
crashes and reboots that occur on specific I/O points.

IV. APPROACH

Fig. 2 shows the overview of CrashFuzz. CrashFuzz takes
a target cloud system, a workload and corresponding con-
straints as inputs, and outputs the detected crash recovery
bugs. CrashFuzz takes several steps to force a cloud system
to handle various fault sequences for testing crash recovery
behaviors and detecting crash recovery bugs. The possible fault
sequences to be tested are stored in the fault sequence queue.

Initial run. At beginning, the fault sequence queue is empty,
and we do not have any I/O points that can be used to generate
fault sequences. Therefore, in the first step, we initialize the
fault sequence queue and perform the initial run without
injecting any fault into the cloud system. During the initial
run, we collect runtime information, e.g., coverage and I/O
information, by instrumenting the cloud system at run time.

Fault sequence generation and mutation (Section IV-A).
After a system run, we generate and mutate fault sequences

Fault Sequence Queue

Prioritization
Generation &

Mutation

Driver & Fault

Injection Controller

Information Collection

Instrumented System
Checkers

Target System Workload

Initialization

Bug Reports

I/O info &

coverage info

I/O info
execution

control

Instrumentation

Constraints

Fig. 2. CrashFuzz overview.

based on the collected runtime information, and add the newly
generated fault sequences to the fault sequence queue.

Prioritizing suspicious fault sequences (Section IV-B).
After applying a series of prioritization strategies, we obtain
a group of candidate fault sequences. We compute a score
for each candidate fault sequence. Based on the scores, we
randomly select a fault sequence from the candidates to test.
The selected fault sequence has higher possibility to cover new
crash recovery behaviors and trigger crash recovery bugs.

Fault injection testing (Section IV-C). For a selected
fault sequence, we run the cloud system and workload again.
Meanwhile, we inject faults to the target system according to
the fault sequence under test.

Detecting crash recovery bugs (Section IV-D). During
and after the fault injection testing, we use the predefined
checkers to check failure symptoms, e.g., system hangs and
job/system failures, to detect crash recovery bugs. Bug reports
are generated for the tests that do not pass the checkers.

After a fault injection test, we can generate and mutate
new fault sequences based on the testing results and collected
runtime information again. When the user-specified test time
is reached, or there is no fault sequence in the queue waiting
for testing, the whole testing terminates.

A. Generating and Mutating Fault Sequences

After the initial run that does not inject any faults into the
cloud system, we can collect all the I/O points executed in
the run. Then, we can obtain an initial fault sequence without
any faults, and perform the initial mutation on the initial fault
sequence. For each following test, we generate a new fault
sequence seedSeq that reflects the actual execution behaviors
first, and then perform the normal mutation on seedSeq. After
initial mutation and normal mutation, we get a group of new
valid fault sequences and add them to the fault sequence queue.

Initial mutation. The initial fault sequence contains all the
I/O points executed in the initial system run. All the I/O points
in the initial fault sequence correspond to the fault-free events.
In the initial mutation, CrashFuzz generates a group of new
fault sequences by injecting a node crash event to each I/O
point in the initial fault sequence. For example, after initial
mutation, four mutated fault sequences can be generated for
an initial fault sequence that contains four I/O points.

Target

SystemFault

Injection

Generation

testSeq 𝑠𝑒𝑒𝑑𝑆𝑒𝑞

The cloud system can tolerate simultaneous downtime of up to two nodes!

FtPtn1
1 FtPtn2

2 FtPtn2
3 FtPtn3

4

- Crashn2 - -

FtPtn1
1 FtPtn2

2 FtPtn2
3 FtPtn3

4 𝐅𝐭𝐏𝐭𝐧𝟑
𝟓

- Crashn2 - - -

Code coverage

is increased!

FtPtn3
4

-

FtPtn2
2 FtPtn2

3

Crashn2 -

FtPtn1
1

-

FtPtn1
1

-

FtPtn2
2 FtPtn2

3

Crashn2 -

FtPtn3
4 𝐅𝐭𝐏𝐭𝐧𝟑

𝟓

- -

n1:

n2:

n3:

FtPtn1
1 FtPtn2

2 FtPtn3
4 𝐅𝐭𝐏𝐭𝐧𝟑

𝟓

- Crashn2 Crashn3 -

FtPtn1
1 FtPtn2

2 FtPtn3
4 𝐅𝐭𝐏𝐭𝐧𝟑

𝟓

- Crashn2 Rebootn2 -

FtPtn1
1 FtPtn2

2 FtPtn3
4 𝐅𝐭𝐏𝐭𝐧𝟑

𝟓

- Crashn2 - Crashn3

FtPtn1
1 FtPtn2

2 FtPtn3
4 𝐅𝐭𝐏𝐭𝐧𝟑

𝟓

- Crashn2 - Rebootn2

𝑛𝑒𝑤𝑆𝑒𝑞1

𝑛𝑒𝑤𝑆𝑒𝑞2

𝑛𝑒𝑤𝑆𝑒𝑞3

𝑛𝑒𝑤𝑆𝑒𝑞4

Mutation

Code coverage is not

increased and the newly

injected fault is not node crash!

Target

System

Drop the fault

sequence

Target

System
Mutation

Code coverage is not

increased but the newly

injected fault is node crash!

Fault

Injection

Fault

Injection

Fig. 3. An example of normal mutation.

Normal mutation. As shown in Fig. 3, for a fault sequence
testSeq under test, after successfully injecting all the node
crashes and reboots according to testSeq, CrashFuzz first
decides whether to explore it further. If the test does not cover
more code and the newly injected fault (i.e., the last fault in
testSeq) is not a node crash, CrashFuzz discards testSeq, e.g.,
newSeq2 in Fig. 3. Otherwise, CrashFuzz further performs
normal mutations. Here, CrashFuzz still keeps a fault sequence
that does not increase code coverage but the newly injected
fault is node crash, e.g., newSeq3 in Fig. 3. This is because
the system states caused by a node crash can still affect the
subsequent reboot behaviors. For example, the dirty local file
caused by the node crash can affect the restarted node. The
recovery procedure triggered by the subsequent node reboot
may increase the code coverage. We keep such fault sequences
in case we omit some valuable crash scenarios.

For a fault sequence testSeq that needs further exploration,
CrashFuzz first generates a new fault sequence seedSeq
based on the collected I/O points and fault events that occur
during the test. After a test, some I/O points in testSeq may
disappear, and new I/O points may appear. For example, as
shown in Fig. 3, after testing, the original fault point FtPt3n2
disappears due to the node crash Crashn2, and the new fault
point FtPt5n3 appears. Therefore, we generate a new fault
sequence seedSeq that can reflect actual execution behaviors.

As shown in Algorithm 1, CrashFuzz mutates seedSeq by
adding only a node crash or reboot on seedSeq to generate a
group of new fault sequences newSeqs. Specifically, Crash-
Fuzz searches from the I/O point right after the last fault in
seedSeq (Line 3). For each fault-free I/O point, CrashFuzz
tries to mutate seedSeq and generate a new fault sequence
by crashing the node that executes the I/O point or rebooting
a previously dead node. The newly generated fault sequences
will be added to newSeqs (Line 5-14). When injecting a node
crash/reboot that affects node tarNode on the ith fault point
of seedSeq, CrashFuzz first generates a new fault sequence
seq that is the same as seedSeq, and then sets the event
of ith fault point in seq as CrashtarNode or ReboottarNode

(Line 19-22). The new fault sequence seq should satisfy the
constraints defined in Section III-B (Line 31-42). Therefore,
we can generate valid fault sequences.

Fig. 3 shows an example of normal mutation. In Fig. 3, the
distributed system can tolerate at most two node crashes at

the same time. The seed fault sequence seedSeq contains a
node crash fault, i.e., crashing node n2 on FtPt2n2. CrashFuzz
explores every fault point after FtPt2n2, and finally generates
four new fault sequences. The newly injected faults in these
four fault sequences either crash another node except for n2
in the system, or reboot node n2.

B. Favoring Suspicious Fault Sequences

To explore fault sequences in the fault sequence queue
smartly, we first apply a series of prioritization strategies
to get a group of suspicious fault sequences in the queue
as candidates. Then, we compute priority scores for every
candidate fault sequence, and randomly pick a fault sequence
from the candidates to test based on their priority scores.

1) Prioritizing Suspicious Candidates: According to Sec-
tion IV-A, for a fault sequence newSeqi mutated from
seedSeq, if it contains n + 1 faults, then the first n faults
have been tested (i.e., seedSeq). Therefore, the newly injected
fault (i.e., the last fault) in newSeqi is the critical fault that can
potentially trigger new recovery behaviors and crash recovery
bugs. When selecting a fault sequence from the queue to test,
we mainly focus on the last fault in a fault sequence, and takes
three types of fault sequences as suspicious candidates.

First, for all the fault sequences in the queue, we preferen-
tially test the sequences that inject node crashes or reboots on
new I/O points. For a fault occurring on an I/O point, we can
abstract it as a fault ID. A fault ID is the hash of the call stack
information of the I/O point and the fault type (i.e., node crash
or reboot). The faults that have the same fault ID are prone to
trigger similar crash recovery behaviors, e.g., crashes happen
on oC1, oC2 and oC3 shown in Fig. 1(a).

Second, we preferentially test fault sequences that contain
node crashes or reboots occurring during the recovery process.
The recovery process that is responsible for handling a node
crash/reboot can also crash. Node reboots that occur during the
recovery process can cause concurrent recovery behaviors [8].
Such crash scenarios can complicate the recovery behaviors
and have not been given sufficient attention in fault injection
testing for cloud systems.

CrashFuzz identifies a fault occurring during the recovery
process by identifying whether the I/O point where the fault
occurs was executed during the recovery process. To be
specific, for a fault sequence testSeq under test, we can

Algorithm 1: Mutate fault sequences.

1 Function getNewSequences(seedSeq):
2 newSeqs← ∅;
3 i← seedSeq.getIndexOfLastFault() + 1;
4 for i < seedSeq.size() do
5 if seedSeq.get(i).event.type ̸= NULL then
6 continue;
7 end
8 n← seedSeq.get(i).node;
9 seq ← mutate(seedSeq, i, CRASH, n);

10 newSeqs.AddIfNotNull(seq);
11 foreach n ∈ seedSeq.deadNodes do
12 seq ← mutate(seedSeq, i, REBOOT, n);
13 newSeqs.AddIfNotNull(seq);
14 end
15 i← i+ 1;
16 end
17 return newSeqs;
18 Function mutate(seedSeq, i, type, tarNode):
19 seq ← seedSeq.clone();
20 seq.get(i).event.type← type;
21 seq.get(i).event.tarNode← tarNode;
22 seq.totalFaults← seq.totalFaults+ 1;
23 satisfy ← satisfyConstaints(seq, i);
24 if satisfy ∧ type.equals(CRASH) then
25 seq.deadNodes.add(tarNode);
26 else if satisfy ∧ type.equals(REBOOT) then
27 seq.deadNodes.remove(tarNode);
28 else
29 seq ← NULL;
30 return seq;
31 Function satisfyConstaints(s, i):
32 ftP t← s.get(i);
33 e← ftP t.event;
34 if e.type.equals(CRASH) ∧

s.deadNodes.contain(e.tarNode) then
35 return false;
36 else if e.type.equals(REBOOT) ∧

(s.deadNodes.contain(ftP t.node) ∨
(!s.deadNodes.contain(e.tarNode))) then

37 return false;
38 else if e.type.equals(CRASH) ∧

(s.deadNodes.size() ≥ MaxDeadNodes) then
39 return false;
40 else if s.totalFaults > MaxFaults then
41 return false;
42 return true;

generate a fault sequence seedSeq according to the collected
I/O points and injected faults after the fault injection testing.
Any I/O points in seedSeq that have new call stacks compared
with I/O points in testSeq, will be identified as the I/O
points executed during the recovery process. Therefore, when
performing normal mutations on seedSeq, the newly injected

TABLE I
METRICS IN PRIORITY SCORES

Metrics Explanations
Execution time The shorter the execution time, the higher the

score.
Code coverage The more code coverage, the higher the score.
Waiting round The scores will be improved for the sequences

that have long waiting time.
The number of faults If the number of faults ≤ 6, the higher the

number of faults, the higher the score; If the
number of faults > 6, the higher the number of
faults, the lower the score.

faults on such I/O points will be marked as faults occurring
during recovery. For example, as shown in Fig. 3, the fault
point FtPt5n3 in seedSeq has new call stack compared with all
the I/O points in testSeq. Therefore, CrashFuzz takes FtPt5n3
as an I/O point executed during the recovery process. And the
fault sequences newSeq3 and newSeq4 that inject faults on
FtPt5n3, have a chance to be tested preferentially.

Third, for a group of fault sequences newSeqs that are
mutated from the same fault sequence seedSeq, CrashFuzz
preferentially tests the sequences that inject faults on new
I/O points. For example, in newSeqs, a fault sequence seq
injects a fault on an I/O point p, which is new for tested
fault sequences in newSeqs. Then, seq will be preferentially
tested next compared with other untested fault sequences in
newSeqs. Note that from the global perspective, the fault on
the I/O point p may have been already tested. For example, a
fault sequence seq′ that is mutated from another fault sequence
seedSeq′, may also inject a fault on p. And seq′ has been
tested. However, seq and seq′ may face different system states
when injecting a fault on p, because the previously injected
faults in these two fault sequences are different. Thus, seq
may still trigger new recovery behaviors.

The probability of taking above three types of fault se-
quences as suspicious candidates is configurable. If no fault
sequence matches these three types, or these three types of
fault sequences are not considered probabilistically, CrashFuzz
directly takes all the fault sequences in the queue as the
candidate fault sequences.

2) Picking a Fault Sequence to Test: For the selected
candidate fault sequences, we compute a priority score for
each of them. The priority scores are used to accelerate the
testing process and test crash scenarios with multiple node
crashes and reboots faster. Based on the priority scores, we
randomly pick a fault sequence from the candidates to test.

We consider all the metrics shown in Table I to compute
a priority score. Among them, the first three metrics (i.e.,
execution time, code coverage and waiting round) are adopted
from existing fuzzing techniques, e.g., AFL [23]. The number
of faults metric is specific to crash recovery bugs, and is
inspired by a previous study on crash recovery bugs [8].

We prefer to test the fault sequences that are prone to
have shorter execution time and larger code coverage first.
Thus, we can test as many fault sequences as possible. For a
fault sequence newSeq mutated from seedSeq, the metrics of

newSeq are obtained from the seed sequence seedSeq. After
a fault injection test, we can obtain a fault sequence seedSeq,
and get seedSeq’s execution time and code coverage accord-
ing to the test results. For the new fault sequences mutated
from seedSeq, we set them to have the same execution time
and code coverage with seedSeq.

We prioritize the fault sequences that have waited too
long according to the waiting round metric to avoid local
optimum. The waiting round means the number of rounds a
fault sequence waits in the queue before being tested.

We use the number of faults metric to test fault sequences
with multiple faults faster, and avoid testing sequences that
have too many faults. According to the empirical study of
crash recovery bugs in cloud systems [8], the combination of
no more than three node crashes and no more than three node
reboots can trigger most of the crash recovery bugs. Therefore,
for the fault sequences that contain no more than six faults,
CrashFuzz preferentially tests the sequences that contain more
faults to enable CrashFuzz to explore the combination of
multiple faults faster. For the fault sequences that contain more
than six faults, CrashFuzz gradually reduces their priorities.
This is because the fault sequences that contain too many faults
are not likely to trigger new crash recovery behaviors, but will
increase the test time.

The values and metrics used in our fault sequence selection
process can be tuned for different systems. We leave this for
future work.

C. Testing Fault Sequences

For a fault sequence to be tested, CrashFuzz drives the work-
load to run the target system, collects runtime information, and
controls system execution based on the collected information.
In the paper, we only need to provide one fault-free workload
for a target system to drive the test.

Collecting runtime information. During a fault injection
test, CrashFuzz collects runtime information of every executed
I/O point and reports the information to the fault injection
controller for fault injection decisions. We also store the
executed I/O points, injected faults, coverage information,
execution time and other runtime feedbacks into files for the
follow-up fault sequence generation and selection.

Controlling system execution. For a fault sequence
testSeq under test, CrashFuzz injects faults to the target
system in order according to testSeq. During a fault injection
test, the fault injection controller collects reports from every
node in the cloud system, and compares the reported I/O
points with the I/O points that require to inject faults in
testSeq. If a reported I/O point matches the I/O point where
the fault currently waiting to be injected in testSeq, the
fault injection controller injects a corresponding node crash or
reboot through predefined fault injection scripts. Otherwise,
CrashFuzz informs the system to continue to execute. Note
that different from distributed system model checkers [15]–
[17], CrashFuzz does not control the execution of all the I/O
points. It only focuses on the execution of I/O points that
require to inject faults.

D. Detecting Crash Recovery Bugs

Similar to existing approaches, e.g., CoFI [27] and FCatch
[18], we use some predefined checkers to find whether the
target system goes into an unexpected state (i.e., a bug
happens) and use a user-specified timeout threshold to detect
hang bugs. For a target system and a workload, we implement
specific checkers to detect following failure symptoms.

• General failures, e.g., ERROR entries in execution logs,
unexpected node downtime, and system hangs. At the end
of a test run, we check these general failures.

• Operation-specific failures, e.g., returning error code and
reading stale data. These failures are checked when we
run the workload.

For a fault sequence testSeq under test, when the fault
injection test completes or the test times out, we first check
whether all the faults in testSeq have been successfully
injected within timeout period. If not, e.g., some I/O points
did not appear due to nondeterminism, we add testSeq
back to the queue and go to the fault sequence selection
stage (Section IV-B). Then, if the test does not finish within
timeout period, we will test testSeq right again with a larger
timeout period. We report a hang bug if the test still cannot
complete on time and go to the fault sequence selection stage
(Section IV-B). If the test does not pass the checkers, we report
a crash recovery bug and go to the fault sequence selection
stage (Section IV-B). Finally, for the other cases, we go to the
fault sequence generation and mutation stage (Section IV-A).

V. IMPLEMENTATION

Coverage collection. By identifying function entries, func-
tion exits and branches through ASM [24], CrashFuzz
uniquely identifies every basic block (i.e., a straight-line
sequence of code with only one entry point and one exit) of
the target system and utilizes a 64KB byte array to store code
coverage information. When a basic block is executed by the
target system, CrashFuzz sets the corresponding position of
the basic block in the byte array to 1.

I/O point identification. CrashFuzz identifies all the I/O
points executed during a test run by instrumenting all the
byte codes running in Java Virtual Machine (JVM). In our
experiments, CrashFuzz intercepts I/O operations performed
at the application level by tracking the usage of special APIs,
e.g., native write APIs in FileOutputStream for file
write operations, Remote Procedure Calls (RPCs) used for
node communications in HBase and HDFS, serialize/deseri-
alize APIs in class Record which are used for all socket
messages in ZooKeeper. In addition, CrashFuzz also supports
tracking I/O operations at JRE (Java Runtime Environment)
level without modifying target systems, e.g., tracking native
write APIs in SocketOutputStream for blocking socket
messages and tracking write APIs in SocketChannelImpl
for non-blocking socket messages. Intercepting I/O operations
at JRE level can get more I/O operations and cause larger
crash scenario space, but it makes CrashFuzz more general.

TABLE II
CLOUD SYSTEMS UNDER TEST

Cloud system Workload
HDFS-3.3.1 Check safe mode, put/move/truncate/read/write file
HBase-2.4.8 Create/read/update/truncate/delete table

ZooKeeper-3.6.3 Create/read/update/delete znodes

VI. EVALUATION

Our evaluation aims to answer two research questions:
• RQ1: How effectively can CrashFuzz detect crash recov-

ery bugs in real-world cloud systems? (Section VI-B)
• RQ2: How does CrashFuzz compare with other ap-

proaches for injecting node crashes/reboots in cloud
systems? (Section VI-C)

A. Target Cloud Systems and Workloads

We evaluate CrashFuzz on three popular open-source cloud
systems: the distributed key-value store ZooKeeper v3.6.3
[22], the distributed file system HDFS v3.3.1 [20] and the
distributed NoSQL store HBase v2.4.8 [21]. These three target
systems are complex. ZooKeeper, HBase and HDFS contain
34,496, 805,237 and 471,335 lines of Java code, respectively.

For each cloud system, we design a workload to drive the
test. As shown in Table II the three workloads consist of
cluster startup operations, common user operations and admin
operations. Our workloads are complex. For example, running
HDFS on a 5-node cluster without injecting any faults can
produce around 400 I/O points for each node.

The target systems are deployed in several virtual machines
with Docker 19.03.3. We build a distributed ZooKeeper cluster
with 5 nodes, which can tolerate simultaneous downtime of up
to 2 nodes; a distributed HBase cluster with 2 master nodes
and 3 slave nodes, which can tolerate simultaneous downtime
of at most 1 master node and downtime of at most 2 slave
nodes; a distributed HDFS cluster with 2 master nodes and 3
slave nodes, which can tolerate simultaneous downtime of at
most 1 master node and 1 slave node.

B. Effectiveness of Crash Recovery Bug Detection

1) Methodology: To evaluate CrashFuzz’s effectiveness in
revealing crash recovery bugs, we apply CrashFuzz on our
target systems. We limit CrashFuzz to run at most 48 hours
and set the maximum number of faults in a fault sequence as
10.

2) Overall Results: As shown in Table III, CrashFuzz has
detected five crash recovery bugs in total, including 4 unknown
bugs and 1 known bug. The bugs can cause cluster out of
service, data loss, data staleness, operation failure and mis-
leading error message. All the bugs have been reported to the
developers. Among them, three bugs detected by CrashFuzz
require injecting two faults.

3) Bug Study: The triggering process for bug HBASE-
26883 is relatively complex. The HBase cluster used in our
experiment consists of two master nodes (i.e., master1 and
master2) and three slave nodes (i.e., slave1, slave2 and

slave3). When the cluster starts up, master1 becomes the
active master node, while slave3 becomes the meta slave node
that holds the meta-data region. The client first sets the state of
a table mytable to DISABLED, and then requests the system
to truncate mytable. The truncate process in HBase first
deletes mytable, and then recreates a new empty table. After
master1 successfully deleted the old mytable and created
new data regions for the new mytable, and before updating
the information of the new table to the meta-data region,
master1 crashes. Subsequently, the meta slave node slave3
also crashes. In the recovery process, the backup master node
master2 is activated to recover the unfinished operations on
master1. However, master2 accidentally deletes mytable.

For bug ZOOKEEPER-4503, a client creates an ephemeral
znode “/eph”. After a while, the follower node zk1 that
maintains the session with the client crashes. During zk1’s
downtime, the ZooKeeper cluster deletes the ephemeral znode
“/eph” since its corresponding session has been disconnected.
When zk1 is restarted, another client happens to initiate an-
other session with zk1 and read the value of “/eph”. This read
operation occurs before zk1 completes synchronizing with the
leader. Then the client unexpectedly gets the stale value of
“/eph”. A developer indicates that the ZooKeeper server should
not start serving client requests until the synchronization is
finished. But this bug shows that there is something wrong in
this not easy-to-follow part in ZooKeeper. A node crash and
a node reboot are both required for triggering this bug.

For bug HBASE-26897, the active master node and the meta
slave node in HBase crash at the same time. In this crash
scenario, the backup master node is blocked in the startup
process to wait for an available meta region forever.

For bug HBASE-26370, a client requests to truncate a
table. In this process, the active master node crashes after it
marked the table to be truncated as ENABLING, and before it
completes the truncate process. This makes the client receive
a TableNotDisabledException, while the table has
already been truncated by the backup master node in the
recovery process. The client should not be disturbed by the
unexpected exception.

For bug HDFS-16508, there are two master nodes, i.e.,
master1 and master2 in the HDFS cluster. When starting the
cluster, master1 crashes at the very beginning, and master2
transfers to be active. This node crash can be tolerated and
the system can provide services normally. However, when the
client commands to get safe mode of the system, the dfsadmin
command fails due to an IOException: cannot connect to
master1. This is a duplicated bug that has already been
reported in other HDFS versions.

C. Comparison with Alternative Fault Injection Approaches

1) Methodology: We compare CrashFuzz with three alter-
native fault injection approaches as shown in Table IV.

CrashFuzz−. CrashFuzz− adopts first-in first-out (FIFO)
strategy when picking a fault sequence from the fault sequence
queue. Except for the fault sequence selection strategy, other
components of CrashFuzz− are the same as CrashFuzz. By

TABLE III
CRASH RECOVERY BUG DETECTION RESULTS

Bug ID Failure Symptoms # of Faults Random BruteForce CrashFuzz− CrashFuzz

Unknown Bugs

HBASE-26883 Data loss 2 ✗ ✗ ✗ ✓
ZOOKEEPER-4503 Data staleness 2 ✗ ✗ ✗ ✓
HBASE-26897 Cluster out of service 2 ✗ ✗ ✗ ✓
HBASE-26370 Misleading error message 1 ✓ ✓ ✓ ✓

Known Bugs HDFS-16508 Operation failure 1 ✗ ✓ ✓ ✓

TABLE IV
SETTINGS FOR ALTERNATIVE APPROACHES

Approach Crash/Reboot
Injection Point

Fault Sequence
Generation

Fault Sequence
Selection

CrashFuzz I/O Points Coverage Guided Prioritization
CrashFuzz− I/O Points Coverage Guided FIFO
BruteForce I/O Points Enumeration FIFO
Random Random Time Random Random

comparing CrashFuzz− with CrashFuzz, we can evaluate how
CrashFuzz’s prioritization strategy contributes to bug detection
and code coverage.

BruteForce. Similar to FATE [12], BruteForce adopts an
enumeration strategy that systematically explores all possible
combinations of node crashes and reboots (FATE supports
node crashes, but does not support node reboots). Specifically,
BruteForce first tests all the fault sequences with one fault, and
then test all the sequences with two faults, and so on.

Random. Random first decides the number of total faults to
be injected randomly, i.e., N . Then, Random generates a fault
sequence that contains N node crashes and reboots. Random
generates faults in a fault sequence one by one. Specifically,
when generating the ith fault, Random randomly chooses a
fault type (i.e., node crash or node reboot) first. For the se-
lected fault type, Random randomly selects a node in the target
system as the target node. The ith fault happens at a random
time waitT imei between [0, aveT ime −

∑i−1
j=1 waitT imej)

after the injection of (i − 1)th fault. Here, aveT ime is the
average testing execution time.

BruteForce and Random only keeps the fault sequences that
satisfy the same constraints as that in CrashFuzz for a fair com-
parison. All the above three approaches are performed with
the same settings as CrashFuzz, e.g., cluster configurations,
the maximum number of faults and the total testing time. In
addition, all the approaches use the same bug checkers as that
in CrashFuzz for bug detection.

We do not compare CrashFuzz with other fault injection
approaches [12], [18], [19] for the following reasons. (1) Their
tools are unavailable. (2) FCatch [18] and CrashTuner [19]
focus on specific fault scenarios and cannot systematically test
the cloud system. (3) FATE [12] runs in a brute-force mode by
default, which is similar to BruteForce used in our experiment.
The strategies supported by FATE to reduce fault scenarios
require special information and are not easy to reimplement.

2) Comparison Results: To evaluate CrashFuzz’s effective-
ness, we compare CrashFuzz with the alternative approaches
from four aspects: (1) Effectiveness in detecting crash recovery

bugs. (2) Effectiveness in testing crash recovery behaviors. (3)
Proportion of valuable tests that contribute to code coverage.
(4) The number of tested fault sequences.

Bug detection. As shown in Table III, compared with
alternative approaches, three out of five crash recovery bugs
can only be detected by CrashFuzz. Bug HBASE-26370 can
be detected by all the four fault injection approaches since
it has a relatively large bug triggering time window. Bug
HDFS-16508 was not detected by Random. Because the bug
is triggered by injecting a node crash at the very beginning of
the cluster startup. Compared with Random, other approaches
have a relatively higher possibility to expose it. All the three
alternative approaches did not reveal any new bugs for Crash-
Fuzz. Therefore, CrashFuzz is more effective in revealing
crash recovery bugs compared with alternative approaches.

Code coverage. We measure CrashFuzz’s effectiveness in
testing recovery behaviors of cloud systems through the overall
code coverage in 48 hours. Fig. 4 shows how the overall
code coverage varies over time for CrashFuzz and alternative
approaches. The x-axis represents the test time (hours), and
the y-axis represents the overall code coverage over time.

Note that we cannot compute the crash recovery code
coverage, because we cannot distinguish crash recovery code
from regular code in complex cloud systems. Our studied
cloud systems are complex and contain large amounts of
code, e.g., HBase contains 805,237 lines of Java code. Cloud
systems have to handle various crash recovery scenarios, and
their regular logic and crash recovery logic are usually mixed
up together. For example, in HBase, region reassign logic
is invoked by both user requests and crash recovery for a
slave node. Therefore, we (not system developers) cannot
distinguish crash recovery code from regular code.

Since we cannot distinguish crash recovery code from
regular code in complex cloud systems, covering more code is
not necessarily covering more crash recovery code. For a cloud
system, we use the same workload for all the fault injection
testing, injecting crashes and reboots can cause new behaviors,
which are very likely to be crash recovery behaviors. There-
fore, the increased code coverage in our experiment is more
likely to be caused by the crash recovery code.

For CrashFuzz, after running 48 hours, ZooKeeper, HBase
and HDFS reach an overall coverage of 14.30%, 22.95% and
23.03%, respectively. This appears to be low. However, it is
reasonable, since we only perform fault injection testing for a
single workload in each target system. Large portions of these
cloud systems are not tested yet.

As shown in Fig. 4, CrashFuzz− reaches 14.30%, 22.92%

https://issues.apache.org/jira/browse/HBASE-26883
https://issues.apache.org/jira/browse/ZOOKEEPER-4503
https://issues.apache.org/jira/browse/HBASE-26897
https://issues.apache.org/jira/browse/HBASE-26370
https://issues.apache.org/jira/browse/HDFS-16508

CrashFuzz CrashFuzz− BruteForce Random

15%

17%

19%

21%

23%

25%

C
o

d
e

 c
o

ve
ra

ge

Time (hour)

HBase

0 8 16 24 32 40 48
15%

17%

19%

21%

23%

25%

C
o

d
e

 c
o

ve
ra

ge

Time (hour)

HDFS

0 8 16 24 32 40 48
10%

11%

12%

13%

14%

15%
C

o
d

e
 c

o
ve

ra
ge

Time (hour)

ZooKeeper

0 8 16 24 32 40 48

Fig. 4. Overall code coverage.

0%

20%

40%

60%

80%

100%

R
at

io

Time (hour)

ZooKeeper

0 8 16 24 32 40 48
0%

20%

40%

60%

80%

100%

R
at

io

Time (hour)

HBase

0 8 16 24 32 40 48
0%

20%

40%

60%

80%

100%

R
at

io

Time (hour)

HDFS

0 8 16 24 32 40 48

CrashFuzz CrashFuzz− BruteForce Random

Fig. 5. The proportion of the tests that increase code coverage.

and 21.71% code coverage for ZooKeeper, HBase and HDFS
respectively. BruteForce reaches 14.27%, 21.04% and 21.58%
code coverage for ZooKeeper, HBase and HDFS, respectively.
Random reaches 13.74%, 19.47% and 21.34% code coverage
for ZooKeeper, HBase and HDFS, respectively. Compared
with alternative approaches, CrashFuzz covers the most code
at the end of the test in all the three target systems. Meanwhile,
CrashFuzz can achieve higher code coverage faster.

We can see that CrashFuzz and CrashFuzz− cover almost
the same amount of code for HBase and ZooKeeper. While
for HDFS, CrashFuzz covers more code than alternative ap-
proaches. This is because HDFS has a larger crash scenario
space than HBase and ZooKeeper. Without injecting any faults,
running a workload for HDFS can produce around 2,000 I/O
operations, while HBase and ZooKeeper execute around 600
I/O operations, respectively. Specifically, after testing about
8 hours, the code coverage of Random tends to be stable
in the three cloud systems. Compared with other approaches,
Random is less effective in testing cloud systems.

Valuable tests. Fig. 5 shows the proportion of the tests that
were successfully triggered and contribute to the overall code
coverage. The x-axis represents the test time (hours), and the
y-axis represents the ratio. As the test time increases, for all the
approaches, the proportion of the successfully triggered tests
that increase the code coverage decreases gradually. Compared
with alternative approaches, CrashFuzz has the slowest decline
speed. This indicates that CrashFuzz is more likely to test fault
sequences that can increase the overall code coverage.

Tested fault sequences. We record the number of fault se-
quences successfully triggered during the test in Table V. The
values in parentheses show the numbers of fault sequences that
contribute to code coverage. In total, CrashFuzz successfully
tests 603 fault sequences in ZooKeeper, 142 fault sequences

TABLE V
SUCCESSFULLY TRIGGERED FAULT SEQUENCES

CrashFuzz CrashFuzz− BruteForce Random
ZooKeeper 603 (46) 1309 (38) 1324 (35) 595 (15)
HBase 142 (63) 494 (107) 371 (29) 208 (13)
HDFS 143 (71) 599 (40) 599 (44) 303 (21)

The values in parentheses show the numbers of fault sequences
that can increase the code coverage.

TABLE VI
RUNTIME OVERHEAD

System Baseline Info Collection Average Test Time
ZK 7s 3.6X 14.1X
HB 44s 3.1X 15.4X
HDFS 71s 2.5X 8.0X

in HBase and 143 fault sequences in HDFS, respectively.
For the alternative approaches, CrashFuzz− and BruteForce

test more fault sequences than CrashFuzz and Random. Be-
cause these two approaches adopt FIFO method to pick fault
sequences for testing. The fault sequences tested by these two
approaches contain at most two faults in 48 hours. While
CrashFuzz injects at most six faults for ZooKeeper, and
injects at most five faults for HBase and HDFS. Random
injects at most 10 faults for the three cloud systems. The
fault sequences that contain more faults will trigger additional
recovery behaviors and thus increase the testing time. Our
experimental results show that the fault sequences that contain
multiple faults can still increase the code coverage. CrashFuzz
can explore the crash scenarios containing multiple faults
faster, which implies crash recovery bugs that only manifest
under multiple faults can be revealed faster.

D. Runtime Overhead

Table VI shows the runtime overhead of CrashFuzz. The
Baseline column shows the original workload run time without
any instrumentation, the Info Collection column shows the
average fault-free run time of the workload running on the
instrumented system compared to the baseline run time, and
the Average Test Time column shows the average run time
of a fault injection test compared to the baseline run time.

The results show that CrashFuzz introduces 2.5X to 3.6X
overhead for run time system information collection. On
average, testing a fault sequence takes around 8.0X to 15.4X
baseline time. This is because each test includes a series
of operations such as initializing the execution environment
(e.g., preparing the initial cluster state), running the workload,
handling the injected faults, collecting runtime information,
checking failure symptoms, and so on.

VII. DISCUSSION

We now discuss CrashFuzz’s limitations and potential
threats.

A. Limitations

Workloads. Crash recovery bugs usually require proper
workloads to be triggered. However, it is challenging to

automatically construct good workloads for cloud systems.
Different cloud systems provide different complex APIs. There
is no general way to construct workloads for different cloud
systems. Fortunately, developers have developed a lot of test
cases, which can be used as workloads in our test. CrashFuzz
can support more workloads easily.

Generating fault sequences. CrashFuzz only concerns
about fault sequences that are expected to be tolerated by cloud
systems. Hence, CrashFuzz may miss some crash recovery
bugs whose manifestation requires to fail the whole cloud
systems. Even though CrashFuzz does not consider such crash
scenarios, our evaluation shows that CrashFuzz is effective in
testing cloud systems. We will extend CrashFuzz to support
such crash scenarios in our future work.

Testing fault sequences. Similar to FATE [12], when
performing fault injection testing, CrashFuzz does not control
the execution order of all the I/O points. It only focuses
on the execution order of I/O points that need to inject
faults. Thus, we cannot guarantee cloud systems can run
exactly the same as we expect due to the nondeterminism.
This poses challenges for bug diagnosis. Besides, CrashFuzz
does not reorder concurrent I/O operations like distributed
system model checkers [15]–[17], [25]–[27]. This may miss
concurrent bugs that lie in crash recovery code.

B. Threats to Validity

We evaluate CrashFuzz on the latest versions of three pop-
ular cloud systems. Therefore, our experimental results may
not reflect the situation in other cloud systems. However, we
strive to be unbiased by selecting systems with different func-
tionalities (i.e., a distributed file system, a distributed NoSQL
database and a distributed synchronization service) and various
crash recovery mechanisms (e.g., automatic failover, synchro-
nization, replication and so on).

We deploy the target cloud systems on a five-node cluster in
our evaluation, respectively. While real-world cloud systems
may contain more nodes. However, a study on crash recovery
bugs [8] shows, 97% of crash recovery bugs involve four
nodes or fewer. Therefore, it is reasonable to conduct our
evaluation for the target systems on a cluster with five nodes.
If there are more nodes in a cloud system, more I/O operations
will be produced and thus increase the crash scenario space.
However, the increased I/O operations are more likely to be
the operations that have already appeared in a small scale
cluster. For example, in a ZooKeeper cluster, all follower nodes
share the same protocol. Thus, adding more follower nodes are
unlikely to increase new crash scenarios. In our approach, we
prioritize new crash scenarios to test cloud systems instead
of enumerating all crash scenarios. Therefore, we can still
perform an effective test for a cloud system with more nodes.

VIII. RELATED WORK

Fault injection frameworks. The random fault injection
frameworks [10], [28]–[30] can randomly inject node crashes
and other types of faults in cloud systems. These frameworks
are relatively simple to implement, but they are ineffective in

testing cloud systems [31]. Frameworks like PreFail [13] that
enable developers to write their own fault injection strategies.
FATE [12] uses the brute-force search to enumerate all com-
binations of multiple faults. Other fault injection approaches
[14], [19], [32]–[34] either focus on special crash scenarios or
cannot be used for injecting node crashes/reboots.

Distributed system model checkers. Distributed system
model checkers can also be used to expose crash recovery
bugs. These works intercept non-deterministic events including
node crashes and permute their orders [15]–[17], [25]–[27].
However, these model checkers do not only focus on crash
recovery bugs. Therefore, they have to explore a lot of crash-
unrelated states until exposing a crash recovery bug. All of
them suffer from state space explosion problems for real-
world cloud systems, especially when considering multiple
node crashes and reboots.

Cloud bug detection. FCatch [18] predicts time-of-fault
bugs by observing possible conflicting operations under
crashes. Zhang et al. propose a testing framework and static
checkers to reveal upgrade failures [35]. Deminer [36] detects
crash recovery bugs that are triggered by node crashes oc-
curring between related I/O operations. DisTA [37] supports
dynamic taint tracking for cloud systems. Some works have
been conducted on detecting crash-unrelated bugs, e.g., cloud
concurrency bugs [38], [39], performance cascading bugs
[40], data-corruption related hang bugs [41], wrong exception
handling [42]–[44], and so on. These works either aim to
detect bugs that are not related to node crashes/reboots, or
can only cover limited crash scenarios.

Fuzzing. Fuzzing is an automated testing technique that can
detect vulnerabilities by randomly generating a lot of inputs
[45]. Many fuzzing approaches are proposed to stress real-
world programs [23], [46]–[54]. GFuzz [55] detects channel-
related concurrency bugs in Go programs by mutating the
processing orders of concurrent messages. FIFUZZ [56] de-
tects bugs hidden in error handling code by mutating different
combinations of errors. These approaches do not focus on
fuzzing node crashes and reboots for cloud systems.

IX. CONCLUSION

We propose CrashFuzz, a novel coverage guided fault
injection approach to inject node crashes and reboots for a
cloud system, and systematically test if the cloud system
can correctly recover from various crash scenarios. The core
idea of CrashFuzz is generating and mutating crash scenar-
ios according to runtime feedbacks, e.g., coverage and I/O
information. The evaluation on three popular cloud systems
shows that CrashFuzz can detect more crash recovery bugs
and achieve higher code coverage than alternative approaches.

ACKNOWLEDGMENTS

This work was partially supported by National Natural Sci-
ence Foundation of China (62072444, U20A6003, 61732019),
Frontier Science Project of Chinese Academy of Sciences
(QYZDJ-SSW-JSC036), and Youth Innovation Promotion As-
sociation at Chinese Academy of Sciences.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004, pp. 137–149.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in Proceedings of USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI), 2006,
pp. 205–218.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), 2007,
pp. 205–220.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2003, pp. 29–43.

[5] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proceedings of USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2011, pp. 295–308.

[6] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet another resource negotiator,” in Proceedings of
Annual Symposium on Cloud Computing (SoCC), 2013, pp. 1–16.

[7] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2006, pp. 335–350.

[8] Y. Gao, W. Dou, F. Qin, C. Gao, D. Wang, J. Wei, R. Huang, L. Zhou,
and Y. Wu, “An empirical study on crash recovery bugs in large-scale
distributed systems,” in Proceedings of ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2018, pp. 539–550.

[9] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan,
P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou, “Failure recovery:
When the cure is worse than the disease,” in Proceedings of USENIX
Conference on Hot Topics in Operating Systems (HotOS), 2013, pp. 1–6.

[10] (2016) Jepsen. [Online]. Available: https://github.com/jepsen-io/jepsen
[11] (2012) Chaos Monkey. [Online]. Available: https://netflix.github.io/

chaosmonkey
[12] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-

Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and
DESTINI: A framework for cloud recovery testing,” in Proceedings of
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2011, pp. 238–252.

[13] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A programmable tool
for multiple-failure injection,” in Proceedings of ACM International
Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA), 2011, pp. 171–188.

[14] A. Alquraan, H. Takruri, M. Alfatafta, and S. Al-Kiswany, “An analysis
of network-partitioning failures in cloud systems,” in Proceedings of
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018, pp. 51–68.

[15] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “MODIST: Transparent model checking of
unmodified distributed systems,” in Proceedings of USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2009, pp.
213–228.

[16] T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S.
Gunawi, “SAMC: Semantic-aware model checking for fast discovery
of deep bugs in cloud systems,” in Proceedings of USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2014, pp.
399–414.

[17] J. F. Lukman, H. Ke, C. A. Stuardo, R. O. Suminto, D. H. Kurniawan,
D. Simon, S. Priambada, C. Tian, F. Ye, T. Leesatapornwongsa et al.,
“FlyMC: Highly scalable testing of complex interleavings in distributed
systems,” in Proceedings of European Conference on Computer Systems
(EuroSys), 2019, pp. 1–16.

[18] H. Liu, X. Wang, G. Li, S. Lu, F. Ye, and C. Tian, “FCatch: Auto-
matically detecting time-of-fault bugs in cloud systems,” in Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2018, pp. 419–431.

[19] J. Lu, C. Liu, L. Li, X. Feng, F. Tan, J. Ynag, and L. You, “CrashTuner:
Detecting crash-recovery bugs in cloud systems via meta-info analysis,”
in Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2019, pp. 114–130.

[20] (2008) Apache Hadoop HDFS. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/
HdfsDesign.html

[21] (2007) Apache HBase. [Online]. Available: https://hbase.apache.org/
[22] (2010) Apache ZooKeeper. [Online]. Available: https://zookeeper.

apache.org/
[23] M. Zalewski. (2020) American Fuzzy Lop. [Online]. Available:

https://lcamtuf.coredump.cx/afl/
[24] (2005) ASM. [Online]. Available: https://asm.ow2.io/
[25] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang, “Practica soft-

ware model checking via dynamic interface reduction,” in Proceedings
of ACM Symposium on Operating Systems Principles (SOSP), 2011, pp.
265–278.

[26] J. Simsa, R. Bryant, and G. Gibson, “dBug: Systematic evaluation of
distributed systems,” in Proceedings of International Conference on
Systems Software Verification (SSV), 2010, pp. 1–9.

[27] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat, “Life, death,
and the critical transition: Finding liveness bugs in systems code,” in
Proceedings of USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007, pp. 243–256.

[28] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proceedings of Annual ACM Symposium on
Principles of Distributed Computing (PoDC), 2007, pp. 398–407.

[29] A. Henry, “Cloud storage FUD: Failure and uncertainty and durability,”
in Proceedings of USENIX Symposium on File and Storage Technologies
(FAST), 2009.

[30] T. Hoff. (2010) Netflix: Continually test by failing servers with Chaos
monkey. [Online]. Available: http://highscalability.com

[31] P. Alvaro, J. Rosen, and J. M. Hellerstein, “Lineage-driven fault injec-
tion,” in Proceedings of ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2015, pp. 331–346.

[32] A. Ganesan, R. Alagappan, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Redundancy does not imply fault tolerance: Analysis of
distributed storage reactions to single errors and corruptions,” in Pro-
ceedings of USENIX Conference on File and Storage Technologies
(FAST), 2017, pp. 149–165.

[33] H. Chen, W. Dou, D. Wang, and F. Qin, “CoFI: Consistency-guided fault
injection for cloud systems,” in Proceedings of IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020, pp. 536–
547.

[34] R. Alagappan, A. Ganesan, Y. Patel, T. S. Pillai, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “Correlated crash vulnerabilities,”
in Proceedings of USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016, pp. 151–167.

[35] Y. Zhang, J. Yang, Z. Jin, U. Sethi, K. Rodrigues, S. Lu, and D. Yuan,
“Understanding and detecting software upgrade failures in distributed
systems,” in Proceedings of ACM SIGOPS Symposium on Operating
Systems Principles (SOSP), 2021, pp. 116–131.

[36] Y. Gao, D. Wang, Q. Dai, W. Dou, and J. Wei, “Common data
guided crash injection for cloud systems,” in Proceedings of IEEE/ACM
International Conference on Software Engineering (ICSE Demo), 2022,
pp. 36–40.

[37] D. Wang, Y. Gao, W. Dou, and J. Wei, “DisTA: Generic dynamic
taint tracking for java-based distributed systems,” in Proceedings of
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2022, pp. 547–558.

[38] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,
“DCatch: Automatically detecting distributed concurrency bugs in cloud
systems,” in Proceedings of ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2017, pp. 677–691.

[39] X. Yuan and J. Yang, “Effective concurrency testing for distributed
systems,” in Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2020, pp. 1141–1156.

[40] J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu, X. Lu, and
D. Li, “PCatch: Automatically detecting performance cascading bugs in
cloud systems,” in Proceedings of European Conference on Computer
Systems (EuroSys), 2018, pp. 1–14.

https://github.com/jepsen-io/jepsen
https://netflix.github.io/chaosmonkey
https://netflix.github.io/chaosmonkey
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://hbase.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://lcamtuf.coredump.cx/afl/
https://asm.ow2.io/
http://highscalability.com

[41] T. Dai, J. He, X. Gu, S. Lu, and P. Wang, “DScope: Detecting real-world
data corruption hang bugs in cloud server systems,” in Proceedings of
ACM Symposium on Cloud Computing (SoCC), 2018, pp. 313–325.

[42] S. Saha, J.-P. Lozi, G. Thomas, J. L. Lawall, and G. Muller, “Hector:
Detecting resource-release omission faults in error-handling code for
systems software,” in Proceedings of Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2013, pp. 1–
12.

[43] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang,
P. U. Jain, and M. Stumm, “Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive
systems,” in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2014, pp. 249–265.

[44] H. Chen, W. Dou, Y. Jiang, and F. Qin, “Understanding exception-
related bugs in large-scale cloud systems,” in Proceedings of IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 339–351.

[45] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32–44, 1990.

[46] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical concolic
execution engine tailored for hybrid fuzzing,” in Proceedings of USENIX
Conference on Security Symposium (SECURITY), 2018, pp. 745–761.

[47] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2013, pp. 197–208.

[48] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2008, pp. 206–215.

[49] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in Proceedings of IEEE Symposium on Security
and Privacy (SP), 2017, pp. 579–594.

[50] M. Böhme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proceedings of ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), 2016, pp.
1032–1043.

[51] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “CollAFL:
Path sensitive fuzzing,” in Proceedings of IEEE Symposium on Security
and Privacy (SP), 2018, pp. 679–696.

[52] C. Lemieux and K. Sen, “FairFuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,” in Proceedings of ACM/IEEE
International Conference on Automated Software Engineering (ASE),
2018, pp. 475–485.

[53] J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware grey-
box fuzzing,” in Proceedings of International Conference on Software
Engineering (ICSE), 2019, pp. 724–735.

[54] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. Le Traon, “Seman-
tic fuzzing with zest,” in Proceedings of ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2019, pp. 329–
340.

[55] Z. Liu, S. Xia, Y. Liang, L. Song, and H. Hu, “Who goes first? Detecting
Go concurrency bugs via message reordering,” in Proceedings of ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022, pp. 888–902.

[56] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Fuzzing error handling
code using context-sensitive software fault injection,” in Proceedings
of USENIX Conference on Security Symposium (SECURITY), 2020, pp.
2595–2612.

	Introduction
	Motivation
	An Illustrative Example
	Crash Scenario Space in Cloud Systems
	Challenges and Solutions

	Fault Model
	Fault Point
	Fault Sequence

	Approach
	Generating and Mutating Fault Sequences
	Favoring Suspicious Fault Sequences
	Prioritizing Suspicious Candidates
	Picking a Fault Sequence to Test

	Testing Fault Sequences
	Detecting Crash Recovery Bugs

	Implementation
	Evaluation
	Target Cloud Systems and Workloads
	Effectiveness of Crash Recovery Bug Detection
	Methodology
	Overall Results
	Bug Study

	Comparison with Alternative Fault Injection Approaches
	Methodology
	Comparison Results

	Runtime Overhead

	Discussion
	Limitations
	Threats to Validity

	Related Work
	Conclusion
	References

