
Application-Centric SSD Cache
Allocation for Hadoop Applications

Zhen Tang, Institute of Software, Chinese Academy of Sciences

Wei Wang, Institute of Software, Chinese Academy of Sciences

Yu Huang, Nanjing University

Heng Wu, Institute of Software, Chinese Academy of Sciences

Jun Wei, Institute of Software, Chinese Academy of Sciences

Tao Huang, Institute of Software, Chinese Academy of Sciences

September 23, 2017

SSD vs HDD

Higher Performance, especially in random access

Expensive in Per GB Capacity

Large Capacity

Lower random IOPS (I/O Operations Per Second)

SSD Caching System is a balance between Cost and Performance

SSD Caching System

The Data Mapping Module is the Fundamental Part

SSD 240 GB
20000 IOPS
600 MB/s

HDD 4TB
200 IOPS
150 MB/s

Data Mapping Module
IO Requests

Admission Policy

SSD Cache is Widely Used in the Virtualization Environment

Amazon Elastic Block Store (EBS)
Supporting Amazon EC2

And Supports the Elastic Hadoop Clusters

Amazon EMR Microsoft HDInsight

The VM View and the Application View

Node-2
HDFS NameNode

Node-3
HDFS DataNode

Node-4
HDFS DataNode

Node-5
HDFS DataNode

5 Nodes
Total Working Set = 20GB
Total SSD Cache Space = 5GB

VM view: IO Latency
Application view: Job Completion Time

Node-1
HDFS DataNode

VM-centric Approach

Node-1
HDFS DataNode

Node-2
HDFS NameNode

Node-3
HDFS DataNode

Node-4
HDFS DataNode

Node-5
HDFS DataNode

Working Set 5GB
Cache Size 1.25GB (75%)

Working Set 1GB
Cache Size 0.25GB (75%)

Working Set 4GB
Cache Size 1GB (75%)

Working Set 3GB
Cache Size 0.75GB (75%)

Working Set 7GB
Cache Size 1.75GB (75%)

Allocating the SSD cache according to the working set , aiming to minimize per-VM IO latency

Guarantee the fairness from VM view
Optimized performance for individual VMs

However, as the importance of nodes are different

Node-1
HDFS DataNode

Node-2
HDFS NameNode

Node-3
HDFS DataNode

Node-4
HDFS DataNode

Node-5
HDFS DataNode

Importance 0.4
Cache Size 2GB (0%)

Importance 0.1
Cache Size 0.5GB (90%)

Importance 0.3
Cache Size 1.5GB (50%)

Importance 0.1
Cache Size 0.5GB (92.9%)

Importance 0.1
Cache Size 0.5GB (87.5%)

Optimized performance
from Application View

Improve Application-Level Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Average Latency

App-centric VM-centric

• Latency related to job execution = Importance(VM) * Latency(VM)
• VM-centric: 0.775lHDD

• App-centric: 0.47836lHDD

• Average latency related to job execution reduced by 38.3%

Reduced by 38.3%

The relationships among VMs inside the application cannot be ignored

Two Principals

Reduced by 16.0%

Reduced by 19.2%

Reduced by 2.3%

Allocating too much SSD Cache is unnecessary due to different importance

Two Principals

Ite
ratio

n

Window

For different stages of the workload, the requirements may be different

We Also Need Global View

VM VM

Hypervisor

……
VM

VM VM

Hypervisor

……
VM

One application may be deployed on multiple hypervisors
Multiple applications may be deployed on one hypervisor
We need SSD cache allocation from the global view

App 1

App 2

App 3

App 4

How to allocate SSD cache from application view?

• Problem: How to allocation per-VM SSD cache for elastic Hadoop

clusters, to reduce the job completion time?

• Solution: Application-centric SSD cache allocation (AC-SSD)

• Two challenges

• How to allocate appropriate SSD cache resources (space and IOPS) for

virtual machines inside the Hadoop cluster from the application view?

• How to dynamically change the plan to adapt to continuously and

dynamically changing workloads?

Application-Centric SSD Cache Allocation (AC-SSD)

• To figure out the importance and allocate per VM SSD cache

• Use genetic algorithm to calculate the nearly optimal weights for VMs

based on importance

• Weight based SSD cache allocation

• To react to rapidly changing workload

• Use closed loop adaptation

Genetic Algorithm

• Proving that the per VM SSD cache allocation is NP complete (more
details in paper)

• Definition

• Chromosome: Tuple 𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑤𝐼𝑂𝑃𝑆 , indicates weights of SSD cache

space and IOPS

• Genome: A set of chromosomes, indicates the SSD cache allocation plan

• Selection: Select genomes randomly by fitness

• Crossover: Select random numbers of chromosome of two genomes and
swap them

• Mutation: Change the tuple of chromosome within a specific range

Fitness Calculation

• We calculate the fitness from 3 levels

• Importance Factor: Indicates the contribution of VMs.

• IO time: Indicates whether the workload is IO sensitive.

• Average request size: indicates the access pattern, whether sequential or

random.

Importance Factor

• For the execution of Hadoop application

• The nodes require data locally and from other nodes

• The data dependency indicates the contribution to the job completion

time

• Based on the observation

• We use the ratio of network throughput to IO throughput the importance

factor

VM 1
IO throughput = 500 MB

Network throughput = 250 MB
Ratio=0.5

VM 2
IO throughput = 1000 MB

Network throughput = 200 MB
Ratio=0.2

VM 3
IO throughput = 800 MB

Network throughput = 640 MB
Ratio=0.8

We prefer this one!

Closed Loop Adaptation

• Consists of 3 main steps: Monitor, Solve and Apply

Implementation

• We implement AC-SSD on Xen hypervisor

• Supporting closed loop adaptation: Java based controller, monitor, solver,
executor; agents on VMs and hypervisor

• Use cgroup to control the weight of IOPS

• LRU based SSD cache

Experiment Setup

• Environment

• 20 VMs hosted on 4 hypervisors

• 3 Clusters of 5, 10 and 5 nodes, with different VM placements

• 640MB SSD cache for each hypervisor

• Benchmarks

• IO Sensitive (TestDFSIO)

• Hadoop micro benchmarks (Sort, Terasort, Wordcount)

• SQL micro benchmarks (Aggregation, Join, Scan)

• Machine learning micro benchmarks (Bayes, KMeans, PageRank)

Result - IO sensitive

• Compared to shared cache

• For IO sensitive workloads (TestDFSIO)

• Job completion time reduced by 31% in average

• Throughput improved by 35% in average

• Better for read workloads

Result - Benchmarks

• Compared to shared cache

• For micro benchmarks

• Job completion time reduced by 14.3%~17.8%

• Works better for Kmeans and Bayes benchmark

Result - Self Adaptation

• Compared to shared cache

• For rapid changing workloads

• Reduced by ~20% for rapidly changing

workloads, for 3 clusters

Conclusion

• We present AC-SSD, an Application-Centric SSD caching system

• Present the importance factor of VMs inside the application, based on the

network throughput and disk IO

• Use genetic algorithm to calculate the nearly optimal weight of VMs

• Use closed loop adaptation to react to rapidly changing workloads

• The evaluation shows that it reduces the job completion time comparing to

the shared cache

Thanks

Zhen Tang

tangzhen12@otcaix.iscas.ac.cn

