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SSD vs HDD

@ Higher Performance, especially in random access

Expensive in Per GB Capacity

@ Large Capacity

Lower random IOPS (I/O Operations Per Second)

SSD Caching System is a balance between Cost and Performance



SSD Caching System
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The Data Mapping Module is the Fundamental Part



SSD Cache is Widely Used in the Virtualization Environment

Volume Type

Short Description

Use Cases

API Name

Volume Size

Max IOPS™Valume

Max Throughput/Volume

Max IOPS/Instance

Max Throughput/Instance

Price

Dominant Performance
Attribute

Amazon Elastic Block Store (EBS)
Supporting Amazon EC2

Solid State Drives (SSD)

EBS Provisioned |IOPS
SSD (o)

Highest performance SSD
volume designed for
|latency-sensitive
transactional workloads

I/O-intensive NoSQL and
relational databases

iol

4GB -16 TB

20,000

320 MB/s

75,000

1,750 MB/s

$0.125/GB-month

$0.085/provisioned 10PS

IOPS

EES General Purpose S5D
(gp2)®

General Purpose 55D
volume that balances price
performance for a wide
wvariety of transactional
workloads

Boot volumes, low-latency
interactive apps, dev & test

gp2

1GB-16TB

10,000

160 MB/s

75,000

1.750 MB/s

$0.10/GB-month

IOPS

Hard Disk Drives (HDD)

Throughput
Optimized HDD
(st1)

Low cost HDD
volume designed
for frequently
accessed,
throughput
intensive
workloads

Big data, data
warehouses, log
processing

stl

500 GB - 16 TB

500

500 MB/s

75,000

1,750 MB/s

$0.045/GB-month

MB/s

Cold HDD (sc1)

Lowest cost HDD
volume designed for
less frequently
accessed
workloads

Colder data

requiring fewer

scans per day

scl

500 GB - 16 TB

250

250 MB/s

75,000

1,750 MB/s

$0.025/GB-month

MB/s

Volume Type

Use Case

APl Mame

Volume Size

Max I0PSNolume

Max IOPS Burst Performance

Max Throughput/Volume

Max Throughput Burst Performance

Max IOPS/Instance

Max Throughput/Instance

Price

EBS Magnetic

EBS Magnetic

Infrequent Data Access

standard

1GE-1TB

40-200

40-90 MB/s

48,000

800 MBE/s

$0.05/GB-month

$0.05/million 14O



And Supports the Elastic Hadoop Clusters

Amazon EMR Microsoft HDInsight
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The VM View and the Application View

VM view: |10 Latency
Application view: Job Completion Time
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VM-centric Approach

Allocating the SSD cache according to the working set, aiming to minimize per-VM IO latency
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However, as the importance of nodes are different

(G

Node-5
HDFS DataNode

Importance 0.1

@

A

Cache Size 0.5GB (92.9%) -

o

Node-2
HDFS NameNode

Importance 0.4
Cache Size 2GB (0%)

r(
Q A

Node-4

HDFS DataNode

&
Node-1
HDFS DataNode

m Importance 0.1

Cache Size 0.5GB (90%)

Jptimized perrormance
if{.l’l’\ :.\,:J:Jlif AJ!}{IFI “‘ | T VWV
I

hatoep

Imp

Cache Size 1.5GB (50%)

ortance 0.3

@
Qr A

Node-3

HDFS DataNode

Importance 0.1
Cache Size 0.5GB (87.5%)




Improve Application-Level Performance

* Latency related to job execution = Importance(VM) * Latency(VM)
* VM-centric: 0.775l,5p
* App-centric: 0.47836l,,5,

* Average latency related to job execution reduced by 38.3%
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The relationships among VMs inside the application cannot be ignored



Two Principals

Allocating too much SSD Cache is unnecessary due to different importance
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Two Principals

For different stages of the workload, the requirements may be different

—Throughput —IOPS
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We Also Need Global View

One application may be deployed on multiple hypervisors
Multiple applications may be deployed on one hypervisor

We need SSD cache allocation from the global view
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How to allocate SSD cache from application view?

* Problem: How to allocation per-VM SSD cache for elastic Hadoop

clusters, to reduce the job completion time?

* Solution: Application-centric SSD cache allocation (AC-SSD)

* Two challenges

* How to allocate appropriate SSD cache resources (space and IOPS) for

virtual machines inside the Hadoop cluster from the application view?

* How to dynamically change the plan to adapt to continuously and

dynamically changing workloads?



Application-Centric SSD Cache Allocation (AC-SSD)

* To figure out the importance and allocate per VM SSD cache

* Use genetic algorithm to calculate the nearly optimal weights for VMs

based on importance

* Weight based SSD cache allocation

* To react to rapidly changing workload

* Use closed loop adaptation



Genetic Algorithm

* Proving that the per VM SSD cache allocation is NP complete (more
details in paper)

e Definition

Chromosome: Tuple {WStomge, W,OPS}, indicates weights of SSD cache
space and IOPS

Genome: A set of chromosomes, indicates the SSD cache allocation plan
Selection: Select genomes randomly by fitness

Crossover: Select random numbers of chromosome of two genomes and
swap them

Mutation: Change the tuple of chromosome within a specific range



Fitness Calculation

 We calculate the fithess from 3 levels
* Importance Factor: Indicates the contribution of VMs.
* |O time: Indicates whether the workload is IO sensitive.

* Average request size: indicates the access pattern, whether sequential or

random.



Importance Factor

* For the execution of Hadoop application
* The nodes require data locally and from other nodes

* The data dependency indicates the contribution to the job completion

time

e Based on the observation

* We use the ratio of network throughput to 10 throughput the importance

factor
VM 1 VM 2 VM 3
10 throughput = 500 MB 10 throughput = 1000 MB 10 throughput = 800 MB
Network throughput = 250 MB Network throughput = 200 MB Networkthroughput =640 MB
Ratio=0.5 Ratio=0.2 Ratio=0.8




Closed Loop Adaptation

e Consists of 3 main steps: Monitor, Solve and Apply

Closed Loop Adaption
Step 4: Sliding window based monitoring to trigger new round
Monitor Apply
Hypervisors
Virtual Machines
Step 1.1: Monitor Low- Step 1.2: Application Step 1.3: Monitoring S LRI -
level Performance centric Monitoring of current job * SSD cache allocation of SSD
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Job detail
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=
/ Solve
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Step 2.1: Calculating Importance of VM Step 2.2: GA based approach to get weights of space and IOPS capacity




Implementation

 We implement AC-SSD on Xen hypervisor

* Supporting closed loop adaptation: Java based controller, monitor, solver,
executor; agents on VMs and hypervisor

* Use cgroup to control the weight of IOPS
* LRU based SSD cache
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Experiment Setup

* Environment
20 VMs hosted on 4 hypervisors
e 3 Clusters of 5, 10 and 5 nodes, with different VM placements

* 640MB SSD cache for each hypervisor

* Benchmarks
* |0 Sensitive (TestDFSIO)
* Hadoop micro benchmarks (Sort, Terasort, Wordcount)
* SQL micro benchmarks (Aggregation, Join, Scan)

* Machine learning micro benchmarks (Bayes, KMeans, PageRank)



Result - IO sensitive

e Compared to shared cache

* For 10 sensitive workloads (TestDFSIO)
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* Job completion time reduced by 31% in average

* Throughput improved by 35% in average

e Better for read workloads
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Result - Benchmarks

e Compared to shared cache

* For micro benchmarks
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e Job completion time reduced by 14.3%~17.8%

* Works better for Kmeans and Bayes benchmark
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Result - Self Adaptation

* Compared to shared cache No. Workload - C1  Workload - C2  Workload - C3

1 Sort Wordcount Apggregation
. . 2 Join Terasort Bayes
* For rapid changing workloads 3 Pagerank ot Wordeomnt
4 Apgregation Aggregation Sort
- 2 5 Terasort Jom Scan
* Reduced by ~20% for rapidly changing ) Sean Sean Join
7 Bayes Bayes Pagerank
workloads, for 3 clusters 8 KMeans Pagerank KMeans
9 Wordcount EMeans Terasort
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Conclusion

* We present AC-SSD, an Application-Centric SSD caching system

* Present the importance factor of VMs inside the application, based on the

network throughput and disk 10
* Use genetic algorithm to calculate the nearly optimal weight of VMs
* Use closed loop adaptation to react to rapidly changing workloads

* The evaluation shows that it reduces the job completion time comparing to

the shared cache
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