Application-Centric SSD Cache
Allocation for Hadoop Applications

Zhen Tang, Institute of Software, Chinese Academy of Sciences
Wei Wang, Institute of Software, Chinese Academy of Sciences
Yu Huang, Nanjing University
Heng Wu, Institute of Software, Chinese Academy of Sciences
Jun Wei, Institute of Software, Chinese Academy of Sciences

Tao Huang, Institute of Software, Chinese Academy of Sciences

September 23, 2017

ISUAS FERFERERHRAM

Institute of Software Chinese Academy of Sciences

SSD vs HDD

@ Higher Performance, especially in random access

Expensive in Per GB Capacity

@ Large Capacity

Lower random IOPS (I/O Operations Per Second)

SSD Caching System is a balance between Cost and Performance

SSD Caching System

IO Requests a
Data Mapping Module

Admission Policy

o ,/:M; &iﬁ, N 3
SSD 240 GB _ HDD 4TB
2000010Ps | o - 200 I0PS
600 MB/s \ / 150 MB/s

The Data Mapping Module is the Fundamental Part

SSD Cache is Widely Used in the Virtualization Environment

Volume Type

Short Description

Use Cases

API Name

Volume Size

Max IOPS™Valume

Max Throughput/Volume

Max IOPS/Instance

Max Throughput/Instance

Price

Dominant Performance
Attribute

Amazon Elastic Block Store (EBS)
Supporting Amazon EC2

Solid State Drives (SSD)

EBS Provisioned |IOPS
SSD (o)

Highest performance SSD
volume designed for
|latency-sensitive
transactional workloads

I/O-intensive NoSQL and
relational databases

iol

4GB -16 TB

20,000

320 MB/s

75,000

1,750 MB/s

$0.125/GB-month

$0.085/provisioned 10PS

IOPS

EES General Purpose S5D
(gp2)®

General Purpose 55D
volume that balances price
performance for a wide
wvariety of transactional
workloads

Boot volumes, low-latency
interactive apps, dev & test

gp2

1GB-16TB

10,000

160 MB/s

75,000

1.750 MB/s

$0.10/GB-month

IOPS

Hard Disk Drives (HDD)

Throughput
Optimized HDD
(st1)

Low cost HDD
volume designed
for frequently
accessed,
throughput
intensive
workloads

Big data, data
warehouses, log
processing

stl

500 GB - 16 TB

500

500 MB/s

75,000

1,750 MB/s

$0.045/GB-month

MB/s

Cold HDD (sc1)

Lowest cost HDD
volume designed for
less frequently
accessed
workloads

Colder data

requiring fewer

scans per day

scl

500 GB - 16 TB

250

250 MB/s

75,000

1,750 MB/s

$0.025/GB-month

MB/s

Volume Type

Use Case

APl Mame

Volume Size

Max I0PSNolume

Max IOPS Burst Performance

Max Throughput/Volume

Max Throughput Burst Performance

Max IOPS/Instance

Max Throughput/Instance

Price

EBS Magnetic

EBS Magnetic

Infrequent Data Access

standard

1GE-1TB

40-200

40-90 MB/s

48,000

800 MBE/s

$0.05/GB-month

$0.05/million 14O

And Supports the Elastic Hadoop Clusters

Amazon EMR Microsoft HDInsight

,/ N >

Microsoft Azure
1in

<¢ . l>

——

Amazon CloudWatch The Amazon EMR job flow Wirtual network /) /)
HBaze

runs on a cluster of (site-to-site) .
Amazon EC2 Instances HDinsight

Metrics »

< — Amazon EC2 Instance

Input data
o a

Amazon Simple : _ _
Storage Service Virtual machine S0L Server

(S3) Amazon EMR Job Flow
\ _/ Your Datacenter

The VM View and the Application View

VM view: |10 Latency
Application view: Job Completion Time

@ @ @

Q 7 A Q 7 A Q e/

Node-1 Node-2 Node-3
HDFS DataNode HDFS NameNode HDFS DataNode

[iErbED [iErbED 5 Nodes
7 7 Total Working Set = 20GB
i@ Q@ Total SSD Cache Space = 5GB
/) Q /)
Node-4 Node-5
HDFS DataNode HDFS DataNode

VM-centric Approach

Allocating the SSD cache according to the working set, aiming to minimize per-VM IO latency

3 . Q /) Q /)
Node-1 Node-2 Node-3
HDFS DataNode HDFS NameNode HDFS DataNode

Guarantee the fairness from VMM view,
: (e vl ~ . .
Working Set -Optimized JANe 528 LGB, LR iisking Set 4GB

Ormance
Cache Size 1.25GB (75%) Cache Size 0.25GB (75%) Cache Size 1GB (75%)

Working Set 3GB

Cache Size 0.75GB (75%)

|
Q 7 A Q ¢ /)
Node-4 Node-5
HDFS DataNode HDFS DataNode

Working Set 7GB

Cache Size 1.75GB (75%)

However, as the importance of nodes are different

(G

Node-5
HDFS DataNode

Importance 0.1

@

A

Cache Size 0.5GB (92.9%) -

o

Node-2
HDFS NameNode

Importance 0.4
Cache Size 2GB (0%)

r(
Q A

Node-4

HDFS DataNode

&
Node-1
HDFS DataNode

m Importance 0.1

Cache Size 0.5GB (90%)

Jptimized perrormance
if{.l’l’\ :.\,:J:Jlif AJ!}{IFI “‘ | T VWV
I

hatoep

Imp

Cache Size 1.5GB (50%)

ortance 0.3

@
Qr A

Node-3

HDFS DataNode

Importance 0.1
Cache Size 0.5GB (87.5%)

Improve Application-Level Performance

* Latency related to job execution = Importance(VM) * Latency(VM)
* VM-centric: 0.775l,5p
* App-centric: 0.47836l,,5,

* Average latency related to job execution reduced by 38.3%

0.9
0.8
0.7
0.6
0.5

0.4
0.3
0.2
0.1

0

Average Latency

B App-centric B VM-centric

The relationships among VMs inside the application cannot be ignored

Two Principals

Allocating too much SSD Cache is unnecessary due to different importance

W Aggregation MBayes ™ Kmeans Sort

900
800
<700 iidulisd gy 33,940
-E 600
£ 500 . -
%400 : 0 DY 19.27%
§ 300 I I
2200
100

0 ml Reduced PbyR

0 2560 5120 7680 10240

Cache Size (MB)

Two Principals

For different stages of the workload, the requirements may be different

—Throughput —IOPS

0 25 50 75 100 125 150 175 200 225 250 275
Time (s)

We Also Need Global View

One application may be deployed on multiple hypervisors
Multiple applications may be deployed on one hypervisor

We need SSD cache allocation from the global view

haceo, [ERlEED [EREED
@D | GO | .. (0
VM VM VM
Hypervisor
IEREED lhaceo,
GD || &0 | L.
VM VM
Hypervisor

App 1

App 2

App 3

How to allocate SSD cache from application view?

* Problem: How to allocation per-VM SSD cache for elastic Hadoop

clusters, to reduce the job completion time?

* Solution: Application-centric SSD cache allocation (AC-SSD)

* Two challenges

* How to allocate appropriate SSD cache resources (space and IOPS) for

virtual machines inside the Hadoop cluster from the application view?

* How to dynamically change the plan to adapt to continuously and

dynamically changing workloads?

Application-Centric SSD Cache Allocation (AC-SSD)

* To figure out the importance and allocate per VM SSD cache

* Use genetic algorithm to calculate the nearly optimal weights for VMs

based on importance

* Weight based SSD cache allocation

* To react to rapidly changing workload

* Use closed loop adaptation

Genetic Algorithm

* Proving that the per VM SSD cache allocation is NP complete (more
details in paper)

e Definition

Chromosome: Tuple {WStomge, W,OPS}, indicates weights of SSD cache
space and IOPS

Genome: A set of chromosomes, indicates the SSD cache allocation plan
Selection: Select genomes randomly by fitness

Crossover: Select random numbers of chromosome of two genomes and
swap them

Mutation: Change the tuple of chromosome within a specific range

Fitness Calculation

 We calculate the fithess from 3 levels
* Importance Factor: Indicates the contribution of VMs.
* |O time: Indicates whether the workload is IO sensitive.

* Average request size: indicates the access pattern, whether sequential or

random.

Importance Factor

* For the execution of Hadoop application
* The nodes require data locally and from other nodes

* The data dependency indicates the contribution to the job completion

time

e Based on the observation

* We use the ratio of network throughput to 10 throughput the importance

factor
VM 1 VM 2 VM 3
10 throughput = 500 MB 10 throughput = 1000 MB 10 throughput = 800 MB
Network throughput = 250 MB Network throughput = 200 MB Networkthroughput =640 MB
Ratio=0.5 Ratio=0.2 Ratio=0.8

Closed Loop Adaptation

e Consists of 3 main steps: Monitor, Solve and Apply

Closed Loop Adaption
Step 4: Sliding window based monitoring to trigger new round
Monitor Apply
Hypervisors
Virtual Machines
Step 1.1: Monitor Low- Step 1.2: Application Step 1.3: Monitoring S LRI -
level Performance centric Monitoring of current job * SSD cache allocation of SSD
storage and IOPS
. Cache
capacity
10 Usage Relationships .
Job detail
Network Usage inside App OB CEtats
=
/ Solve
Importance of VM inside the > ‘Weight of VMs
application (Storage & IOPS capacity)

Step 2.1: Calculating Importance of VM Step 2.2: GA based approach to get weights of space and IOPS capacity

Implementation

 We implement AC-SSD on Xen hypervisor

* Supporting closed loop adaptation: Java based controller, monitor, solver,
executor; agents on VMs and hypervisor

* Use cgroup to control the weight of IOPS
* LRU based SSD cache

1 Closed Loop Adaption :
I i1
I Pl
I Controller I
| I
I 1 I
I I
[Monitor Solver s} Executor I
P e I '
Hypervisor
i I——————=—=-= 1 T I
! Agent >l cgroup o libvirt |
! L - — -]]
e S I i
SSD Cache VM

| |

| |

—_ 3 3 | Dot of

I | Agent > Applicati

I | pplication
I

Experiment Setup

* Environment
20 VMs hosted on 4 hypervisors
e 3 Clusters of 5, 10 and 5 nodes, with different VM placements

* 640MB SSD cache for each hypervisor

* Benchmarks
* |0 Sensitive (TestDFSIO)
* Hadoop micro benchmarks (Sort, Terasort, Wordcount)
* SQL micro benchmarks (Aggregation, Join, Scan)

* Machine learning micro benchmarks (Bayes, KMeans, PageRank)

Result - IO sensitive

e Compared to shared cache

* For 10 sensitive workloads (TestDFSIO)

300

[
h
o

[
=
S

Job Completion Time (s)
=
o (=]

3
o

o

* Job completion time reduced by 31% in average

* Throughput improved by 35% in average

e Better for read workloads

mm Shared Cache mmAC-SSD —Reduction

C1 Cc2 C3 C1 C2 C3 Cl Cc2 C3
Write Write Write Read Read Read RandR RandR RandR

Cluster and Benchmark

1
0.9
0.8
0.7
06 5
5
05 2
04 &
0.3
02
0.1
0

mmShared Cache ®mmAC-SSD —Improvement

—)]
th = [y

Throughput (MB/s)
=

5 '
0 '
C1 c2 C3 C1 c2 C3 Cl c2 C3

Write Write Write Read Read Read RandR RandR RandR
Cluster and Benchmark

Result - Benchmarks

e Compared to shared cache

* For micro benchmarks

Benchmarks

Pagerank
Kmeans
Baves
Sean

Jom

g
iz
o)
1
H
=
Z
s

Wordcount
Terasort

Sort

w AC-SSD m Shared Cache

]

L
L
—_—

——

————

=

]

B

0 200 400 600 800 1000 1200

Job Completion Time (s)

Pagerank
Kmeans
Baves
Sean

Join

Benchmarks

Aggregation
‘Wordcount
Terasort

Sort

» AC-SSD mShared Cache

)

200 400 a0 800
Job Completion Time (s)

1000

e Job completion time reduced by 14.3%~17.8%

* Works better for Kmeans and Bayes benchmark

wAC-SSD ® Shared Cache
Pagerank [
Kmeans B
Baves | s
Scan [
Join -
Aggregation [—
Wordcount B
Terasort B
Sort B

Benchmarlks

] 500 1000 1500
Job Completion Time (s)

Result - Self Adaptation

* Compared to shared cache No. Workload - C1 Workload - C2 Workload - C3

1 Sort Wordcount Apggregation
. . 2 Join Terasort Bayes
* For rapid changing workloads 3 Pagerank ot Wordeomnt
4 Apgregation Aggregation Sort
- 2 5 Terasort Jom Scan
* Reduced by ~20% for rapidly changing) Sean Sean Join
7 Bayes Bayes Pagerank
workloads, for 3 clusters 8 KMeans Pagerank KMeans
9 Wordcount EMeans Terasort
m Shared Cache ®AC-SSD ® Shared Cache ® AC-SSD ® Shared Cache ®AC-SSD
1400 900 1400
1200 800 1200
3 7700 @
:é 1000 é 600 ; 1000
= = =
’=: 800 g 300 % 300
:z_ 600 45400 i‘_ 600
":’: 400 5300 3 400
£ 2 200 G
SR TI T | Fr 1 11] et | 11
) W [T [o I m 0 [S [8
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 71T 8 9 I 2 3 4 5 6 7 8 9

Benchmark = Benchmark = Benchmark =

Conclusion

* We present AC-SSD, an Application-Centric SSD caching system

* Present the importance factor of VMs inside the application, based on the

network throughput and disk 10
* Use genetic algorithm to calculate the nearly optimal weight of VMs
* Use closed loop adaptation to react to rapidly changing workloads

* The evaluation shows that it reduces the job completion time comparing to

the shared cache

Thanks

Zhen Tang

tangzhenl2 @otcaix.iscas.ac.cn

