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ABSTRACT

Flash-based Solid State Drive (SSD) is widely used in the virtualiza-
tion environment, usually as the cache of the hard disk drive-based
Virtual Machine (VM) storage, to improve the IO performance.
Existing SSD caching schemes are mainly driven by VM-centric
metrics. They treat the VMs as independent units and focus on
critical low-level performance metrics of individual VMs, such as
the working set, the IO latency, or the throughput. However, for
elastic Hadoop applications consisting of multiple VMs, the work-
load is rapidly changing, and the importance of differnet VMs may
be different even if they have the same low-level IO pattern. In this
situation, the VM-centric SSD caching schemes may not lead to the
best performance, i.e., the shortest job completion time. Consider-
ing the importance of VMs and relationships among VMs inside
the application may potentially better improve the performance,
which we regard as the application-centric metrics. We propose
the Application-Centric SSD caching for Hadoop applications (AC-
SSD), which reduces the job completion time from the application
level. AC-SSD uses the genetic algorithm based approach to calcu-
late the nearly optimal weights of virtual machines for allocating
SSD cache space and controlling the I/O Operations Per Second
(IOPS) based on the importance of the VMs. Moreover, AC-SSD in-
troduces the closed-loop adaptation to face the rapidly changing
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workload. The evaluation shows that AC-SSD reduces the job com-
pletion time by up to 39% for IO sensitive workloads, and up to 29%
for rapidly changing workloads.
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1 INTRODUCTION

Virtualization technology is widely used, aiming to consolidate
multiple Virtual Machines (VM) in one hypervisor to get better
utilization of hardware resources[10]. Hypervisors, where VMs are
hosted, are mostly attached with a slow-speed Hard Disk Drive
(HDD) based back end shared storage to store VM images. In this ar-
chitecture, it is widely recognized that the IO performance is vital to
the efficient use of virtualized resources[25] [11]. Hadoop[2] appli-
cations are widely used in the virtualization environment, support-
ing the enterprises to complete tasks such as mining user behaviors
and recommending products. These days, cloud providers also offer
VM-based big data platforms, mostly for Hadoop applications. For
example, Amazon Elastic Compute Cloud (EC2) provides Amazon
Elastic MapReduce (EMR) [1] service to host big data applications.
Also, Microsoft Azure provides HDInsight [19], a fully-managed
Hadoop solution. For the open source community, Openstack foun-
dation provides Sahara [21] to create Hadoop clusters dynamically.
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For Hadoop applications, the most important performance met-
ric is the job completion time (JCT). As Hadoop applications are
supported by the HDFS [23], improving IO performance is vital to
reducing the job completion time.

Flash-based Solid State Drive (SSD) has recently been a wide-
spread solution to improving the IO performance [16] [14]. In the
virtualization environment, SSD caching is usually deployed at the
hypervisor-scale, i.e., VMs on the same hypervisor share the phys-
ical SSD storage for caching [7] [15] [20] [4]. The whole SSD is
divided into multiple parts to be used as individual cache for differ-
ent VMs. The IO operations will first arrive at the SSD cache. Upon
a cache hit, the operation will be quickly served by the cached data.
Otherwise, it will be served by the much slower back end storage
system. By using SSD cache to improve the IO performance of VMs,
the job completion time can be reduced.

Though SSD caching is vital for improving the IO performance,
existing caching schemes face severe challenges in the virtualiza-
tion environment, especially for Hadoop applications, as existing
work is mostly VM-centric. The VM-centric approaches focus on
important metrics of individual VMs such as the working set, the
IO latency, or the throughput, aiming to improve the performance
from the view of VM. The VM-centric approach can lead to the
best IO performance from the view of virtual machines. However,
it may not lead to the best performance from the application view,
i.e., the job completion time of Hadoop applications. During the
execution of a Hadoop job, the virtual machine not only read or
write data from local storage, but also request data from other nodes
via network communication. The importance of different virtual
machines inside the cluster may be different due to the data locality.
Thus, for VM centric approach, the optimized virtual machine may
contribute little to the overall performance, which means the cache
is not efficiently used. Table 1(a) demonstrates a simple Hadoop
cluster consisting of 5 nodes, which runs specific jobs. The HDFS
namenode is deployed on Node-2. Also, there is a background repli-
cation task running on one datanode (Node-5). The total size of the
working set is 20GB and the total size of the SSD cache is 5GB. Each
node in the cluster has different importance (ratio of IO operations
related to the jobs) and working set. Furthermore, as the distributed
file system is deployed on each node, the low-level IO patterns of
VMs inside the cluster are similar. Table 1(b) shows the SSD cache
allocation and the miss rate of the VM-centric approach and the
App-centric approach. The former allocates the per VM SSD cache
according to the working set of VMs, while the latter allocates
according to the importance of VMs. Assuming that the average
latency of SSD is 0.1x of HDD, if allocating SSD cache according to
the importance of nodes from the application level, there may be
significant performance improvement comparing to the VM-centric
approach (the average latency is reduced by 38.3%), as shown in
Table 1(c).

Additionally, tenants of cloud platforms usually apply for mul-
tiple virtual machines and use the cluster built from them. The
virtual machines inside a cluster will face the similar workload. Fur-
thermore, the cloud provider allocates the virtual machines using
the load balance strategy, from the view of the virtual machine.
Thus, virtual machines belonging to different Hadoop applications
may be placed in the same hypervisor, and multiple applications
may also be deployed on one hypervisor. In this architecture, the
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Table 1: Demonstration of VM-centric and App-centric ap-
proach

(a) Characteristics of workloads

Node Working Set  Importance

Node-1 5GB 0.1
Node-2 1GB 0.4
Node-3 4GB 0.1
Node-4 3GB 0.3
Node-5 7 GB 0.1

(b) SSD cache allocation and miss rate

Node VM-centric App-centric

Node-1 1.25GB (75%) 0.5 GB (90%)
Node-2  0.25 GB (75%) 2 GB (0%)

Node-3 1 GB (75%) 0.5 GB (87.5%)
Node-4 0.75 GB (75%) 1.5 GB (50%)
Node-5 1.75GB (75%) 0.5 GB (92.9%)
(c) Average Latency
Approach Latency Ratio
VM-centric  0.775 - lgpp 1

App-centric  0.47836 - Ilypp  0.617

relationships between virtual machines inside a Hadoop application
are important. Ignoring the relationships and considering the SSD
cache allocation from the view of virtual machines may not lead to
the best performance. Thus, we need application-centric SSD cache
allocation, which takes the relationships inside an application into
consideration to improve the application-level performance.

SSD has the significant advantage over HDD, especially for ran-
dom IO operations. However, SSD is much more expensive than
HDD. The size of SSD is limited, so we need to allocate per VM
SSD caches according to requirements of VMs. Also, the IOPS (IO
Operations Per Second) capacity of SSD is limited. Without control-
ling the IOPS capacity, there may be potential resource contention
among VMs hosted on one hypervisor and leading to the waste of
cache space. Thus, SSD needs to be efficiently used, by allocating
the space and controlling the IOPS. We regard this as the allocation
of storage and IOPS capacity of SSD cache. However, to get the
optimized plan for allocating per VM storage and IOPS capacity
of SSD cache is hard as the benefit for allocating different ratio of
capacity maybe totally different, which cannot be calculated by a
straight-forward approach. Furthermore, workloads of the Hadoop
application is continuously changing. Also, for different stages of
one Hadoop job, different VMs have their own IO patterns and the
importance. The static SSD cache space allocation and IOPS control
is far less enough. Thus, the SSD caching scheme must be adaptive.

The discussions above impulse two critical technical challenges:

(1) How to allocate appropriate SSD cache space and con-
trol IOPS for virtual machines inside the Hadoop clus-
ter from the application view?
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When allocating different cache space for different virtual
machines, the benefits (the reduction of the job completion
time) for different types of Hadoop jobs may be totally dif-
ferent.

(2) How to dynamically change the plan to adapt to con-
tinuously and dynamically changing workloads?
By using an offline approach, allocating SSD cache space and
controlling the IOPS may be easy and efficient. However, as
the running jobs on the Hadoop cluster are changing rapidly,
the static approach is far less enough.

We present AC-SSD, a SSD caching scheme, to reduce the job
completion time of Hadoop applications for elastic Hadoop clusters
provided by cloud platforms. After proving that the application-
centric SSD cache allocation is NP complete, AC-SSD introduces a
genetic algorithm based approach to get the nearly optimal weight
for each virtual machine and then allocates SSD cache space and
controls the IOPS based on the weight. Furthermore, AC-SSD uses
closed-loop adaptation to handle the rapidly changing workloads.
During the execution of the closed-loop, AC-SSD monitors the
Hadoop application by gathering the performance of low-level IO
operations and network interactions, as well as the detail of running
jobs, and infers the requirement of SSD cache space and IOPS of
each virtual machine. Then the genetic algorithm based approach
is used to calculate the weights and finally be applied by resizing
the per VM SSD cache and the IOPS capacity. The evaluation shows
that AC-SSD reduces the job completion time by up to 39% for IO
sensitive workloads, and up to 29% when the type of workload is
rapidly changing.

The rest of the paper is organized as follows. In Section 2, we
discuss the design details of AC-SSD. In Section 3, we discuss the ex-
ecution of the closed-loop, which dynamically detects the workload
of the Hadoop application and triggers the adjustment of SSD cache.
In Section 4, we discuss the genetic algorithm based approach used
in AC-SSD to allocate per VM SSD cache storage and IOPS capacity.
In Section 5, we use several experiments to show the effect of the
genetic algorithm based approach and closed-loop adaptation. We
discuss the related work in section 6. The Section 7 concludes the

paper.

2 OVERVIEW OF AC-SSD

The SSD cache benefits the performance of Hadoop applications by
reducing the job completion time as it improves the IO performance
of virtual machines. However, for SSD caches, the storage and the
IOPS capacity are both limited. We need to allocate the cache space
as well as control the IOPS for each virtual machine, according to
the workloads running in the Hadoop application.

2.1 Illustrative Examples

In this paper, we focus on the famous big data platform, Apache
Hadoop [2] ecosystem, including HDFS [23], YARN [24], HBase [9]
and Mahout [3].

We have found two meta-level principles of Hadoop applications,
as shown below:

(1) Relationships among virtual machines: As there are fre-

quently interactions among virtual machines inside the clus-
ter, the importance of each virtual machine may be different.
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Figure 1: Job completion time of 4 workloads when allocat-
ing different size of SSD cache to the cluster.
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Figure 2: The changes of throughput and IOPS during the
execution of the KMeans workload.

For example, the name node in HDFS and the resource man-
ager node in YARN in the cluster are the fundamental nodes
in the cluster, and have the great impact on job completion
time, even though they may have the same IO pattern as the
data nodes.

(2) Temporal characteristics: For different stages during the
execution of the job, the IO patterns are different from the
application view. For example, the hot spot and the important
virtual machines in the map stage and the reduce stage may
be different.

Next, we use two illustrative examples to show these meta-level
principles. Firstly, we observe that different Hadoop applications
may have different IO patterns, including the hot spot and the ratio
of random IO operations. Furthermore, multiple nodes in the same
application have the same low-level IO pattern during the execution
of the job, but with different importance. The example is shown
in Figure 1. We build a 5-VM cluster and choose 4 representative
benchmarks from Hadoop ecosystem, including SQL Aggregation
(database), Bayes (machine learning), Kmeans (machine learning)
and Sort (CPU sensitive). The x axis represents the total SSD cache
space allocated to the cluster. We observe that when allocating the
different size of the SSD cache, the job completion time of Sort
benchmarks changes slightly, while for Aggregation and Bayes
benchmark, the job completion time is reduced significantly.

Secondly, we observe that for different stages in one job, the IO
patterns may be different. For example, for the map and reduce
stage in one job, the importance of virtual machines may be dif-
ferent, which results in different hot spots. The static allocation
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of SSD cache space is far less enough to face the rapidly changing
workloads and the IO patterns. The example is shown in Figure
2. We build a 5-VM cluster and run the KMeans benchmark from
Apache Mahout, part of the Hadoop ecosystem. The x axis repre-
sents the time, while y axes represent the throughput and IOPS of
the cluster during the execution. We observe that in different stages,
IO patterns are different from the view of the application. In this
scenario, the static SSD cache resource allocation approach may
be incapable. Thus we need closed-loop adaptation to dynamically
detect the change of workloads and IO patterns, to further allocate
the storage and IOPS capacity of SSD cache efficiently.

2.2 System Architecture

AC-SSD provides the allocation of SSD cache storage and IOPS
capacity on per VM basis. AC-SSD uses genetic algorithm based
approach to get the nearly optimal results. Furthermore, to face the
rapidly changing workloads and the different IO patterns for differ-
ent stages during the execution of jobs, AC-SSD uses closed-loop
adaptation, so as to dynamically detect the change of workloads
and the performance of virtual machines, including IO patterns and
network communications.

The closed-loop adaptation is inspired by MAPE-K [8], which
consists of three steps, Monitor, Solve and Apply, as shown below.
More details of the closed-loop adaptation can be found in Section
3.

(1) Monitor: In this step, AC-SSD monitors running processes
and network communications of each virtual machine, and
then builds the topology of the Hadoop application showing
the relationships among VMs inside the application. Also,
AC-SSD monitors the status of the running jobs for each
Hadoop application, along with the low-level IO patterns
of each virtual machine, including the throughput and the
IOPS.

(2) Solve: In this step, a genetic algorithm is used to calculate
the nearly optimal weights of storage and IOPS capacity for
each VM inside each Hadoop application according to the
importance of VMs. More detail can be found in Section 4.

(3) Apply: In this step, AC-SSD resizes the SSD cache space and
controls IOPS for each VM, to apply the specific SSD cache
resource allocation plan.

The architecture of AC-SSD is shown in Figure 3. To support the
closed-loop adaptation and the nearly optimal SSD cache allocation,
AC-SSD consists of the controller, monitor, solver, executor and
agents on virtual machines and hypervisors, as shown below:

(1) Controller: The Controller triggers, traces and maintains
the whole closed-loop, and provides the uniform RESTful
API for management. The controller communicates with all
the other components using the RESTful API and gathers
the information from them. It also controls the execution of
the closed-loop adaptation and starts the new round of SSD
cache allocation frequently.

(2) Monitor: The Monitor gathers performance of CPU, disk
and network from the agents deployed on virtual machines to
figure out the requirement of SSD cache storage and IOPS ca-
pacity. Furthermore, the monitor detects running processes
of each virtual machine to get the topology of the Hadoop
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Figure 3: Architecture of AC-SSD.

cluster and then traces the execution of the jobs. Addition-
ally, the monitor gathers the usage of SSD from the agent
deployed on each hypervisor to figure out the resource sup-
ply and the limitation of SSD cahce storage and IOPS capacity.
The gathered performance data will then be used by Solver
to calculate the nearly optimal results.
(3) Solver: The Solver calculates weights of SSD cache storage
and IOPS capacity for each virtual machine inside each appli-
cation, for current running workloads. A genetic algorithm
based approach is used to calculate the nearly optimal results
based on the importance of virtual machines. Finally, a SSD
cache allocation plan will be generated for the Executor to
apply.
Executor: The Executor sends messages to the agent on
each hypervisor to apply the plan, including resizing the
SSD cache space and controlling the IOPS for each virtual
machine. For the prototype of AC-SSD, we embedded an LRU-
based SSD cache in QEMU, and use the cgroup to control
the IOPS. We use the libvirt library to control the lifecycle of
virtual machine to help resize the SSD cache and control the
IOPS. More details of the implementation of AC-SSD can be
found in Section 5.
Agent: The Agent is deployed on each virtual machine and
hypervisor. For virtual machines, the agent aims to gather
performance data along with the information of running
processes, in order to build the topology of application, to
figure out the role of the virtual machine, and to identify the
IO pattern. For hypervisors, the agent resizes the SSD cache
and controls the IOPS for virtual machines hosted on them.

—~
N
=

—
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=

3 DYNAMIC SSD CACHE SPACE
ALLOCATION AND IOPS CONTROL

For Hadoop applications, we observed that the importance of dif-
ferent VMs are different when facing different workloads or for
different stages during the execution of one workload. The SSD
cache requirements of storage and IOPS capacity for each virtual
machine are different, even for those with the similar disk IO us-
age and IO patterns. Thus we need the application-centric SSD
cache allocation. Furthermore, we use the closed-loop adaptation
in AC-SSD to react to the change of workloads. The closed-loop
adaptation is inspired by MAPE-K[8] feedback loop, which consists
of three steps: monitor, solve and apply.
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3.1 Three Levels of Monitoring

We monitor the performance and the status of the Hadoop applica-
tion from the hypervisor, the application and the virtual machine
level, so as to figure out the importance of each virtual machine.

For the hypervisor level, AC-SSD uses the agent deployed on
each hypervisor to monitor the usage of SSD space and IOPS, along
with the usage of per VM SSD cache.

For the application level, AC-SSD uses the agent deployed on
each virtual machine to detect the “borderline” of the Hadoop ap-
plication, i.e., to figure out each virtual machine inside a Hadoop
application, and then build the topology for each application. Firstly,
we monitor the network communication among virtual machines.
We record the network connections and then build directed graphs
based on them. Each graph represents a Hadoop application. Fur-
thermore, we detect the processes of virtual machines, to get the
role of different virtual machines, such as the master node and the
slave nodes. We also trace the execution of jobs to figure out the
critical virtual machines inside the cluster. The relationships among
VMs inside the application and the job details will help infer the
importance of VMs.

For the virtual machine level, AC-SSD uses the agent deployed on
each virtual machine to monitor the CPU usage, network through-
put and IO patterns. SSD can benefit the IO performance signifi-
cantly, especially for random IO operations. Thus, the agent will
monitor the average size of IO requests to figure out the ratio of
random IO operations for each virtual machine. With the help of
the application topology, the agent monitors the network com-
munication for each virtual machine, especially for the incoming
throughput so as to get the importance of VMs inside an application.

3.2 Execution of the Closed-Loop

The execution of the closed-loop and the main steps are shown
in Figure 4. AC-SSD triggers the execution of the closed-loop for
every minute. Such interval is also the window size for monitoring
the performance and application status. The one-minute interval
is sufficient in practice, and get a balance between accuracy of
monitoring and system overhead.

For one round of the closed-loop adaptation, AC-SSD firstly
monitors the low-level performance from virtual machine, including
the CPU usage, the IO overload and the network throughput among
other VMs (Step 1.1). Also, AC-SSD figures out the “borderline” of
each application along with the relationships among the virtual
machines (Step 1.2). Furthermore, AC-SSD traces the execution of
jobs for each cluster (Step 1.3). After monitoring the performance
data and the status of the application, the gathered information
will be used by the genetic algorithm based approach to infer the
importance for each virtual machine inside the application (Step
2.1). We aim to calculate the weight of storage and IOPS capacity
according to the importance of each virtual machine inside the
application (Step 2.2). More detailed information of the Solve step
can be found in Section 4. Finally, AC-SSD triggers the Executor
to use the agent deployed on each hypervisor to change the SSD
cache storage and IOPS capacity for each virtual machine (Step 3).
The closed-loop adaptation is triggered for every minute, which is
the window size for the sliding window based monitoring (Step 4).
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4 NEARLY OPTIMAL SSD CACHE
ALLOCATION OF SPACE AND IOPS
CAPACITY

We use the genetic algorithm based approach to calculate the nearly
optimal weights of SSD cache storage and IOPS capacity for each
virtual machine, from the view of the cluster.

4.1 Problem Definition

For the nearly optimal SSD cache allocation, we aim to calculate
the weights of SSD cache storage and IOPS capacity for each virtual
machine hosted on each hypervisor. The SSD cache storage and
IOPS capacity are then allocated according to the weights.

Firstly, we regard the Hadoop application A as the set of n virtual
machines v, A; = {v1,v2,...,0,}. Also, each virtual machine is
bound to one specific hypervisor H. We have H; = {v1,v2,...,vn}.
From the view of the application, when facing a specific workload,
the interactions among different virtual machines are different.
We use the weight w to describe the importance of virtual ma-
chine, which shows the contribution to the job completion time
bringing by the IO operations. Thus, we have the weight vector
W = {w1, wa,...,wn}, where w; is the weight of virtual machine
Vj.

Furthermore, for different types of IO patterns, for example, the
sequential IO operations and random IO operations, the require-
ment of SSD cache storage and IOPS capacity may be totally differ-
ent. Allocating the SSD cache space and controlling the IOPS due
to the importance and the IO access pattern of the virtual machine
will help improve the performance and reduce the job completion
time.

Our goal is to calculate the weight of SSD cache storage and IOPS
capacity for each virtual machine, by using the performance data
and the application-level runtime status gathered in the Monitor
step in the closed-loop adaptation, so as to manage the SSD cache
from the application view.

4.2 Proof of NP Completeness

Next, we show that the 0-1 knapsack problem is a special instance
of the application-centric SSD cache allocation problem, to prove
that the problem is NP hard. Thus it is reasonable to use the ge-
netic algorithm to get the nearly optimal results. To allocate SSD
cache and control the IOPS for each virtual machine to get the best
performance, we need to allocate appropriate size of SSD cache
space and set the IOPS limitation for selected virtual machines,
so as to minimize the job completion time. We assume that for a
specific workload, the cost (usage of SSD cache storage and IOPS)
for each VM is constant, and so does the value (the reduction of job
completion time).

Then, we add restrictions to the problem as following to build a
special case of 0-1 knapsack problem. The item set is the VM set
V = {v1,vy,...,v,}, while the total number of the items is |[V| = n.
Value for each item W = {wy, w, ..., wy,} is the reduction of job
completion time when the virtual machine is selected to allocate
specific size of SSD cache space and set the IOPS limitation. The
cost for each item C = {cjy,cz,...,cn} is the usage of cache size
and IOPS limitation for each virtual machine. The capacity of the
knapsack is the total cache storage and IOPS capacity for the SSD.
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Figure 4: Execution of the closed-loop.

As it is straight-forward that the 0-1 knapsack problem is NP
complete, the allocation of SSD cache storage and IOPS capacity is
NP complete.

4.3 Genetic Algorithm

Thus, we choose to use genetic algorithm to calculate the nearly op-
timal weights for SSD cache allocation. We aim to create connection
between high-level job completion time of Hadoop application and
the low-level characteristics of IO operations through the fitness.
We calculate the fitness by considering the type of the job, the im-
portance of different VMs, and the characteristics of IO operations,
so as to give a value which is highly relative to the job completion
time of the application.

There are some critical parameters in the genetic algorithm
which we need to introduce here. The chromosome indicates the
weight tuple {wstorage. Wiops} of a specific VM, which is the
ratio of storage and IOPS capacity. Thus, The genome indicates a
specific SSD cache allocation plan of the whole platform, including
all virtual machines belong to different applications along with the
weights. We define the selection operation as selecting genomes
randomly by their fitnesses. We define the crossover operation as
selecting random numbers of chromosome of two genomes and
swap them, and then the weights will be normalized again. We
define the mutation operation as changing the weight of random
numbers of chromosomes of a genome inside a specific range.

For the most important part, the fitness aims to help predict the
job completion time. Firstly, we use the IO patterns of the job, the
contribution of the network throughput from IO operations and
the characteristics of IO operations to characterize the requirement
of SSD cache for each VM, including the storage and IOPS. The im-
portance of the VM can be inferred by figuring out the intensity of
specific VM by the the contribution of network throughput from IO
operations. Secondly, we need to consider the low-level IO, which
is the IO load of the specific VM, as we called the “IO sensitivity”.
We regard the IO sensitivity as the ratio of IO and non-IO opera-
tions. Thirdly, we consider the intensity of the random access of
the VMs. We regard the random access intensity as the reciprocal

Algorithm 1: Fitness calculation

Input: Target genome; CPU time, IO usage (IO time,
Bandwidth and IOPS), network throughput for each
VM

Output: Fitness for target genome

Initialization;

foreach Chromosome c in target genome do

VM c.v := VM bound to c;

Application c.app := Application bound to c;

Weight c.ws := Weight of storage capacity bound to c;

Weight c.wi := Weight of IOPS capacity bound to c;

IO sensitivity c.s := c.v.I0Time / c.v.CPUTime;

Random access intensity c.r := c.v.TotallOPS /

c.v.TotalBandwidth;

// Calculating the VM intensity

VM importance c.i := 0;

foreach Network throughput t between c.v and VMs in

c.app do
‘ c.i:=c.i +t/ c.vTotalBandwidth ;
end
end

// Normalization

foreach Chromosome c in target genome do
c.s:=c.s / Total c.s;
c.r:=c.r/Total c.r;
c.i:=c.i/ Total c.i;

end

// Calculate the match degree

foreach Chromosome c in target genome do
Match degree c.m :=

(c.ws —c.5)% + (c.wi — c.r)% + (c.ws — c.i)? + (c.wi — c.i)?;
end
Fitness f := 4 X (countypr) — 3 c.m;
return f;
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of the average size of IO operations. Finally, the fitness is calculated
by comparing the match degree of the weight with the IO sensi-
tivity, the VM importance and the random access intensity of the
VM. We calculate the match degree by summing up the euclidean
metric between the weight, the normalized IO sensitivity, the VM
importance and the random access intensity. We finally adjust the
match degree to a positive relative value to the job completion time.
The algorithm for calculating fitness is shown in algorithm 1.

5 EVALUATION

In this section, we seek to answer the following questions:

(1) How does AC-SSD impact the performance of Hadoop ap-
plications? Can AC-SSD reduce the job completion time of
Hadoop application better comparing to the shared cache?

(2) Can AC-SSD adapt to different types of changing workloads?
Can AC-SSD resize the SSD cache and control the IOPS for
VM dynamically?

5.1 Experiment Design

5.1.1 Implementation of AC-SSD. We implement AC-SSD on
Xen[5], a widely used hypervisor. The components of the closed-
loop adaptation are implemented in Java. For the SSD cache, we
implemented an LRU cache on QEMU, an emulator used by Xen.
The cache for each virtual machine is stored on SSD as separate file.
For the IOPS control, we use Linux cgroup to change the weight of
different virtual machines. For the control of virtual machine, we
use the library libvirt, which used by the agent deployed on the
hypervisors to safely suspend the virtual machine before changing
the cache space and IOPS capacity. Furthermore, we use the Linux
proc filesystem and the sysstat package to monitor the usage of
CPU, disk IO and network communication.

5.1.2  Experiment Setup. Our experiments are performed on four
Inspur blade servers, each with two 8-core Intel Xeon CPU and
16GB memory. For each server, a 240GB Intel 535 SSD is attached,
along with one Toshiba AL13SEB300 300GB SAS hard disk drive.
We create the shared storage based on the HDDs.

To simulate the behavior of the real world cloud provider, we use
3 clusters rather than one cluster with three tenants. The deploy-
ment of the three clusters in the experiment environment is shown
in Figure 5. The cluster 1 consists of five virtual machines, while
cluster 2 consists of ten and cluster 3 consists of five. For cluster
1, the master node does not interfere with any others, while the
master nodes of cluster 2 and 3 are placed on the same hypervisor,
though they have the same number of nodes. As mentioned before,
the cloud providers usually place the virtual machine due to the
load balancing of the CPU and memory resource of the hypervisors.
We place the three clusters fairly on four hypervisors, which means
each application consists of virtual machines hosted on all four
hypervisors. We deployed Hadoop 2.7.2 for each cluster, while the
replication of HDFS is set to 2.

5.1.3  Benchmarks. We use micro benchmarks from the Hadoop
ecosystem, including Apache Hadoop, Apache HBase, and Apache
Mahout. We aim to simulate the common scenarios in the real
world:
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(1) 1O sensitive: the TestDFSIO benchmark. The pattern is just
like the daily backup tasks for enterprises.

(2) Parallel algorithms: Including the Sort, Terasort and Word-
count benchmarks. The pattern is just like the processing
of the intermediate data.

(3) SQL: Including the Aggregation, Join and Scans bench-
marks. The pattern is just like the query and search in a
huge database.

(4) Data mining and websearch: Including the Bayes, KMeans
and Pagerank benchmarks. The pattern is just like the daily
analysis of user behavior.

The SQL benchmarks (Aggregation, Join and Scan) and the Pagerank
benchmark are from HiBench [12].

5.2 The Effect of GA based SSD Cache
Allocation

In this section, we compare the IO performance and job completion
time to the shared SSD cache, which means the virtual machines
deployed on the same hypervisor share the total SSD cache space.

As mentioned before, we use 3 cluster in the evaluation. The 3
clusters will run the selected workloads continuously and simulta-
neously. We use total cache size of 2560MB for 20 virtual machines,
which means 640MB for each hypervisor.

Firstly, we use the IO sensitive workload, TestDFSIO, to evaluate
AC-SSD by comparing the job completion time and the throughput
to the shared cache. The number of files is set to 10, while the
size of each file is 256MB. We choose the write, read and random
read mode in this experiment. Figure 6 shows the reduction of job
completion time for all three clusters. We observe that AC-SSD can
reduce the job completion time of IO sensitive workloads by up to
39% comparing to the shared cache. In average, AC-SSD reduces
the job completion time by 31%, which means the cluster can run
45% more jobs.

Figure 7 shows the improvement of throughput. The results
shows that AC-SSD can improve the performance by up to 57%
comparing to the shared cache, and 35% in average. We observe
that AC-SSD works better for large cluster. Also, we observe that
AC-SSD works better for workloads with heavy read operations,
especially for random reads.

AC-SSD works well with the larger clusters and the random read
workload, as AC-SSD allocates more SSD cache storage and IOPS
capacity to the hot spot in the application, and considers the ratio
of random IO operations.

Secondly, we run micro benchmarks of real world algorithms
on separate clusters to evaluate AC-SSD. Still we use 640MB SSD
cache for each hypervisor, which is the about 50% of the working
set. We run the benchmarks on all three clusters simultaneously.
Similarly, we compare our approach with the shared SSD cache.
Also, for shared SSD cache, we do not control the IOPS.

The results are shown in Figure 8. The results shows that for
workloads with frequently IO operations, such as Aggregation, Scan
and Join, AC-SSD provides up to 19% reduction on job completion
time comparing to the shared cache. For the workloads with low
ratio of IO operations, such as Sort, Terasort and Wordcount, the
job completion time is similar to the one using the shared cache. Ad-
ditionally, for workloads with different stages, such as the KMeans
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Figure 5: Experiment setup. The virtual machines with number 1, 3, 6, 11 and 16 are belonging to cluster 1, and the master
node is VM1. Similarly, VM with number 2, 4, 7, 9, 12, 14, 15, 17, 19, 20 are belong to cluster 2, and the master node is VM7. The
rest virtual machines forms the cluster 3, and the master node is VM10.
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and Bayes benchmarks, the job completion time is reduced by up to
27%, which shows the advantages of closed-loop adaptation used in
AC-SSD, as AC-SSD changes the SSD cache allocation during the
execution of jobs. In average, AC-SSD reduces the job completion
by 14.3% for cluster 1, 17.8% for cluster 2, and 16% for cluster 3.
Similarly to the evaluation on IO sensitive workloads, the reduction
of job completion time for larger clusters is a little better than that
for larger clusters, as AC-SSD allocates SSD cache according to the
hot spot in the application. The results of cluster 1 and cluster 3
are different because the master node of cluster 2 and cluster 3 are
hosted on the same hypervisor, which may result in the resource
contention of IOPS. As AC-SSD controls the IOPS for each virtual
machine, more storage and IOPS will be allocated to the 2 master
nodes, which results in the reduction of job completion time.

Furthermore, we observed 3% more CPU usage in average when
the agents deployed on VMs are enabled. The overhead introduced
by the monitoring component is considerable.

5.3 Using AC-SSD in the Dynamic
Environment

In this section, we evaluate AC-SSD by changing the type of work-
loads running on each cluster, in order to confirm that AC-SSD can
adapt to different, rapidly changing workloads. We still use the
three cluster consisting of 20 virtual machines in total. However,
we change the jobs running on the cluster by the order listed in
Table 2 by every 10 minutes, to simulate the changing of workloads.
We aim to simulate that multiple tenants of the cloud platform are
running different workloads and change the workloads if they need.

The results are shown in Figure 9. The x axis represents the
number of group, while the y axis represents the job completion
time. As AC-SSD decreases the cache space for cluster running CPU
sensitive workloads, we observe the significant reduction of job
completion time for some group of workloads, up to 29% reduction.
This shows that AC-SSD resizes the SSD cache for specific virtual
machines when the change of hot spot is detected, which improves
the utility of SSD and performance. In average, AC-SSD reduces
the job completion time by 19% for cluster 1, 22% for cluster 2, and
18% for cluster 3. This situation is better than the static workloads,
especially for bigger clusters. Additionally, AC-SSD allocates more
SSD cache storage and IOPS capacity to the cluster running IO sen-
sitive workload rather than the shared cache, and quickly resizes
the per VM SSD cache rather than waiting for the whole SSD to
warm up when using shared cache. This may explain the signifi-
cant reduction of job completion time when the workload of some
clusters changes between CPU sensitive and IO sensitive, such as
changing from group 3 to group 4, and from group 6 to group 7.

The results shows that AC-SSD can adapt to rapidly changing
workloads, especially for bigger clusters and for the situation that
the ratio of IO operations changes significantly.

5.4 Lessons Learned

In the evaluation, we observe that AC-SSD can reduce the job com-
pletion time for Hadoop applications, especially for those workloads
with heavy random IO operations. As AC-SSD controls per VM
IOPS capacity, it is capable to be used in multi-tenants cloud plat-
forms. We choose to use the small clusters and the caching system
consisting of HDD and SSD in the evaluation, but AC-SSD can
also be applied to the big cluster consisting of hundreds of virtual
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Table 2: Order of workloads

No. Workload - C1  Workload - C2  Workload - C3
1 Sort Wordcount Aggregation
2 Join Terasort Bayes
3 Pagerank Sort Wordcount
4 Aggregation Aggregation Sort
5 Terasort Join Scan
6 Scan Scan Join
7 Bayes Bayes Pagerank
8 KMeans Pagerank KMeans
9 Wordcount KMeans Terasort

machines easily. Additionally, AC-SSD can also be applied to the
caching system consisting of high speed SSD (such as NVMe SSD or
Intel Optane [13]) and low speed SSD or network attached storage.

Moreover, the genetic algorithm based approach can also be
applied to other types of applications consisting of multiple virtual
machines, as it takes the relationships among virtual machines into
consideration.

However, there are still some limitations for AC-SSD. For multi-
ple virtual machines belong to different applications while hosted
on the same hypervisor, the resource contention of IOPS cannot be
ignored if such VMs are facing heavy random IO operations. This

problem can only be solved by introducing the live migration of
virtual machine. Also, we only monitor the virtual machine at low
overhead and infer the importance by the performance data and
application status. We do not use the instrumentation to monitor
the behavior of Hadoop application and the change of IO hot spot
accurately as it may lead to high overhead and are not capable to
be used in online environment.

6 RELATED WORK

In this section, we discuss the related work for the SSD cache
allocation.

Workload characterization. Some related work aims to map
high-level workloads to low-level read and write [6]. The charac-
teristics of the workload is identified by the workload mix and the
request access pattern and aims to connect the low-level and high-
level IO operations by recognize the access pattern and map to the
operations on file system. However, the approach is not capable for
the Hadoop application as it cannot create the connection between
high-level application and low-level IO performance.

SSD cache allocation. Capo [22] aims to improve the perfor-
mance of virtual desktops. A technique named differential durability
is proposed to apply different cache policies on different path of
virtual machines. Unlike Capo, AC-SSD provides a high-level mech-
anism for allocating the storage and IOPS capacity of SSD cache,
along with the algorithm to get the nearly optimal planning, which
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is capable for different types of jobs in the Hadoop application.
S-CAVE [17] identifies the cache space demand of each VM and
tries to allocate the appropriate amount of cache space. It uses
ratios of effective cache space (rECS) and decides the change of
cache allocation according to the four combinations. Unlike S-CAVE,
AC-SSD takes the characteristics of Hadoop applications into con-
sideration to help allocate the storage and IOPS capacity of SSD
cache. vCacheShare [18] provides a mathematical optimization
solution for server flash cache management. It calculates the opti-
mized cache space allocation from the IO trace. Unlike vCacheShare,
AC-SSD provides a weight-based cache allocation mechanism and
considers the importance of virtual machines inside the Hadoop ap-
plication rather than treat them individually. Centaur [15] focuses
on the host-side SSD cache partitioning. The adjustment of cache
partition only depends on single and simple target: the miss rate,
the IO latency, the throughput or curves which can be measured
directly from cache. Unlike Centaur, AC-SSD takes the relationship
of different virtual machines inside the applications hosted on hy-
pervisors into consideration, so that it is capable for meeting more
complex requirements.

7 CONCLUSION AND FUTURE WORK

We present AC-SSD, a novel tool to allocate the storage and IOPS
capacity of SSD cache in the virtualization environment, in order to
reduce the job completion time of the Hadoop application. We use
the genetic algorithm based approach to calculate a nearly optimal
result quickly and efficiently. Moreover, we introduced the closed-
loop adaptation inspired by the MAPE-K [8], to automatically detect
the change of the workload and trigger the cache adjustment. The
evaluation shows that AC-SSD has the significant advantage over
the shared cache.

For the future work, we need to detect the change of workload
more accurately, rather than using simple sliding window. More-
over, we need to decide when to apply the allocation, aiming to
reduce the performance degradation during adjustment, as the
change of storage and IOPS capacity will have a slightly impact on
the VM involved, which may be unacceptable when the application
is handling some critical tasks.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Devel-
opment Program of China (2016YFB1000103), the National Natural
Science Foundation of China (61572480) and Youth Innovation Pro-
motion Association, CAS (No. 2015088).

REFERENCES

[1] Amazon. 2017. Amazon Elastic MapReduce. (2017). https://aws.amazon.com/
elasticmapreduce/

[2] Apache. 2017. Apache Hadoop. (2017). http://hadoop.apache.org/

[3] Apache. 2017. Apache Mahout: Scalable machine learning and data mining.
(2017). http://mahout.apache.org/

[4] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan Sundararaman, and
Ming Zhao. 2016. CloudCache: On-demand Flash Cache Management for Cloud
Computing. In Proceedings of the 14th Usenix Conference on File and Storage
Technologies (FAST’16). USENIX Association, Berkeley, CA, USA, 355-369.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of
Virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles (SOSP "03). ACM, New York, NY, USA, 164-177.

Zhen Tang, Wei Wang, Yu Huang, Heng Wu, Jun Wei, and Tao Huang

[6] Axel Busch, Qais Noorshams, Samuel Kounev, Anne Koziolek, Ralf Reussner, and
Erich Amrehn. 2015. Automated Workload Characterization for I/O Performance
Analysis in Virtualized Environments. In Proceedings of the 6th ACM/SPEC Inter-
national Conference on Performance Engineering (ICPE ’15). ACM, New York, NY,
USA, 265-276.

[7] S.Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel, S. Kleiman, C.
Small, and M. Storer. 2012. Mercury: Host-side flash caching for the data center.
In Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on.
1-12.

[8] Autonomic Computing et al. 2006. An architectural blueprint for autonomic
computing. IBM White Paper (2006).

[9] Lars George. 2011. HBase: The Definitive Guide: Random Access to Your Planet-Size
Data. " O’Reilly Media, Inc.".

[10] Ajay Gulati, Ganesha Shanmuganathan, Xuechen Zhang, and Peter Varman. 2012.

Demand Based Hierarchical QoS Using Storage Resource Pools. In Proceedings of

the 2012 USENIX Conference on Annual Technical Conference (USENIX ATC’12).

USENIX Association, Berkeley, CA, USA, 1-1.

Jacob Gorm Hansen and Eric Jul. 2010. Lithium: Virtual Machine Storage for the

Cloud. In Proceedings of the 1st ACM Symposium on Cloud Computing (SoCC ’10).

ACM, New York, NY, USA, 15-26. https://doi.org/10.1145/1807128.1807134

Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-

Bench benchmark suite: Characterization of the MapReduce-based data analysis.

In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference

on. IEEE, 41-51.

[13] Intel. 2017. Intel Optane Technology. (2017). http://www.intel.com/content/
www/us/en/architecture-and-technology/intel- optane-technology.html

[14] Jaeho Kim, Donghee Lee, and Sam H. Noh. 2015. Towards SLO Complying SSDs

Through OPS Isolation. In Proceedings of the 13th USENLX Conference on File

and Storage Technologies (FAST’15). USENIX Association, Berkeley, CA, USA,

183-189.

Ricardo Koller, Ali Jose Mashtizadeh, and Raju Rangaswami. 2015. Centaur: Host-

Side SSD Caching for Storage Performance Control. In Autonomic Computing

(ICAC), 2015 IEEE International Conference on. 51-60. https://doi.org/10.1109/

ICAC.2015.44

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2016. WiscKey: Separating Keys from Values

in SSD-conscious Storage. In Proceedings of the 14th Usenix Conference on File
and Storage Technologies (FAST’16). USENIX Association, Berkeley, CA, USA,

133-148.

[17] Tian Luo, Siyuan Ma, Rubao Lee, Xiaodong Zhang, Deng Liu, and Li Zhou. 2013.

S-CAVE: Effective SSD Caching to Improve Virtual Machine Storage Performance.

In Proceedings of the 22Nd International Conference on Parallel Architectures and

Compilation Techniques (PACT ’13). IEEE Press, Piscataway, NJ, USA, 103-112.

Fei Meng, Li Zhou, Xiaosong Ma, Sandeep Uttamchandani, and Deng Liu. 2014.

vCacheShare: Automated Server Flash Cache Space Management in a Virtual-

ization Environment. In Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference (USENLX ATC’14). USENIX Association, Berkeley,

CA, USA, 133-144.

Microsoft. 2017. HDInsight - Hadoop, Spark and R Solution for the Cloud. (2017).

https://azure.microsoft.com/services/hdinsight/

Yongseok Oh, Eunjae Lee, Choulseung Hyun, Jongmoo Choi, Donghee Lee, and

Sam H. Noh. 2015. Enabling Cost-Effective Flash Based Caching with an Array

of Commodity SSDs. In Proceedings of the 16th Annual Middleware Conference

(Middleware ’15). ACM, New York, NY, USA, 63-74. https://doi.org/10.1145/

2814576.2814814

OpenStack. 2017. OpenStack Sahara. (2017). https://docs.openstack.org/

developer/sahara/

Mohammad Shamma, Dutch T. Meyer, Jake Wires, Maria Ivanova, Norman C.

Hutchinson, and Andrew Warfield. 2011. Capo: Recapitulating Storage for Vir-

tual Desktops. In Proceedings of the 9th USENIX Conference on File and Stroage

Technologies (FAST’11). USENIX Association, Berkeley, CA, USA, 3-3.

[23] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. 2010. The Hadoop
Distributed File System. In Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on. 1-10. https://doi.org/10.1109/MSST.2010.5496972

[24] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Ma-

hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Sid-

dharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, Sanjay Radia, Ben-
jamin Reed, and Eric Baldeschwieler. 2013. Apache Hadoop YARN: Yet An-
other Resource Negotiator. In Proceedings of the 4th Annual Symposium on

Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 5, 16 pages.

https://doi.org/10.1145/2523616.2523633

Lei Ye, Gen Lu, Sushanth Kumar, Chris Gniady, and John H. Hartman. 2010.

Energy-efficient Storage in Virtual Machine Environments. In Proceedings of

the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (VEE ’10). ACM, New York, NY, USA, 75-84. https://doi.org/10.

1145/1735997.1736009

[11

[12

[15

[16

[18

[19

[20

)
=

[22

[25


https://aws.amazon.com/elasticmapreduce/
https://aws.amazon.com/elasticmapreduce/
http://hadoop.apache.org/
http://mahout.apache.org/
https://doi.org/10.1145/1807128.1807134
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://doi.org/10.1109/ICAC.2015.44
https://doi.org/10.1109/ICAC.2015.44
https://azure.microsoft.com/services/hdinsight/
https://doi.org/10.1145/2814576.2814814
https://doi.org/10.1145/2814576.2814814
https://docs.openstack.org/developer/sahara/
https://docs.openstack.org/developer/sahara/
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/1735997.1736009
https://doi.org/10.1145/1735997.1736009

	Abstract
	1 Introduction
	2 Overview of AC-SSD
	2.1 Illustrative Examples
	2.2 System Architecture

	3 Dynamic SSD Cache Space Allocation and IOPS Control
	3.1 Three Levels of Monitoring
	3.2 Execution of the Closed-Loop

	4 Nearly Optimal SSD Cache Allocation of Space and IOPS Capacity
	4.1 Problem Definition
	4.2 Proof of NP Completeness
	4.3 Genetic Algorithm

	5 Evaluation
	5.1 Experiment Design
	5.2 The Effect of GA based SSD Cache Allocation
	5.3 Using AC-SSD in the Dynamic Environment
	5.4 Lessons Learned

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

