
Fast and Precise recovery in Stream processing based on Distributed

Cache

Yingying Zheng

Institute of Software, Chinese Academy

of Sciences

zhengyingying14@otcaix.iscas.ac.cn

Wei Wang*

Institute of Software, Chinese Academy

of Sciences

wangwei@otcaix.iscas.ac.cn

Lijie Xu

Institute of Software, Chinese Academy

of Sciences

xulijie@otcaix.iscas.ac.cn

Zhen Tang

Institute of Software, Chinese Academy

of Sciences

tangzhen12@otcaix.iscas.ac.cn

Zhongshan Ren

Institute of Software, Chinese Academy

of Sciences

renzhongshan13@otcaix.iscas.ac.cn

Jun Wei

Institute of Software, Chinese Academy

of Sciences

wj@otcaix.iscas.ac.cn

 Dan Ye

Institute of Software, Chinese Academy

of Sciences

yedan@otcaix.iscas.ac.cn

ABSTRACT
1

Stream processing system (SPS) faces the problem of node failure

when running over a long period of time. In addition, “exactly

once” precise semantic guarantee is more and more important for

SPS in some scenarios. In general, the approaches to achieve

precise semantic is by using global snapshot, which should store

state and records to external reliable storage or rely on

transactions. However, these approaches suffer from high

recovery latency, because of large I/O disk overhead. In order to

reduce excessive latency in failure recovery, we save the

intermediate results which are produced during the stream

processing, and propose an algorithm DCAS which

asynchronously snapshots state to implements precise recovery. In

addition, we use in-memory distributed cache to provide the

storage of intermediate results and snapshots to reduce recovery

latency. We evaluate our failure recovery approach in recovery

latency and runtime overhead. The experimental results show that

our approach is 2 to 6 times faster than other conventional failure

recovery approaches, and induces a 6% runtime overhead.

CCS CONCEPTS

• Information systems ➝ Complex Event Processing and Data

Streams • Computing methodologies ➝ Distributed and Grid

Data Management.

* corresponding author

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others

than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

Internetware'17, September 23, 2017, Shanghai, China

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5313-7/17/09…$15.00

https://doi.org/10.1145/3131704.3131724

KEYWORDS

stream processing; failure recovery; distributed cache; precise

semantic guarantee; storage management

ACM Reference format:

Yingying Zheng, Wei Wang, Lijie Xu, Zhen Tang, Zhongshan

Ren, Jun Wei, Dan Ye. 2017. Fast and Precise recovery in Stream

processing based on Distributed Cache. In Proceedings of

Internetware’17, Shanghai, China, September23, 2017, 6 pages.

https://doi.org/10.1145/3131704.3131724

1 INTRODUCTION

Due to the big data [1] becomes one type of the most popular

technology in our era, big data processing applications are

springing up in modern high-tech world. These application

scenarios are now widely used in stream processing system (SPS)

[4-5]. However, as the scale of SPS cluster increases, the

probability of node failure becomes high.

According to the semantic guarantee, failure recovery in SPS

can be split to the following three categories [3]: 1) “at-most-

once”, “at-least-once” and “exactly once”. Nowadays, there are

more urgent needs for “exactly once” semantic in the key business

fields, such as finance and transportation. In order to ensure the

higher precision of semantic guarantee, SPS needs to do more

operations for state and records, which is difficult to make

tradeoffs among runtime overhead, recovery latency and system

resource costs in the current SPS. In view of the importance of

system performance, we focus on lower runtime overhead and

lower recovery latency. However, the existing failure recovery

approaches which guarantee “exactly once” semantic can provide

low runtime overhead but ignore the recovery latency, such as

Apache Flink [9,10, 21]. The reasons of high recovery latency are

as follows. First, it generates excessive overhead of disk I/O

because of retrieving the latest snapshot from the external reliable

storage. Second, it produces high recovery latency, especially

mailto:Permissions@acm.org

with a mass of operators, because it should take out records from

data source.

In this work, we focus on reducing the recovery latency for

“exactly once” semantic guarantee. We save intermediate results

to support upstream backup, and it can provide operator level

recovery. Then we propose DCAS, an asynchronous snapshot

algorithm based on distributed cache, to provide information

which recovery needed during the stream processing. Furthermore,

we choose distributed cache to store this useful information,

namely intermediate results and asynchronous snapshot. After

failure node is restarted, DCAS regains state of each operator in

cluster, and uses the offset to determine the start position of

replaying in distributed cache. Furthermore, if the node which

receives input stream from data source failed, it can retrieve input

stream from distributed cache instead of external persistent

storage. More importantly, only the failed node should be

restarted and other nodes can operate normally.

We have applied distributed cache to stream processing engine

and establish a detailed set of experiments to illustrate the

effectiveness of our proposed approach. Experimental results

show that, our approach achieves 2-6x faster recovery than other

conventional failure recovery approaches which can also

guarantee “exactly once” semantic. In addition, the impact of

runtime overhead is no more than 6%. In summary, this paper

makes the following contributions:

1) We offer storage of intermediate results to provide the

upstream backup for failure recovery in operator level.

2) We propose an asynchronous snapshot algorithm based on

distributed cache which guarantees “exactly once” semantic and

accelerates the recovery speed of state and records significantly.

3) We provide a data storage strategy based on in-memory

distributed cache to support the storage of intermediate results and

asynchronous snapshot to implement the fast recovery.

The rest of this paper is organized as follows: In Section 2, we

introduce the background. Section 3 describes data storage

strategy. Section 4 describes the details of our DCAS algorithm

followed by Section 5 which gives our recovery scheme. In

Section 6, we depict our evaluation. Then, Section 7 gives related

work and we finish with conclusion in Section 8.

2 BACKGROUND

2.1 Stream Processing Model

Stream Processing Model (SPM) [2] is used to handle

continuous data stream in a certain period of time, and it includes

processing units and data streams to be processed. Wherein the

data stream is a sequence of tuples which are unbounded in time,

and it can be expressed as (a1, a2, ..., an, t) where the ai denotes a

record and the t denotes time; A processing unit is a logic operator

for data stream, and their processing steps are as follows: each

operator 1) obtains input data from the respective input queue, 2)

uses its state to do calculations with the input data and return the

results, 3) transmits the calculation results to the output queue.

SPM execution model is based on the existing SPS, such as

Apache Spark Streaming [12,13,20], Apache Flink [9]. The

execution model uses delayed processing to deal with stream, and

data window, which can be denoted as {d1, d2, ... dn} driven by

data, to execute aggregation operations. Each host (a physical

machine or a virtual machine) can perform multiple concurrent

tasks through multi-thread, and each task instance can contain one

or more operators, meanwhile there are correlations between

upstream and downstream task instance.

2.2 Failure recovery Model

In failure recovery model, we make the following assumptions:

1) we only consider the failures such as software bugs, hardware

errors, node failures which make task nodes to not work; 2) after

the failure of task node, it cannot consume its upstream records, or

output results to downstream task nodes, and its state also cannot

be accessed.

The existing failure recovery method has ABS algorithm

which is proposed by Apache Flink [10]. It adds barriers to data

source and blocks input channels until all barriers are received,

and then triggers snapshot to record state. When a node is failure,

ABS algorithm needs to retrieve the latest snapshot from the

external reliable storage, and replays records from the data source.

In SPS, there are higher priority requirements on low runtime

overhead and low recovery latency [2]. However, ABS algorithm

does not make sure low recovery latency. We improve it by

distributed cache to achieve low recovery latency with low

runtime overhead.

3 DATA STORAGE STRATEGY

We provide a data storage strategy that using in-memory

distributed cache to provide an efficient and reliable storage for

fast failure recovery. In-memory distributed cache allows the

cache to span multiple servers so that it can grow in size and in

transactional capacity [22]. The biggest advantage of in-memory

distributed cache is the ability to quickly read and write data. In

the cluster of distributed cache, each node has data partition and

stores only part of the data. In addition, it also provides a number

of data backup of other nodes. Considering the advantages of

distributed cache, we store intermediate results and data source to

specific distributed cache for different data structure.
1） Cache intermediate results

Due to the need of records sequence, we use distributed in-

memory list to guarantee data sequence and reliability of records.

In order to cache them, we provide listener mechanism to listen

the upstream records. First, operators will store records to the

distributed in-memory list, when they obtain records from the

upstream operator. Then, operators process these records with

specific function. Finally, the new intermediate results will be

transmitted to the downstream operator. With the help of backup

mechanism, distributed in-memory list can offer the repeated

consumption in the operator layer instead of from the data source,

which can reduce the failure recovery time.

2） Cache data source

Most SPSs use Apache Kafka [14], a distributed message

queues, which provides high throughput to provide reliable

guarantee for data source. Considering in-memory distributed

cache has the ability of quickly fetching data, we use a mixture of

Kafka and in-memory distributed cache storage policy.

We still use Kafka message queue as a reliable storage for data

source, and distributed cache catch records from Kafka. When

recovering from a failure, we can use the backup in distributed in-

memory queue to regain original records quickly.

4 DISTRIBUTED CACHE ASYNCHRONOUS

SNAPSHOT

4.1 Problem Definition

We define our asynchronous snapshot as S = {offset*, states*}.

The offset* denotes offsets which are used to mark the position in

distributed cache. The states* represents all information for

failure recovery, including the operator state (OS) and user-

defined state (US). At the same time, we define the concept of

micro-window, which determines the size of a snapshot interval

and the overhead costs in failure recovery during runtime. In

addition, it also determines the number of replaying events and

recovery latency.

4.2 DCAS Algorithm

Based on the above definition, DCAS algorithm provides

operator level failure recovery by means of asynchronous

snapshot. Distributed cache helps DCAS to guarantee “exactly

once” semantic and achieves fast failure recovery. The core idea

of our algorithm is when we maintain continuous data processing,

we trigger checkpoint in a snapshot interval; we store state in

distributed in-memory key-value structure, and provide “exactly

once” semantic by the offset in distributed in-memory list.

In our algorithm (depicted in Algorithm 1), firstly, we should

initial input stream IQ, output stream OQ and the function F

which is used to process records. In addition, we register listeners

which listen to the end of a snapshot interval and trigger

checkpoints. A snapshot of different operators is taken

independently, and the snapshot information is continuously

updated which wouldn’t generate too much space overhead. The

snapshot contains operator state S_o, user-defined state S_u of an

operator OO and the offset OF of records R. At the same time,

they are taken by the function snapshot(S_o,S_u,OF) to

distributed in-memory Map M. In addition, there is a function

listener(OO) which is used to trigger snapshot and cache the

processed records R by distributed in-memory list L. The concrete

execution of DCAS algorithm is as follows (depicted in Fig. 1).

Algorithm 1: Asynchronous Snapshot based on Distributed

Cache

1. function initial (function, size, input, output)
2. F ← function;

3. IQ ← input;

4. OQ ← output;

5. function process (R ← IQ)

6. OQ ← (F, R)

7. function listener (OO)

8. L ← L ᴜ R;

9. if L is full then

10. trigger (OO);

11. L ← Ø;

12. function trigger (OO)

13. (S_o,S_u) ←OO;

14. OF ← L;

15. snapshot (S_o,S_u,OF);

16. function snapshot (S_o,S_u,OF)

17. M ← (S_o,S_u,OF) ;

1) after the task node starts, every input stream in operators

will be assigned to a distributed in-memory list. This list is used to

cache the record in snapshot interval. In addition, it will also be

allocated a distributed in-memory key-value structure to provide

storage of snapshot. 2) As shown in Fig.1-a), the operator

computes records from all input streams, and caches them to the

distributed in-memory list as a repeated consumption of original

Snapshot

Source-1

Source-2 Operator

Operator Sink-1

Sink-2

Pre records source-1

Pre records source-2

Post records

End of snapshot interval

Source-1

Source-2 Operator

Operator Sink-1

Sink-2

Key Value
Key Value

Key Value
Key Value

Distributed cache cluster

Cache

Distributed
 in-memory
list&queue

Distributed
in-memory

key-value structure

Intermediate
resultsa) b)

Figure 1. Distributed cache asynchronous snapshot

records. 3) As shown in Fig.1-b), when the operator has processed

records in a snapshot interval, its listener will trigger a checkpoint

to store the state (e.g. operator state, user-defined state and record

offset) as key-value pairs to the distributed in-memory key-value

structure. At the same time, operator can continue to receive

records and cache them. 4) After the completion of the snapshot,

it will clear the distributed in-memory list which has been

processed completely.

4.3 Distributed Storage Strategy

In DCAS algorithm, we also need to optimize the storage

management of snapshot, in order to provide fast and precise

recovery. We use in-memory distributed cache to implement the

reliable storage and fast recovery.

Snapshot contains state and offset in a snapshot interval. If

they are stored in local memory, data loss would occur after task

node failure; if they are stored in disk or remote database, the cost

of failure recovery time will increase. Therefore, we offer a

distributed in-memory key-value structure which is provided by

distributed cache to store them. In this way, we can guarantee the

reliability of them by the backup mechanism.

5 FAILURE RECOVERY

After restarting failed task node, our failure recovery approach

will take the following steps: 1) the distributed in-memory queue,

list and key-value structure will regain the record backups from

cluster. 2) Task node performs restore() method, and then the

state of each operator will be initialized to the information in the

latest snapshot. Through the offset in the latest snapshot, we can

find the first position which operator should replay in the

distributed in-memory list, and then deal with them. In addition,

the source operation should get source records from Kafka, with

the offset stored in distributed in-memory map. 3) Operator

continues to compute data.

Fig. 2 shows an example of a failure recovery instance. In the

task execution flow, other task nodes in the cluster without failure

can still work normally. The failed task node can only replay

records in part of distributed in-memory list L with the help of

offset OF. This offset is stored in distributed in-memory key-

value structure M. Through (S_o,S_u) in M, it can obtain state of

OO and implement “exactly once” semantic guarantee. Then, they

can continue to process R by process(R). There will be lower

recovery latency, due to the failure recovery does not need to

replay data from data source and restart the entire processing.

Meanwhile, we can provide efficient data access with the help of

distributed cache.

Algorithm 2: Failure recovery

1. function restore(OO)

2. (S_o,S_u,OF) ← M;

3. OO ← S_o,S_u;

4. R ← (OF+1) in L;

5. process(R) ;

6. function process (R)

7. OQ ← (F, R);

8. function sourceRecover()

9. OF ← M ;

10. R ← OF in Kafka ;

11. IQ ← R ;

6 EVALUATION

On the basis of the above implementation, we also validate the

ABS algorithm of Flink on the same platform. The goal of this

experiment is to contrast and analyze the recovery latency and

runtime overhead between DCAS algorithm and ABS algorithm.

6.1 Experiment Setup

Experimental setup includes a plurality of virtual machines

(8G in-memory and 4-core CPU), and Gigabit Ethernet network

environment. In our experiment, each virtual machine can support

a certain number of task nodes. We offer several operators for

logical operations, such as map, filter, and aggregation and so on.

We send the data source through multi-thread to Kafka message

queue, and after the records are executed completely, the final

results will be sent to Kafka ultimately.

6.2 Recovery latency analysis

6.2.1 Impact of number of simultaneous failures

We build a cluster with 8 nodes, and use 200 snapshot

intervals. During the runtime of system, we stop different number

of task nodes, and measure the recovery latency. Fig. 3 shows

results averaged over 5 runs for different number of simultaneous

failures. By comparing the failure recovery latency between

DCAS algorithm and ABS algorithm, we can observe the

following:

First, DCAS achieves much faster recovery than ABS in

different number of simultaneous failures. Experimental results

show that, DCAS algorithm can achieve 6x faster recovery than

ABS in the best case and 2x faster recovery even in the worst case.

The reasons can be summarized as follows: 1) ABS needs to

obtain state from external storage such as HDFS [18] and obtain

records from data source like Apache Kafka [14] to replay records.

These can generate excessive overhead of disk I/O. Different from

ABS, DCAS can obtain state from distributed in-memory key-

value structure and records from distributed in-memory list, which

can recover rapidly from failure because of the fast speed of

distributed cache. 2) When node failure occurs, ABS algorithm

needs to restart the whole previous nodes in the execution flow.

Especially, when there are amount of operators, or the failed node

Running Task

Failed Task

Recovery Task

Figure 2. Recovery scheme

is far from the data source, ABS algorithm has high recovery

latency. On the contrary, DCAS just needs to restart the failure

node, and other nodes can operate normally.

6.2.2 Impact of certain node failures

We build a cluster with 6 nodes and use 200 snapshot intervals.

As shown in Fig. 4, rectangles denote virtual machines (VMs)

namely task nodes; the circles represent operators; In addition, the

line between two operators represents data stream. We use this

execution flow to study the impact of certain node failures.

In Fig. 5, the abscissa represents the mark of failure node, and

the ordinate represents recovery time. The experimental results

show us that if the failure node is much further away from data

source, the recovery latency of ABS algorithm is higher than that

in DCAS algorithm. These results are cause by replaying records

from data source and restarting all nodes which are in front of the

failure node in ABS algorithm. For example, if node 4 failed, the

whole nodes from 1 to 4 needs to recalculate records after the

latest snapshot, that can obviously increase recovery latency.

Particularly, if the failed node is close to the end of the

execution flow, there will be longer process of reproduction.

DCAS can only restart the failed node and the other nodes will not

be affected. In the above example, DCAS can simply obtain the

latest snapshot of the node 4, and recover to normal operator

quickly with the help of distributed cache.

6.2.3 Impact of snapshot interval

Fig. 6 shows the recovery latency of DCAS and ABS for

different snapshot interval in a cluster with 8 nodes. Recovery

latency increases with larger snapshot interval because there are

more records should be replayed in a snapshot interval. Of course,

DCAS still has lower recovery latency than ABS because of the

fast recovery from distributed in-memory structures.

6.3 Runtime overhead analysis

6.3.1 Impact of snapshot interval

We use four virtual machines (VMs) to observe the impact of

snapshot interval. Data sources generate ten million records which

are firstly sent to Kafka, and then we receive records from Kafka.

Fig. 7 shows the runtime impact of DCAS and ABS in different

snapshot interval. The lines labeled “DCAS”, “ABS” and

“Baseline” present the runtime latency caused by DCAS

algorithm, ABS algorithm and none failure recovery mechanism.

These performance results can be summarized as follows:

The snapshot interval can affect the performance of system in

runtime. The results show that as the snapshot interval is

increasing, the runtime overhead decreases rapidly and gradually

stabilized to the “Baseline”. The reason for this phenomenon is as

follows. In smaller snapshot interval, ABS blocks input stream

1

2

3 5

6

4e1

e2

e3

e5

e6

e7

e8

e4Data
Source

Sink

Figure 4. Example of failure recovery

Figure 6. Recovery latency for

different snapshot interval

0 1 2 3 4

5

10

15

20

25

R
e
c
o
v
e
ry

 l
a
te

n
c
y
 (

s
e
c
)

 number of simultaneous failures

 DCAS

 ABS

Figure 3. Recovery latency for

 different number of failures

Figure 5. Recovery latency for

certain failure node

0 2 4 6
0

3

6

9

12

15

18

21

R
e
c
o
v
e
ry

 l
a
te

n
c
y
 (

s
e
c
)

Failure Node Number

 DCAS

 ABS

200 400 600 800 1000
0

3

6

9

12

15

18

R
e
c
o
v
e
ry

 l
a
te

n
c
y
 (

s
e
c
)

snapshot interval (entry)

 DCAS

 ABS

200 400 600 800 1000
20

40

60

80

100

120

140

160

R
u

n
ti
m

e
 o

v
e

rh
e

a
d

 (
s
e

c
)

snapshot interval (entry)

 DCAS

 ABS

 Baseline

Figure 7. Runtime for different

snapshot interval

Figure 8. Tradeoff between runtime

overhead and recovery latency

Figure 9. Runtime for different

cluster size

200 400 600 800 1000
20

40

60

80

100

120

140

160

re
c
o

v
e

ry
 l
a

te
n

c
y
 (

s
e

c
)

ru
n

ti
m

e
 o

v
e

rh
e

a
d

 (
s
e

c
)

snapshot interval (entry)

 runtime overhead

0

2

4

6

8

10
 recovery latency

2 4 6 8 10 12 14 16
30

40

50

60

70

80

90

100

110

120

ru
n
ti
m

e
 o

v
e
rh

e
a
d
 (

s
e
c
)

cluster scale (node numbers)

 DCAS

 ABS

frequently to ensure “exactly once” semantic guarantee, while

DCAS has to record offset in distributed in-memory list

frequently, which also generates more overhead in runtime. In

addition, DCAS has a slight high impact on the performance than

ABS. DCAS should spend more time in doing backup remotely,

so there may be higher network latency in runtime. However, the

average impact of runtime overhead in DCAS compared to ABS

is no more than 8%.

6.3.2 Tradeoff between recovery and runtime overhead

In Fig. 8, we demonstrate there are tradeoffs between recovery

latency and runtime overhead for different snapshot intervals. We

can observe from the chart that the larger the snapshot intervals,

the lower the impact on records processing, but the recovery

latency will be higher. So the snapshot interval should be chosen

based on the suitable tradeoff between recovery latency and

runtime overhead. When the snapshot interval is near to 400, there

is a better balance between recovery and runtime overhead.

6.3.3 Impact of cluster size

In this experiment, the snapshot interval is fixed as 400 which is a

good choice for balancing recovery and runtime overhead.

Meanwhile, data sources send ten million records to Kafka. We

increase cluster size from 2 to 16, and we can find the following

conclusions as shown in Fig. 9. First, as the growth of the cluster

size, the runtime overhead is reduced gradually. Especially when

the cluster size is from 2 to 4, the runtime overhead decreases by

25%. Second, DCAS has no more than 6% runtime overhead than

ABS in average and as the growth of cluster size, the gap of

runtime overhead between DCAS and ABS is almost close to zero.

7 RELATED WORK

According to our research, the existing stream processing

system (SPS) has supported failure recovery method to provide

“exactly once” semantic guarantee, such as Apache Spark

Streaming [12-13,20], Storm Trident [7], Google Cloud Dataflow

[8,15], Apache Flink [9-10] and so on.

A very popular way Chandy and Lamport [17] has proposed

asynchronous snapshot and simultaneously do upstream backup

long before; and it also presented a global state detection

algorithm, which can achieve the consistent storage of state and

operator. However, this way still suffers from higher recovery

latency. Apache Flink makes some improvements on the basis of

the above approach. It uses the checkpoint [16] in neighboring

barrier interval to take a snapshot of the global state, and store it

in external reliable storage such as HDFS [18] or RocksDB [19].

At the same time, it provides the reliability of state, and replays

records using data which is retrieved in Apache Kafka. After the

node failed, it needs to retrieve the latest snapshot from the

external reliable storage, which will generate excessive disk IO

overhead; in addition, taking out records from the data source to

restart the entire computing processing can produce high recovery

latency when there are a large number of operators.

8 CONCLUSION

We put forward a failure recovery approach with high

efficiency, low recovery latency and “exactly once” semantic

guarantee. In this recovery approach, we recover records from

intermediate results instead of data source; in addition, we

propose DCAS algorithm which asynchronously snapshot state.

Most importantly, DCAS use in-memory distributed cache to

provide records and snapshots backup. Based on the above, SPS

can quickly regain intermediate results and lost state from in-

memory distributed cache. The experimental results show that this

approach achieves 2-6x faster recovery than ABS algorithm in

Flink and the runtime overhead is no more than 6% compared to

the ABS algorithm.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science

Foundation of China under Grant No. 61572480; National Key

Technology R&D Program of China No. 2015BAF04B02-2;

Youth Innovation Promotion Association, CAS under Grant No.

2015088.

REFERENCES
[1] Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation,

competition, and productivity[J]. 2011.

[2] Kamburugamuve, Supun, et al. Survey of distributed stream processing for

large stream sources. Technical report. 2013.

[3] Cui X C, Yu X H, Liu Y, et al. Distributed stream processing: a survey. Journal

of computer Research and Development, 2015, 52(2): 318~332.

[4] Hirzel M, Soulé R, Schneider S, et al. A catalog of stream processing

optimizations[J]. ACM Computing Surveys (CSUR), 2014, 46(4): 46.

[5] Castro Fernandez R, Migliavacca M, Kalyvianaki E, et al. Integrating scale out

and fault tolerance in stream processing using operator state

management[C]//Proceedings of the 2013 ACM SIGMOD international

conference on Management of data. ACM, 2013: 725-736.

[6] Apache Flink. [Online]. http://data-artisans.com/high-throughput-low-latency-

and-exactly-once-stream-processing-with-apache-flink/.

[7] Apache Storm. Trident API Overview. [Online].

http://storm.apache.org/documentation/Trident-API-Overview.html.

[8] Perry F. Sneak peek: Google cloud dataflow, a cloud-native data processing

service[J]. URL: http://googlecloudplatform. blogspot. com/2014/06/sneak-

peek-googlecloud-dataflow-a-cloud-native-dataprocessing-service. html, 2014.

[9] Apache Flink.[online].https://flink.apache.org/.

[10] P. Carbone, G. F óra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight

Asynchronous Snapshots for Distributed Dataflows,” arXiv preprint

arXiv:1506.08603, 2015.

[11] Hazelcast.[online].http://docs.hazelcast.org/docs.

[12] Apache spark streaming.[online].http://spark.apache.org/streaming/.

[13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,

and Ion Stoica. Discretized streams: Fault-tolerant streaming computation at

scale. In Symposium on Operating Systems Principles, 2013.

[14] Apache Kafka.[online].http://kafka.apache.org/.

[15] Krishnan S P T, Gonzalez J L U. Google Cloud Dataflow[M]//Building Your

Next Big Thing with Google Cloud Platform. Apress, 2015: 255-275.

[16] Zaharia M, Das T, Li H, et al. Discretized streams: an efficient and fault-

tolerant model for stream processing on large clusters[C]//Presented as part of

the. 2012.

[17] Chandy K M, Lamport L. Distributed snapshots: determining global states of

distributed systems[J]. ACM Transactions on Computer Systems (TOCS),

1985, 3(1): 63-75.

[18] HDFS.[online].http://hadoop.apache.org/docs/current/hadoop-project-

dist/hadoop-hdfs/HdfsUserGuide.html.

[19] RocksDB.[online].http://rocksdb.org.

[20] Spark Streaming. [online]. https://databricks.com/blog/2015/01/15/ improved-

driver-fault-tolerance-and-zero-data-loss-in-spark-streaming.html.

[21] P. Carbone, S. Ewen, S. Haridi, A. Katsifodimos, V. Markl, and K. Tzoumas.

Apache flink: Stream and batch processing in a single engine. IEEE Data

Engineering Bulletin, 2015.

[22] Khan, Iqbal. "Distributed Caching On The Path To Scalability". MSDN (July

2009). Retrieved 2012-03-30.

http://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink/
http://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink/
http://storm.apache.org/documentation/Trident-API-Overview.html

