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MPI One-Sided Communication
 Remote Memory Access (RMA) extends MPI with one-sided communication

 Allows one process to specify both sender and receiver communication parameters

 Facilitates the coding of partitioned global address space (PGAS) data models

 Dinan et al. [1] ported the Global Arrays runtime system, ARMCI to MPI RMA
 NWChem is a user of MPI RMA, which we use to evaluate our tool

 We focus on MPI-2 RMA, which is compatible with MPI-3 (future work)
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Figure credit: Advanced MPI Tutorial, P. Balaji, J. Dinan, T. Hoefler, R. Thakur, SC ‘13

[1] Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication, J. Dinan, P. Balaji, S. Krishnamoorthy, V. Tipparaju. IPDPS 2012
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MPI RMA Challenges
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 To ensure portable, well-defined behavior, programs must follow the rules:
1. Operations must be synchronized using, e.g., lock/unlock or fence

2. Communication operations are nonblocking
 Local buffers cannot be accessed until put/get/accumulate are completed

3. Concurrent, conflicting operations are erroneous

4. Local load/store updates conflict with remote accesses

 The MPI-2 model is referred to as the “separate” memory model in MPI-3
 The MPI-3 “unified” model relaxes some rules, so we are solving the harder problem
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A Bug Example Within an Epoch
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1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0) /* bug: load/store access of out */

4. out++;

5. …

6. MPI_Win_unlock(0, win);



A Bug Example Across Processes
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P0 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier

P1 (Target Process)

window location X

MPI_Barrier

…

…

…

…

…

…

MPI_Barrier

P2 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier



Previous Works
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 Bug detection for MPI one-sided programs

 e.g., Marmot, [Pervez-EuroPVM/MPI’06], and Scalasca

 Detect parameter errors, deadlocks, and performance bottlenecks

 Shared-memory data race detection

 e.g., Locksmith, Pacer, Eraser, and Racetrack

 Detect data races for shared-memory programs

 Fine-grain analysis is not feasible for analysis of MPI programs

 Need new techniques for one-sided communication bug detection 

in one-sided communication models



MC-Checker Highlights
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 MC-Checker is a new tool to detect memory consistency 
errors in MPI one-sided applications

 First comprehensive approach to address memory consistency 
errors in MPI one-sided communication

 Incur relatively low overhead (45.2% on average)

 Require no modification of source code

 Data access DAG analysis technique

 Applicable to variety of one-sided communication models

 Identifies bugs based on concurrency of accesses
 Finds errors that did happen and could have happened
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MC-Checker Main Idea
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 Check the one-sided operations and local memory accesses 
and then check against compatibility tables to see whether 
there are memory consistency errors.

 Check bugs within an epoch:

 Identify epoch region

 Check operations within an epoch against compatibility table

 Check bugs across processes:

 Identify concurrent regions by matching synchronization calls

 Check operations in the concurrent regions against 
compatibility table



Design of MC-Checker
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DN-Analyzer
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ST-Analyzer: Identify Relevant Memory 

Accesses
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 Profiling each memory load/store is very heavy-weight

 Perform static analysis to identify relevant memory accesses

 Mark the variables and pointers belong to the window buffers 

and the buffers accessed by one-sided operations

 Propagate the markers by using pointer alias analysis

 Propagate the markers by following function calls involving 

pointers and references



Profiler: Profiling Runtime Events

Profiler

MPI_Type_contiguous()

MPI_Type_struct()

…

MPI_Win_create()

MPI_Win_fense()

MPI_Put()

…

winBuf[2] = 5

tmp = winBuf[3]

…

MPI_Barrier()

MPI_Bcast()

…

MPI_Comm_rank()

Datatype manipulation routines

MPI one-sided relevant routines

Memory access instructions

General synchronization routines
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MPI Application Relevant  Vars

MPI basic support routines
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DN-Analyzer: Memory Consistency
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 Memory consistency errors occur when conflicting 

operations are potentially concurrent during program 

execution

 Conflicting operations: e.g. overlapping MPI_Put and MPI_Put

 Happen concurrently: operations are not ordered

• a        b means a happens before b

• Ordered by barrier, send/recv, etc.

• a        b means the memory effects of a are visible before b

• Memory updates are synchronized by unlock, fence, etc.

hb

co



DN-Analyzer: DAG Analysis Technique
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 Capture dynamic execution and convert to data access DAG
 Edges capture ordering and concurrency of access

 Identifies logical concurrency – bugs that happened and could have happened

 General analysis technique for one-sided and PGAS models

Barrier 

lock 

Put(P1, X) store(LX) 

unlock 

Barrier 

lock 

Put(P1, X) 

unlock 

lock 

Get(P1, X) 

unlock 

lock 

store(X) 

unlock 

Barrier 

A 

B 

Barrier() Barrier() 

Barrier() Barrier() Barrier() 

Barrier() Barrier() Barrier() 

lock(shared) 

store(LX) 

unlock() 

lock(shared) 

Put(P1, X) 

unlock() 

lock(shared) 

Get(P1, X) 

unlock() 

store(X) 

a 
c 

d e 

P0 P1 P2 

Barrier() 

lock(shared) 

unlock() 

Put(P1, X) 

b 



DN-Analyzer: Within an Epoch
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2nd 1st Load Store Get Put/Acc

Load BOTH BOTH NOVL BOTH

Store BOTH BOTH NOVL NOVL

Get BOTH BOTH NOVL NOVL

Put/Acc BOTH BOTH NOVL BOTH

1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0) 

4. out++;

5. …

6. MPI_Win_unlock(0, win);

Epoch 

Region
Bug (overlapping)
Bug (overlapping)



DN-Analyzer: Across Processes
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 Compatibility matrix of RMA operations

 BOTH: overlapping and nonoverlapping combinations of the 

given operations are permitted

 NOVL: only non-overlapping combinations are permitted

 X: combination is erroneous. 

Load Store Get Put Acc

Load BOTH BOTH BOTH NOVL NOVL

Store BOTH BOTH NOVL X X

Get BOTH NOVL BOTH NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL BOTH



DN-Analyzer: Across Processes
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barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

lock(shared)

Get(P1, X)

unlock()

barrier()

P0

barrier()

barrier()

store(X)

barrier()

P1

barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

barrier()
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Bug
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Bug
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Evaluation Methodology
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 Hardware

 Glenn cluster at Ohio Supercomputer Center

 658 computer nodes

 2.5 GHz Opterons quad-core CPU each node

 24 GB RAM, 393 GB local disk each node

 Software

 Compiler: Modified LLVM to annotate load/store ops of interest

 OS: Linux 2.6.18

 MPI Library: MPICH2

 Evaluation

 Effectiveness: 3 real-world and 2 injected bug cases

 Overhead: 5 benchmarks



Bug Cases

20

MPI Applications Bug IDs Bug Locations Mode

emulate 04/2011 within an epoch passive

BT-broadcast 06/2004 within an epoch active

lockopts r10308 across processes passive

pingpong-inj 3.0.3 across processes passive

jacobi-inj 09/2008 across processes active

 3 real-world and 2 injected bug cases from 5 MPI applications



Effectiveness
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MPI 

Apps

Bug IDs Detected? Pinpoint 

Root 

Cause?

Error 

Locations

Conflicting 

Operations

Failure 

Symptoms

# of 

Processes

emulate 04/2011 Yes Yes within an 

epoch

get and 

load/store

incorrect 

result

2

BT-

broadcast

06/2004 Yes Yes within an 

epoch

get and load program

hang

2

lockopts r10308 Yes Yes across 

processes

put/get and 

load/store

incorrect 

result

64

pingpong-

inj

3.0.3 Yes Yes across 

processes

put and put incorrect 

result

64

jacobi-inj 09/2008 Yes Yes across

processes

put and get incorrect 

result

64

 Detect and locate root cause for all of the 5 bug cases



Runtime Overhead
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 Runtime overhead is low, ranging from 24.6% to 71.1%, with an 
average of 45.2%
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Scalability of Overheads
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 The runtime overhead decreases from 147.2% to 37.1% when 
the number of processes increase from 8 to 128
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Conclusion

24

 MC-Checker

 Detects memory consistency errors in MPI one-sided apps

 Detect and locate the root causes of the bugs

 Incur low runtime overhead

 Happens-before analysis identifies concurrency bugs

 Tools to enable debugging of one-sided applications are 

important in enabling users to overcome complexity
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Thanks!
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