
MC-Checker: Detecting Memory Consistency 

Errors in MPI One-Sided Applications

Zhezhe Chen1, James Dinan2, Zhen Tang3, Pavan Balaji4, Hua 
Zhong3, Jun Wei3, Tao Huang3, and Feng Qin5

1. Twitter Inc.

2. Intel Corporation

3. Chinese Academic of Sciences

4. Argonne National Laboratory

5. The Ohio State University1



MPI One-Sided Communication
 Remote Memory Access (RMA) extends MPI with one-sided communication

 Allows one process to specify both sender and receiver communication parameters

 Facilitates the coding of partitioned global address space (PGAS) data models

 Dinan et al. [1] ported the Global Arrays runtime system, ARMCI to MPI RMA
 NWChem is a user of MPI RMA, which we use to evaluate our tool

 We focus on MPI-2 RMA, which is compatible with MPI-3 (future work)

2
Figure credit: Advanced MPI Tutorial, P. Balaji, J. Dinan, T. Hoefler, R. Thakur, SC ‘13

[1] Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication, J. Dinan, P. Balaji, S. Krishnamoorthy, V. Tipparaju. IPDPS 2012

Process 1 Process 2 Process 3

Private 

Memory 

Region

Private 

Memory 

Region

Private 

Memory 

Region

Process 0

Private 

Memory 

Region

Public 

Memory 

Region

Public 

Memory 

Region

Public 

Memory 

Region

Public 

Memory 

Region

Global 

Address 

Space
Private 

Memory 

Region

Private 

Memory 

Region

Private 

Memory 

Region

Private 

Memory 

Region



MPI RMA Challenges

3

 To ensure portable, well-defined behavior, programs must follow the rules:
1. Operations must be synchronized using, e.g., lock/unlock or fence

2. Communication operations are nonblocking
 Local buffers cannot be accessed until put/get/accumulate are completed

3. Concurrent, conflicting operations are erroneous

4. Local load/store updates conflict with remote accesses

 The MPI-2 model is referred to as the “separate” memory model in MPI-3
 The MPI-3 “unified” model relaxes some rules, so we are solving the harder problem

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

load store store

XX

X



A Bug Example Within an Epoch

4

1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0) /* bug: load/store access of out */

4. out++;

5. …

6. MPI_Win_unlock(0, win);



A Bug Example Across Processes

5

P0 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier

P1 (Target Process)

window location X

MPI_Barrier

…

…

…

…

…

…

MPI_Barrier

P2 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier



Previous Works

6

 Bug detection for MPI one-sided programs

 e.g., Marmot, [Pervez-EuroPVM/MPI’06], and Scalasca

 Detect parameter errors, deadlocks, and performance bottlenecks

 Shared-memory data race detection

 e.g., Locksmith, Pacer, Eraser, and Racetrack

 Detect data races for shared-memory programs

 Fine-grain analysis is not feasible for analysis of MPI programs

 Need new techniques for one-sided communication bug detection 

in one-sided communication models



MC-Checker Highlights

7

 MC-Checker is a new tool to detect memory consistency 
errors in MPI one-sided applications

 First comprehensive approach to address memory consistency 
errors in MPI one-sided communication

 Incur relatively low overhead (45.2% on average)

 Require no modification of source code

 Data access DAG analysis technique

 Applicable to variety of one-sided communication models

 Identifies bugs based on concurrency of accesses
 Finds errors that did happen and could have happened



Outline

 1. Motivation

 2. Bug Examples

 3. Main Idea

 4. Design and Implementation

 5. Evaluation

 6. Conclusion  

8



MC-Checker Main Idea

9

 Check the one-sided operations and local memory accesses 
and then check against compatibility tables to see whether 
there are memory consistency errors.

 Check bugs within an epoch:

 Identify epoch region

 Check operations within an epoch against compatibility table

 Check bugs across processes:

 Identify concurrent regions by matching synchronization calls

 Check operations in the concurrent regions against 
compatibility table



Design of MC-Checker

10

ST-Analyzer

Profiler

DN-Analyzer

Identify relevant 

load/store accesses

Traces

Bug Report

CP-Table

Online Profiling

Offline Analysis

M
P

I A
pp

li
ca

ti
on

MC-Checker



ST-Analyzer: Identify Relevant Memory 

Accesses

11

 Profiling each memory load/store is very heavy-weight

 Perform static analysis to identify relevant memory accesses

 Mark the variables and pointers belong to the window buffers 

and the buffers accessed by one-sided operations

 Propagate the markers by using pointer alias analysis

 Propagate the markers by following function calls involving 

pointers and references



Profiler: Profiling Runtime Events

Profiler

MPI_Type_contiguous()

MPI_Type_struct()

…

MPI_Win_create()

MPI_Win_fense()

MPI_Put()

…

winBuf[2] = 5

tmp = winBuf[3]

…

MPI_Barrier()

MPI_Bcast()

…

MPI_Comm_rank()

Datatype manipulation routines

MPI one-sided relevant routines

Memory access instructions

General synchronization routines

12

MPI Application Relevant  Vars

MPI basic support routines
12



DN-Analyzer: Memory Consistency

13

 Memory consistency errors occur when conflicting 

operations are potentially concurrent during program 

execution

 Conflicting operations: e.g. overlapping MPI_Put and MPI_Put

 Happen concurrently: operations are not ordered

• a        b means a happens before b

• Ordered by barrier, send/recv, etc.

• a        b means the memory effects of a are visible before b

• Memory updates are synchronized by unlock, fence, etc.

hb

co



DN-Analyzer: DAG Analysis Technique

14

 Capture dynamic execution and convert to data access DAG
 Edges capture ordering and concurrency of access

 Identifies logical concurrency – bugs that happened and could have happened

 General analysis technique for one-sided and PGAS models

Barrier 

lock 

Put(P1, X) store(LX) 

unlock 

Barrier 

lock 

Put(P1, X) 

unlock 

lock 

Get(P1, X) 

unlock 

lock 

store(X) 

unlock 

Barrier 

A 

B 

Barrier() Barrier() 

Barrier() Barrier() Barrier() 

Barrier() Barrier() Barrier() 

lock(shared) 

store(LX) 

unlock() 

lock(shared) 

Put(P1, X) 

unlock() 

lock(shared) 

Get(P1, X) 

unlock() 

store(X) 

a 
c 

d e 

P0 P1 P2 

Barrier() 

lock(shared) 

unlock() 

Put(P1, X) 

b 



DN-Analyzer: Within an Epoch

15

2nd 1st Load Store Get Put/Acc

Load BOTH BOTH NOVL BOTH

Store BOTH BOTH NOVL NOVL

Get BOTH BOTH NOVL NOVL

Put/Acc BOTH BOTH NOVL BOTH

1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0) 

4. out++;

5. …

6. MPI_Win_unlock(0, win);

Epoch 

Region
Bug (overlapping)
Bug (overlapping)



DN-Analyzer: Across Processes

16

 Compatibility matrix of RMA operations

 BOTH: overlapping and nonoverlapping combinations of the 

given operations are permitted

 NOVL: only non-overlapping combinations are permitted

 X: combination is erroneous. 

Load Store Get Put Acc

Load BOTH BOTH BOTH NOVL NOVL

Store BOTH BOTH NOVL X X

Get BOTH NOVL BOTH NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL BOTH



DN-Analyzer: Across Processes

17

barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

lock(shared)

Get(P1, X)

unlock()

barrier()

P0

barrier()

barrier()

store(X)

barrier()

P1

barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

barrier()

P2

Bug

Match 

synchronization 

calls

Bug

lock(shared)

unlock()



Outline

 1. Motivation

 2. Bug Examples

 3. Main Idea

 4. Design and Implementation

 5. Evaluation

 6. Conclusion 

18



Evaluation Methodology

19

 Hardware

 Glenn cluster at Ohio Supercomputer Center

 658 computer nodes

 2.5 GHz Opterons quad-core CPU each node

 24 GB RAM, 393 GB local disk each node

 Software

 Compiler: Modified LLVM to annotate load/store ops of interest

 OS: Linux 2.6.18

 MPI Library: MPICH2

 Evaluation

 Effectiveness: 3 real-world and 2 injected bug cases

 Overhead: 5 benchmarks



Bug Cases

20

MPI Applications Bug IDs Bug Locations Mode

emulate 04/2011 within an epoch passive

BT-broadcast 06/2004 within an epoch active

lockopts r10308 across processes passive

pingpong-inj 3.0.3 across processes passive

jacobi-inj 09/2008 across processes active

 3 real-world and 2 injected bug cases from 5 MPI applications



Effectiveness

21

MPI 

Apps

Bug IDs Detected? Pinpoint 

Root 

Cause?

Error 

Locations

Conflicting 

Operations

Failure 

Symptoms

# of 

Processes

emulate 04/2011 Yes Yes within an 

epoch

get and 

load/store

incorrect 

result

2

BT-

broadcast

06/2004 Yes Yes within an 

epoch

get and load program

hang

2

lockopts r10308 Yes Yes across 

processes

put/get and 

load/store

incorrect 

result

64

pingpong-

inj

3.0.3 Yes Yes across 

processes

put and put incorrect 

result

64

jacobi-inj 09/2008 Yes Yes across

processes

put and get incorrect 

result

64

 Detect and locate root cause for all of the 5 bug cases



Runtime Overhead

22

 Runtime overhead is low, ranging from 24.6% to 71.1%, with an 
average of 45.2%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lennard-Jones SCF boltzmann SKaMPI LU

N
o

rm
al

iz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Native MC-Checker



Scalability of Overheads

23

 The runtime overhead decreases from 147.2% to 37.1% when 
the number of processes increase from 8 to 128

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

0

20

40

60

80

100

120

140

8 16 32 64 128

P
e

rc
e

n
t 

O
ve

rh
e

ad

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Number of MPI Processes

Native Execution MC-Checker Overhead



Conclusion

24

 MC-Checker

 Detects memory consistency errors in MPI one-sided apps

 Detect and locate the root causes of the bugs

 Incur low runtime overhead

 Happens-before analysis identifies concurrency bugs

 Tools to enable debugging of one-sided applications are 

important in enabling users to overcome complexity



25

Thanks!



26



27

http://images.google.com/imgres?imgurl=http://people.cohums.ohio-state.edu/gurney13/Pictures/Ohio_State_Logo.jpg&imgrefurl=http://people.cohums.ohio-state.edu/gurney13/&h=177&w=177&sz=57&hl=en&start=2&um=1&tbnid=yq7bubUHHFO5QM:&tbnh=101&tbnw=101&prev=/images?q=the+ohio+state+university+logo&um=1&hl=en&sa=N

