
MC-Checker: Detecting Memory Consistency

Errors in MPI One-Sided Applications

Zhezhe Chen1, James Dinan2, Zhen Tang3, Pavan Balaji4, Hua
Zhong3, Jun Wei3, Tao Huang3, and Feng Qin5

1. Twitter Inc.

2. Intel Corporation

3. Chinese Academic of Sciences

4. Argonne National Laboratory

5. The Ohio State University1

MPI One-Sided Communication
 Remote Memory Access (RMA) extends MPI with one-sided communication

 Allows one process to specify both sender and receiver communication parameters

 Facilitates the coding of partitioned global address space (PGAS) data models

 Dinan et al. [1] ported the Global Arrays runtime system, ARMCI to MPI RMA
 NWChem is a user of MPI RMA, which we use to evaluate our tool

 We focus on MPI-2 RMA, which is compatible with MPI-3 (future work)

2
Figure credit: Advanced MPI Tutorial, P. Balaji, J. Dinan, T. Hoefler, R. Thakur, SC ‘13

[1] Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication, J. Dinan, P. Balaji, S. Krishnamoorthy, V. Tipparaju. IPDPS 2012

Process 1 Process 2 Process 3

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Process 0

Private

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Public

Memory

Region

Global

Address

Space
Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

Private

Memory

Region

MPI RMA Challenges

3

 To ensure portable, well-defined behavior, programs must follow the rules:
1. Operations must be synchronized using, e.g., lock/unlock or fence

2. Communication operations are nonblocking
 Local buffers cannot be accessed until put/get/accumulate are completed

3. Concurrent, conflicting operations are erroneous

4. Local load/store updates conflict with remote accesses

 The MPI-2 model is referred to as the “separate” memory model in MPI-3
 The MPI-3 “unified” model relaxes some rules, so we are solving the harder problem

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

load store store

XX

X

A Bug Example Within an Epoch

4

1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0) /* bug: load/store access of out */

4. out++;

5. …

6. MPI_Win_unlock(0, win);

A Bug Example Across Processes

5

P0 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier

P1 (Target Process)

window location X

MPI_Barrier

…

…

…

…

…

…

MPI_Barrier

P2 (Origin Process)

MPI_Barrier

MPI_Win_lock

(SHARED, P1)

…

MPI_Put(X)

…

MPI_Win_unlock(P1)

MPI_Barrier

Previous Works

6

 Bug detection for MPI one-sided programs

 e.g., Marmot, [Pervez-EuroPVM/MPI’06], and Scalasca

 Detect parameter errors, deadlocks, and performance bottlenecks

 Shared-memory data race detection

 e.g., Locksmith, Pacer, Eraser, and Racetrack

 Detect data races for shared-memory programs

 Fine-grain analysis is not feasible for analysis of MPI programs

 Need new techniques for one-sided communication bug detection

in one-sided communication models

MC-Checker Highlights

7

 MC-Checker is a new tool to detect memory consistency
errors in MPI one-sided applications

 First comprehensive approach to address memory consistency
errors in MPI one-sided communication

 Incur relatively low overhead (45.2% on average)

 Require no modification of source code

 Data access DAG analysis technique

 Applicable to variety of one-sided communication models

 Identifies bugs based on concurrency of accesses
 Finds errors that did happen and could have happened

Outline

 1. Motivation

 2. Bug Examples

 3. Main Idea

 4. Design and Implementation

 5. Evaluation

 6. Conclusion

8

MC-Checker Main Idea

9

 Check the one-sided operations and local memory accesses
and then check against compatibility tables to see whether
there are memory consistency errors.

 Check bugs within an epoch:

 Identify epoch region

 Check operations within an epoch against compatibility table

 Check bugs across processes:

 Identify concurrent regions by matching synchronization calls

 Check operations in the concurrent regions against
compatibility table

Design of MC-Checker

10

ST-Analyzer

Profiler

DN-Analyzer

Identify relevant

load/store accesses

Traces

Bug Report

CP-Table

Online Profiling

Offline Analysis

M
P

I A
pp

li
ca

ti
on

MC-Checker

ST-Analyzer: Identify Relevant Memory

Accesses

11

 Profiling each memory load/store is very heavy-weight

 Perform static analysis to identify relevant memory accesses

 Mark the variables and pointers belong to the window buffers

and the buffers accessed by one-sided operations

 Propagate the markers by using pointer alias analysis

 Propagate the markers by following function calls involving

pointers and references

Profiler: Profiling Runtime Events

Profiler

MPI_Type_contiguous()

MPI_Type_struct()

…

MPI_Win_create()

MPI_Win_fense()

MPI_Put()

…

winBuf[2] = 5

tmp = winBuf[3]

…

MPI_Barrier()

MPI_Bcast()

…

MPI_Comm_rank()

Datatype manipulation routines

MPI one-sided relevant routines

Memory access instructions

General synchronization routines

12

MPI Application Relevant Vars

MPI basic support routines
12

DN-Analyzer: Memory Consistency

13

 Memory consistency errors occur when conflicting

operations are potentially concurrent during program

execution

 Conflicting operations: e.g. overlapping MPI_Put and MPI_Put

 Happen concurrently: operations are not ordered

• a b means a happens before b

• Ordered by barrier, send/recv, etc.

• a b means the memory effects of a are visible before b

• Memory updates are synchronized by unlock, fence, etc.

hb

co

DN-Analyzer: DAG Analysis Technique

14

 Capture dynamic execution and convert to data access DAG
 Edges capture ordering and concurrency of access

 Identifies logical concurrency – bugs that happened and could have happened

 General analysis technique for one-sided and PGAS models

Barrier

lock

Put(P1, X) store(LX)

unlock

Barrier

lock

Put(P1, X)

unlock

lock

Get(P1, X)

unlock

lock

store(X)

unlock

Barrier

A

B

Barrier() Barrier()

Barrier() Barrier() Barrier()

Barrier() Barrier() Barrier()

lock(shared)

store(LX)

unlock()

lock(shared)

Put(P1, X)

unlock()

lock(shared)

Get(P1, X)

unlock()

store(X)

a
c

d e

P0 P1 P2

Barrier()

lock(shared)

unlock()

Put(P1, X)

b

DN-Analyzer: Within an Epoch

15

2nd 1st Load Store Get Put/Acc

Load BOTH BOTH NOVL BOTH

Store BOTH BOTH NOVL NOVL

Get BOTH BOTH NOVL NOVL

Put/Acc BOTH BOTH NOVL BOTH

1. MPI_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);

2. MPI_Get(&out, 1, MPI_INT, 0, 0, 1, MPI_INT, win);

3. if(out % 2 == 0)

4. out++;

5. …

6. MPI_Win_unlock(0, win);

Epoch

Region
Bug (overlapping)
Bug (overlapping)

DN-Analyzer: Across Processes

16

 Compatibility matrix of RMA operations

 BOTH: overlapping and nonoverlapping combinations of the

given operations are permitted

 NOVL: only non-overlapping combinations are permitted

 X: combination is erroneous.

Load Store Get Put Acc

Load BOTH BOTH BOTH NOVL NOVL

Store BOTH BOTH NOVL X X

Get BOTH NOVL BOTH NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL BOTH

DN-Analyzer: Across Processes

17

barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

lock(shared)

Get(P1, X)

unlock()

barrier()

P0

barrier()

barrier()

store(X)

barrier()

P1

barrier()

lock(shared)

Put(P1, X)

unlock()

barrier()

barrier()

P2

Bug

Match

synchronization

calls

Bug

lock(shared)

unlock()

Outline

 1. Motivation

 2. Bug Examples

 3. Main Idea

 4. Design and Implementation

 5. Evaluation

 6. Conclusion

18

Evaluation Methodology

19

 Hardware

 Glenn cluster at Ohio Supercomputer Center

 658 computer nodes

 2.5 GHz Opterons quad-core CPU each node

 24 GB RAM, 393 GB local disk each node

 Software

 Compiler: Modified LLVM to annotate load/store ops of interest

 OS: Linux 2.6.18

 MPI Library: MPICH2

 Evaluation

 Effectiveness: 3 real-world and 2 injected bug cases

 Overhead: 5 benchmarks

Bug Cases

20

MPI Applications Bug IDs Bug Locations Mode

emulate 04/2011 within an epoch passive

BT-broadcast 06/2004 within an epoch active

lockopts r10308 across processes passive

pingpong-inj 3.0.3 across processes passive

jacobi-inj 09/2008 across processes active

 3 real-world and 2 injected bug cases from 5 MPI applications

Effectiveness

21

MPI

Apps

Bug IDs Detected? Pinpoint

Root

Cause?

Error

Locations

Conflicting

Operations

Failure

Symptoms

of

Processes

emulate 04/2011 Yes Yes within an

epoch

get and

load/store

incorrect

result

2

BT-

broadcast

06/2004 Yes Yes within an

epoch

get and load program

hang

2

lockopts r10308 Yes Yes across

processes

put/get and

load/store

incorrect

result

64

pingpong-

inj

3.0.3 Yes Yes across

processes

put and put incorrect

result

64

jacobi-inj 09/2008 Yes Yes across

processes

put and get incorrect

result

64

 Detect and locate root cause for all of the 5 bug cases

Runtime Overhead

22

 Runtime overhead is low, ranging from 24.6% to 71.1%, with an
average of 45.2%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Lennard-Jones SCF boltzmann SKaMPI LU

N
o

rm
al

iz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Native MC-Checker

Scalability of Overheads

23

 The runtime overhead decreases from 147.2% to 37.1% when
the number of processes increase from 8 to 128

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

140.0%

160.0%

0

20

40

60

80

100

120

140

8 16 32 64 128

P
e

rc
e

n
t

O
ve

rh
e

ad

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Number of MPI Processes

Native Execution MC-Checker Overhead

Conclusion

24

 MC-Checker

 Detects memory consistency errors in MPI one-sided apps

 Detect and locate the root causes of the bugs

 Incur low runtime overhead

 Happens-before analysis identifies concurrency bugs

 Tools to enable debugging of one-sided applications are

important in enabling users to overcome complexity

25

Thanks!

26

27

http://images.google.com/imgres?imgurl=http://people.cohums.ohio-state.edu/gurney13/Pictures/Ohio_State_Logo.jpg&imgrefurl=http://people.cohums.ohio-state.edu/gurney13/&h=177&w=177&sz=57&hl=en&start=2&um=1&tbnid=yq7bubUHHFO5QM:&tbnh=101&tbnw=101&prev=/images?q=the+ohio+state+university+logo&um=1&hl=en&sa=N

