MC-Checker: Detecting Memory Consistency

Errors in MPIl One-Sided Applications

Zhezhe Chen', James Dinan?, Zhen Tang®, Pavan Balaji*, Hua
Zhong?®, Jun Wei’, Tao Huang?’, and Feng Qin’

1. Twitter Inc.
2. Intel Corporation
3. Chinese Academic of Sciences

4. Argonne National Laboratory
@ 5.The Ohio State University

MPI One-Sided Communication

* Remote Memory Access (RMA) extends MPI with one-sided communication
* Allows one process to specify both sender and receiver communication parameters
® Facilitates the coding of partitioned global address space (PGAS) data models

® Dinan et al. [1] ported the Global Arrays runtime system, ARMCI to MPI RMA
¢ NWChem is a user of MPI RMA, which we use to evaluate our tool

* We focus on MPI-2 RMA, which is compatible with MPI-3 (future work)

(Process Ow (Process 1w (Process Zw (Process 3w

Global
Address
Space

Figure credit: Advanced MPI Tutorial, P. Balaji,]. Dinan, T. Hoefler, R. Thakur, SC “13
k [1] Supporting the Global Arrays PGAS Model Using MPI One-Sided Communication,]. Dinan, P. Balaji, S. Krishnamoorthy, V. Tipparaju. IPDPS 2012 /

(-,

MPI RMA Challenges

Public
Copy

Private
Copy

Same source

Same epoch Diff. Sources

LA W A /A
AR Tl 5

N

N
N\

J..
A

load store store

* To ensure portable, well-defined behavior, programs must follow the rules:

1. Operations must be synchronized using, e.g., lock/unlock or fence
2. Communication operations are nonblocking
Local buffers cannot be accessed until put/get/accumulate are completed
3. Concurrent, conﬂicting operations are erroneous
4. Local load/store updates conflict with remote accesses

® The MPI-2 model is referred to as the “separate” memory model in MPI-3

® The MPI-3 “unified” model relaxes some rules, so we are solving the harder problem

A Bug Example Within an Epoch

. MPL_Win_lock(MPI_LOCK_EXCLUSIVE, 0, 0, win);
. MPL_Get(&out, 1, MPL_INT, 0, 0, 1, MPL_INT, win);

. if(out % 2 == 0) /* bug: load/store access of out */
out++;

O\ V1 B W N —

. MPL_Win_unlock(0, win);

A Bug Example Across Processes

PO (Origin Process) ~ P1 (Target Process) P2 (Origin Process)

window location X

MPI_Barrier MPI_ Barrier MPI_Barrier
MPI_Win_lock . MPI_ Win_lock
(SHARED, P1) (SHARED, P1)
MPI_Put(X) . MPI_Put(X)
MPI_Win_unlock(P1) ... MPI_Win_unlock(P1)

MPI_Barrier MPI_Barrier MPI_Barrier

-,

Previous Works

® Bug detection for MPI one-sided programs
® e.g., Marmot, [Pervez-EuroPVM/MPI'06], and Scalasca

® Detect parameter errors, deadlocks, and performance bottlenecks

° Shared-memory data race detection
® e.g., Locksmith, Pacer, Eraser, and Racetrack
® Detect data races for shared—memory programs

* Fine-grain analysis is not feasible for analysis of MPI programs

® Need new techniques for one-sided communication bug detection

in one-sided communication models

MC-Checker Highlights

® MC-Checker is a new tool to detect memory consistency
errors in MPI one-sided applications

e First comprehensive approach to address memory consistency
errors in MPI one-sided communication

® Incur relatively low overhead (45.2% on average)

* Require no modification of source code

® Data access DAG analysis technique
* Applicable to variety of one-sided communication models

e |dentifies bugs based on concurrency of accesses

Finds errors that did happen and could have happened

Outline

®]1. Motivation

® 2. Bug Examples

® 3. Main Idea

® 4. Design and Implementation
® 5. Evaluation

® 6. Conclusion

MC-Checker Main ldea

® Check the one-sided operations and local mMemory accesses
and then check against compatibility tables to see whether
there are memory consistency errors.

® Check bugs within an epoch:
° Identify epoch region
® Check operations within an epoch against compatibility table

® Check bugs across processes:
° Identify concurrent regions by matching synchronization calls

® Check operations in the concurrent regions against
compatibility table

(-,

Design of MC-Checker

MC-Checker

- | W S > (e
4]

Identify relevant J

load/store accesses

- | W -

MPI Application

Online Profiling

ST-Analyzer: Identify Relevant Memory
Accesses

® Profiling each memory load/store is very heavy—weight

® Perform static analysis to identify relevant mMemory accesses

® Mark the variables and pointers belong to the window buffers

and the buffers accessed by one-sided operations
® Propagate the markers by using pointer alias analysis

® Propagate the markers by following function calls involving

pointers and references

e

Profiler: Profiling Runtime Events

MPI Application

¥

Relevant Vars J

[Profiler

3
)

MPI_Type_contiguous()
MPI_Type_struct() a——

MPI_Win_create() —

P—— Datatype manipulation routines

MPI_Win_ fense()
MPL_Put()

I

winBuf[2] = 5

:>‘i MPI one-sided relevant routines

I

tmp = winBuf[3]

MPI_Barrier()

——————» Memory access instructions

MPI_Bcast() — |

% General synchronization routines

MPI_Comm_rank()

> MPI basic support routines

DN-Analyzer: Memory Consistency

® Memory consistency errors occur when conﬂicting

operations are potentially concurrent during program
execution
* Contlicting operations: e.g. overlapping MPI_Put and MPI_Put
® Happen concurrently: operations are not ordered

a hb b means a happens before b

. adered by barrier, send/recv, etc.

a €0 b means the memory effects of a are visible before b

° Memory updates are synchronized by unlock, fence, etc.

DN-Analyzer: DAG Analysis Technique

PO P1 P2 I A‘
Barrier() Barrier() Barrier()
-+ lock(shared) -+ lock(shared)
C + Put(P1, X) A
b - store(LX)
—+ unlock() —+ unlock()
Barrier() Barrier() Barrier()) v \'4/
T/ 7 = 7T R
-
—+ lock(shared) —lock(shared) ook locK
oc oc
d - Get(P1, X) e -+ store(X) * *
:
—+ unlock() —+ unlock()
1 Barrier() 1 Barrier() 1 Barrier() unI:ck

* Capture dynamic execution and convert to data access DAG

° Edges capture ordering and concurrency of access

¢ Jdentifies logical concurrency — bugs that happened and could have happened

@ ® General analysis technique for one-sided and PGAS models

DN-Analyzer: Within an Epoch
|| toad | Store | Get | Put/Acc

Nov. [

NOVL NOVL

NOVL NOVL

vovi [

— 1. PI_LOCK_EXCLUSIVE, O, 0, win);
2. MPI out, 1, MPI_INT, 0, 0, 1, MPL_IN'T, win);
f{po.ch) 3. if(oupe 2 == 0) X Bug (overlapping)
cglon 4. outt; X Bug (overlapping)
5. ...
6. MPI_Win_unlock(0, win);

DN-Analyzer: Across Processes
| tead | store | Get | Put | Acc

o o [

- NOVL NOVL NOVL
- NOVL - NOVL NOVL NOVL

NOVL NOVL NOVL -

° Compatibility matrix of RMA operations

e BOTH: overlapping and nonoverlapping combinations of the

given operations are permitted
e NOVL.: only non—overlapping combinations are permitted

e X: combination is erroneous.

(-

DN-Analyzer: Across Processes

PO P1 P2
Match

o e

calls
—— lock(shared) —— lock(shared)

— Put(P1, X) \ X / Put(P1, X)

—— unlock() — unlock()

%///%%%@%////////////W%/////////////” _

—— lock(shared) — lock(shared)

— Get(P1, X) — store(X)

—— unlock() \—Xl‘Bkﬁ)

Outline

®]1. Motivation

® 2. Bug Examples

® 3. Main Idea

® 4. Design and Implementation
® 5. Evaluation

® 6. Conclusion

Evaluation Methodology

¢ Hardware
® Glenn cluster at Ohio Supercomputer Center
® 658 computer nodes
* 2.5 GHz Opterons quad-core CPU each node
e 24 GB RAM, 393 GB local disk each node

® Software
® Compiler: Modified LLVM to annotate load/store ops of interest
® OS: Linux 2.6.18
* MPI Library: MPICH?2

e Evaluation

o Effectiveness: 3 real-world and 2 injected bug cases

® Overhead: 5 benchmarks

(-

Bug Cases

emulate 04/2011 within an epoch passive
BT-broadcast 06/2004 within an epoch active
lockopts r10308 across processes passive
pingpong-inj 3.0.3 across processes passive
jacobi-inj 09/2008 across processes active

® 3 real-world and 2 injected bug cases from 5 MPI applications

(-

Effectiveness

Bug IDs | Detected? | Pinpoint Error Conflicting Failure # of
Root Locations Operations Symptoms Processes
Cause?
emulate 04/2011 Yes Yes ithin a get and incorrect 2
epoch load/store result
BT- 06/2004 Yes Yes within an get and load program 2
broadcast epoch hang
lockopts r10308 Yes Yes across put/get and incorrect 64
processes load/store result
pingpong- 3.0.3 Yes Yes across put and put incorrect 64
inj result
jacobi-inj 09/2008 Yes Yes put and get incorrect 64
result

® Detect and locate root cause for all of the 5 bug cases

(- y

Runtime Overhead

W Native W MC-Checker

1.8

1.6

1.4 -

1.2

0.8 -

0.6 -

Normalized Execution Time

0.4 -

0.2 -

Lennard-]Jones SCF boltzmann SKaMPI LU

® Runtime overhead is low, ranging from 24.6% to 71.1%, with an

(-

average of 45.2%

140

120

=
o
o

[o]
o

60

40

Execution Time (sec)

20

A,

=o—Native Execution =l=MC-Checker

Scalability of Overheads

Overhead

AN

AN

AN

‘-\

\

~_ \-\
\

—3
—_————
16 32 64 128

Number of MPI Processes

160.0%

- 140.0%

- 120.0%

- 100.0%

- 80.0%

- 60.0%

- 40.0%

- 20.0%

0.0%

Percent Overhead

® The runtime overhead decreases from 147.2% to 37.1% when

@ the number of processes increase from 8 to 128

Conclusion
¢ MC-Checker

® Detects memory consistency errors in MPI one-sided apps
® Detect and locate the root causes of the bugs

® Incur low runtime overhead

° Happens—before analysis identifies concurrency bugs

® Tools to enable debugging of one-sided applications are

important in enabling users to overcome complexity

Thanks!

e
OHIO
SIAIE

UNIVERSITY

http://images.google.com/imgres?imgurl=http://people.cohums.ohio-state.edu/gurney13/Pictures/Ohio_State_Logo.jpg&imgrefurl=http://people.cohums.ohio-state.edu/gurney13/&h=177&w=177&sz=57&hl=en&start=2&um=1&tbnid=yq7bubUHHFO5QM:&tbnh=101&tbnw=101&prev=/images?q=the+ohio+state+university+logo&um=1&hl=en&sa=N

