
Transaction-Aware SSD Cache Allocation 
for the Virtualization Environment

Zhen Tang, Institute of Software, Chinese Academy of Sciences

Heng Wu, Institute of Software, Chinese Academy of Sciences

Lei Sun, Tianjin Massive Data Processing Technology Laboratory

Zhongshan Ren, Institute of Software, Chinese Academy of Sciences

Wei Wang, Institute of Software, Chinese Academy of Sciences

Wei Zhou, KSYUN

Liang Yang, KSYUN

March 26, 2018



Transactional Applications in the JointCloud Environment

• Web-based applications rely on multiple services from different cloud 

providers

• Rely on different types of storage service; access through the Internet

• VM: Aliyun

• Images, Audios, Videos: Qiniu

• Relational database: UDB from UCloud

• In this scenario, host-side SSD caching may be a preferred solution



The Host-side SSD Caching System

Higher Performance, especially in random access

Expensive in Per GB Capacity 

Large Capacity

Lower random IOPS (I/O Operations Per Second)

The Host-side SSD Caching System is a balance between Cost and Performance



The Host-side SSD Caching System

The Data Mapping Module is the Fundamental Part

SSD 240 GB
20000 IOPS
600 MB/s

HDD/Services
200 IOPS
150 MB/s

Data Mapping Module
IO Requests

Admission Policy



Application-level Performance

• The transactional application consists of multiple virtual machines (VMs)

• VMs inside the application face the similar workload

• The critical performance metric from the application view is the latency

• Related to the IO performance of all VMs inside the application



Example

• An online book store consists of two VMs on one hypervisor, with back 

end database and image storage

Web Service WS1

Database

Web Service WS2

Image Storage

Reverse Proxy

Client



Types of workloads

• Three types of workloads

• Browsing: Heavy read operations on images

• Shopping: Read operations on images, write operations on database

• Ordering: Heavy write operations on database

• The latency L is divided into 2 parts: on WS1 and on WS2

• Browsing: L(Browsing)=0.3*L(WS1)+0.7*L(WS2)

• Shopping: L(Shopping)=0.5*L(WS1)+0.5*L(WS2)

• Ordering: L(Ordering)=0.7*L(WS1)+0.3*L(WS2)

• The working set for WS1 is 8GB, for WS2, 2GB. The total cache space is 2GB

• Assuming that L(SSD)=0.1*L(Storage)



Working Set Based Cache Scheme

• Allocate SSD according to the working set

• Fair for individual VMs

Web Service WS1
80% SSD, 20% Hit Rate

Database

Web Service WS2
20% SSD, 20% Hit Rate

Image Storage

Reverse Proxy

Client

Workload: Browsing / Shopping / Ordering
L(WS1)=L(WS2)=0.2*L(SSD)+0.8*L(Storage)

=0.82*L(Storage) 



Transaction-aware Cache Scheme

• Allocate SSD cache according to latency distribution for workloads

• Better app-level performance

Web Service WS1
30% SSD, 7.5% Hit Rate

Database

Web Service WS2
70% SSD, 70% Hit Rate

Image Storage

Reverse Proxy

Client

Workload: Browsing
L(WS1)=0.075*L(SSD)+0.925*L(Storage)

=0.9325*L(Storage)
L(WS2)=0.7*L(SSD)+0.3*L(Storage)

=0.37*L(Storage) 



Transaction-aware Cache Scheme

• Allocate SSD cache according to latency distribution for workloads

• Better app-level performance

Web Service WS1
50% SSD, 12.5% Hit Rate

Database

Web Service WS2
50% SSD, 50% Hit Rate

Image Storage

Reverse Proxy

Client

Workload: Shopping
L(WS1)=0.125*L(SSD)+0.875*L(Storage)

=0.8875*L(Storage)
L(WS2)=0.5*L(SSD)+0.5*L(Storage)

=0.55*L(Storage) 



Transaction-aware Cache Scheme

• Allocate SSD cache according to latency distribution for workloads

• Better app-level performance

Web Service WS1
70% SSD, 17.5% Hit Rate

Database

Web Service WS2
30% SSD, 30% Hit Rate

Image Storage

Reverse Proxy

Client

Workload: Ordering
L(WS1)=0.175*L(SSD)+0.825*L(Storage)

=0.8425*L(Storage)
L(WS2)=0.3*L(SSD)+0.7*L(Storage)

=0.73*L(Storage) 



Performance

• Latency for working set based cache scheme

• Browsing: L=0.3*L(WS1)+0.7*L(WS2)=0.82*L(Storage)

• Shopping: L=0.5*L(WS1)+0.5*L(WS2)=0.82*L(Storage)

• Ordering: L=0.7*L(WS1)+0.3*L(WS2)=0.82*L(Storage)

• Latency for transaction aware cache scheme

• Browsing: L=0.3*L(WS1)+0.7*L(WS2)=0.53875*L(Storage) 

• Shopping: L=0.5*L(WS1)+0.5*L(WS2)=0.71875*L(Storage)

• Ordering: L=0.7*L(WS1)+0.3*L(WS2)=0.80875*L(Storage) 

• Transaction-aware cache scheme will lead to better application-level latency



Challenges

• How to create the connection between the latency from the app-level 

and the IO performance from the VM-level?

• How to detect the type of workloads and trigger the cache adjustment? 

How to react to changing workloads?



Transaction-aware SSD Cache Allocation

• How to create the connection between the latency from the app-level 

and the IO performance from the VM-level?

• Application: A set of VMs

• Workload: Mix of transactions

• The average latency: Weighted sum of the latency of transactions

• Latency of transactions: The sum of time consumed on VMs

• The latency of VMs: Can be reduced by SSD cache

• Thus, we use the latency distribution as the app-level metric



Closed Loop Adaptation

• How to detect the type of workloads and trigger cache adjustment? How 

to react to the changing workloads?

• We introduce closed loop adaptation inspired by MAPE-K

• Monitor: Monitor the low-level IO performance and the status of 

transactional applications

• Analyze: Detect the workload type; Calculate the latency distribution

• Plan: GA based approach to calculate the nearly optimal weights for VMs

• Execute: Allocate the SSD cache



GA based approach

• Goal: Find the weights to minimize the Latency

• Structure

• Chromosome: The weight of a specific VM

• Genome: The SSD cache allocation plan

• Fitness: Create connection between low-level IO performance and high-

level latency by using latency distribution

• The selection, crossover, and mutation operations: Like the general GAs



Fitness Calculation

• Calculate from three metrics:

• VM intensity (App-level): calculated from the latency distribution

• IO ratio (Low-level IO): the ratio of IO time and non-IO time of CPU

• Random access intensity (Characteristics of SSD): Calculated from the 

average IO request size

• For a given genome, use the Euclidean metric to represent the match 

degree of the weights and the normalized three metrics



Implementation

Execute Plan

AnalyzeMonitor

Detector

Arbiter
Executor

on Hypervisors

Injector on VMs

Agent on VMs

Agent on 
Hypervisors

IO Performance

Cache Status

Logs

Relationships and 
Roles

Magnifier
Characteristics of 

Workloads

Weights of VMs

Controller
(Trigger new 

round)

Per-VM 
SSD 
Cache



Experiment Setup

• Comparing to the equally partitioned cache

• Benchmark

• TPC-W, an e-commerce benchmark (online book store)

• Bench4Q, a TPC-W based load testing tool

• Three modes: Browsing, Shopping, Ordering

• Environment

• SSD and HDD

• 3 applications placed on 2 hypervisors, each consists of 2 VMs

• One web server and one database server

• Use 3 VM to generate workload

• 768MB SSD cache for each hypervisor (256MB for each VM for equally partitioned cache)



Performance Focusing on One Application

• WIPS (Web Interactions Per Second) of 3 

modes (Browsing, Shopping, Ordering)

• 100 vUsers

• Data scales up from 100,000 to 

1,000,000 entries

• WIPS is improved by up to 40%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

A
m

p
li

fi
c
at

io
n

W
IP

S

Amount of entries (×106)

Browsing Mode

Equally TA-SSD Amplification

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
m

p
li

fi
c
at

io
n

W
IP

S

Amount of entries (×106)

Shopping Mode

Equally TA-SSD Amplification

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

A
m

p
li

fi
c
at

io
n

W
IP

S

Amount of entries (×106)

Ordering Mode

Equally TA-SSD Amplification



Latency of different types of transactions

• Data scale: 1,000,000 entries

• Up to 50% decrease on latency

• However, not efficient when facing 

transactions which may trigger full table 

scan (BESS, NEWP, SRES)

0

0.1

0.2

0.3

0.4

0.5

0.6

0

500

1000

1500

2000

2500

3000

3500

ADMC ADMR BESS BUYC BUYR CREG HOME NEWP ORDD ORDI PROD SREQ SRES SHOP

R
ed

u
ct

io
n

L
at

en
cy

 (
m

s)

Type of transactions

Equally TA-SSD Reduction



Performance Among all Applications

• 3 Applications, mixed of 3 modes

• 300,000; 500,000 and 700,000 entries for 3 applications

• Latency decreased by up to 45%, and by 20% in average

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

BSO BOS SBO SOB OBS OSB

D
ec

re
as

e 
o

f 
av

er
ag

e 
la

te
n
cy

Mix of workload mode

App-1 App-2 App-3



Self Adaptation

• Change of base load

• Change of workload type

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220 240

W
IP

S

Time (s)

Equally TA-SSD

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

W
IP

S

Time (s)

Equally TA-SSD



Discussions

• TA-SSD uses the HDD and SSD as the example, but can be applied to the 

joint cloud environment

• TA-SSD can also be applied to other types of applications rely on 

multiple storage services in the joint cloud environment

• AC-SSD [Internetware’17] aims to control the capacity of both cache 

space and IOPS to reduce the job completion time of elastic Hadoop 

applications



Conclusion

• We present TA-SSD

• Use application-level metrics to guide the SSD cache allocation

• Use genetic algorithm based approach to calculate the weights for VMs

• Introduce the closed loop adaptation to react to changing workloads

• Improve the performance of transactional applications



Thanks

Zhen Tang

tangzhen12@otcaix.iscas.ac.cn


