
Towards Web Application Mobilization via Efficient Web

Control Extraction

Shuai Wang1,2,3, Wensheng Dou1, Guoquan Wu1,2,3, Jie Wang1,2,3

Chushu Gao1,3, Jun Wei1,2,3, Tao Huang1,2
1Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing, China

2State Key Laboratory of Computer Science, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China

{wangshuai, wsdou, gqwu, wangjie12, gaochushu, wj, tao}@otcaix.iscas.ac.cn

ABSTRACT

Traditional web applications are not suitable for mobile devices,

because mobile devices are usually equipped with small screens

and use slow and expensive mobile network. In order to adapt

web applications to mobile devices, existing approaches

reconstruct particular web applications, or adapt only partial

views of web pages. They require a lot of additional

reconstructing work or network bandwidth. In this paper we

propose an approach that can extract a part of a web page as an

executable web control efficiently. Our approach monitors the

execution of user code, builds a dependency graph of executed

user code, and performs slicing based on the dependency graph.

The evaluation on two real-world web applications shows that our

approach is able to extract executable web controls efficiently,

and for the two web applications, visiting extracted web controls

instead of the original web pages can save 98% and 23% of

bandwidth respectively.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Restructuring, reverse engineering, and

reengineering

General Terms

Algorithms, Theory.

Keywords

Web Application, Web Control, Code Extraction, Program Slicing

1. INTRODUCTION
More and more people access web information through mobile

devices, but traditional web pages are developed for desktop

devices (e.g. PCs), which are not suitable for displaying in mobile

devices directly. Traditional web pages always contain many

kinds of information, such as news, navigations, ads, and so on,

while mobile devices aim to display single kind of information [1],

because of their small screens, limited network and power.

 Most mobile devices use 3–3.5 inch screens [2], while

mainstream desktop devices use screens around 20 inches.

Therefore, web pages designed for 20 inch screens will be

zoomed out to fit small screens of mobile devices, which

degrades the readability of original web pages.

 Mobile devices always use wireless network, which is

bandwidth-limited, unstable, and charged on consumption.

Traditional web pages designed for desktop devices always

use unlimited network, and they always contain vary kinds

of information, which causes a huge size for a single web

page. For example, users may download 19.59 MB

resources before visiting the home page of SinaNews [3].

Therefore, visiting traditional web pages via mobile devices

is a time-consuming and money-consuming work.

 Mobile devices use batteries as their power supplier, which

is one of the short boards of mobile device usability. Some

smartphones last less than 2 hours only if they continuously

download files over 3G connections [4]. As mentioned

above, traditional web pages always have large sizes, which

cause quick power consumption when downloading these

web pages.

A lot of work has been done to solve these problems. Some

organizations build an individual mobile version of the original

web site, which is totally different, such as sina wap [5]. While

building a mobile version does solve the problems totally, it

requires additional budget. Some organizations present develop

tools to reduce the budget. SiteApp [6] provided by Baidu [7]

helps developers to build mobile version of an existing web site in

only four simple steps, but it only works on limited types of web

sites. IBM [8] presents Worklight [9], which is claimed to support

all kinds of web sites, but still requires a lot of developing efforts.

Some research works have also been presented to address this

limitation [1] [10] [11] [12], which supply readable views of web

pages via displaying only part of web pages fitting the screen at

one time. These works mainly aim to solve the problem caused by

vary screen sizes, and they don’t care about the high cost of

bandwidth and power caused by visiting web pages of large size.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

Internetware '15, November 06 2015, Wuhan, China

© 2015 ACM. ISBN 978-1-4503-3641-3/15/11…$15.00

DOI: http://dx.doi.org/10.1145/2875913.2875935

It is a better way to download only user-interested part instead of

the whole one while visiting web pages via mobile devices, as part

of web pages fits better to the mobile screens than the whole ones,

and downloading only a part saves bandwidth and power

obviously. To achieve this goal, we present an approach to

perform efficient web control extraction for web application

mobilization. Our approach is inspired by the following

observation: web applications are event-driven [13]. Event

handlers implemented in JavaScript are used to interact with users,

which need to be registered to some HTML DOM elements firstly,

and then be triggered by events fired on it or its child elements.

Based on this observation, our approach extracts selected DOM

elements as the presentation of specified web control, and infers

event handlers of specified web control by monitoring the

execution of event handlers. In order to perform the process

efficiently, we monitor only user defined code. Compared to

existing technique [16], which monitors all the executed code

including the third-party libraries, the proposed approach can

extract web controls from web applications of a large scale

efficiently.

In summary, our contributions are as follows:

 We propose an approach to efficiently extract web controls

from web pages.

 We implement a prototype tool for our approach. Our

prototype tool allows developers to extract web controls

from real-world web pages.

 We perform two case studies on popular real-world web

applications, and the result shows that our approach is able

to extract executable user specified web controls efficiently.

The rest of the paper is organized as follows. We illustrate the

motivation of our approach by a real-world example in Section 2,

and the overview in Section 3. In Section 4, we describe our

approach in detail. We show how we evaluate the approach in

Section 5, and discuss the limitations in Section 6. Section 7

presents related works. Finally we give a conclusion in Section 8.

2. Motivation Example
In this section, we introduce a real-world example that will be

used throughout the paper. The example is a simplified version of

part of Yahoo home page [14], and is built on jQuery [15].

Yahoo is one of the most popular web sites of the world, it is

globally known for its web portal and search engine. We build a

simple web page following Yahoo home page, which consists of a

search engine entry and a hot news viewer, as shown in Fig. 1.

The search engine entry lies at the top of page, which consists of a

text input control and a submit button control. The hot news

viewer lies at the bottom, which consists of a large picture viewer

marked with news title and a hot news list containing five small

pictures. Users are allowed to submit a search request by typing

search keywords and then clicking the submit button, to switch

the large picture by clicking on one of the small pictures in the

Figure 1. The Web Page of the Example

1 <body>

2 <div class="searchwrapper">

3 <form action="http://www.demo.org/search">

4 <input id="key" name="key" type="text"

5 hint="Enter your search term">

6 <button value="Search Web" id="submit"

7 hint="Search">Search Web</button>

8 </form>

9 </div>

10 <div class="main_story">

11 <div id="main_story_content">

12 <div class="main-story-content">

13

14

15

16 </div>

17 <div class="package-body">

18

19 How American homes have changed since the '50s

20

21 </div>

22 </div>

23 <div class="footer-section">

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39 </div>

40 </div>

41 </body>

Figure 2. The HTML Code of the Example

news list, and to navigate to news detail page by clicking on the

large picture. Additionally, the page displays hints to suggest user

interaction. For example, when a user moves his mouse over the

text input control, a hint displaying ‘Enter your search term’

appears.

Fig. 2 shows the HTML code of the example. There are two child

DIV elements of body, i.e. searchWrapper, and main_story. The

searchWrapper DIV (lines 2 - 9) contains elements of the search

engine entry. The main_story DIV (lines 10 - 40) contains

elements of the hot news viewer, and it is composed of two sub

DIV elements, main_story_content (lines 11 - 22), which is

served as the large picture viewer, and footer-section (line 23 -

39), which is served as the hot news list.

Fig. 3 shows the JavaScript code of this example. It defines four

functions, updateMainStory, showMainStory, showHint and

hideHint. Function updateMainStory (lines 1 - 3) updates the

content of the large picture viewer to the received parameter msg.

updateMainStory is asynchronously invoked by showMainStory

(lines 4 - 8), which asynchronously updates content of the large

picture viewer according to data attribute of the DOM element

that triggers the function. Function showHint (lines 9 - 17)

displays the hint attribute as the hint information to the user, and

hideHint (lines 18 - 20) hides the hint information. The last four

lines of code (lines 21 - 24) registers the above four functions to

some DOM elements as their event handlers. Line 21 registers

showMainStory as the click event handler of each item of the hot

news list (.footer-img). Lines 22 - 24 add features of showing and

hiding hint to each hot news item (.footer-img), the text input

control (#key), and the submit button (#submit). Note that the

code register event handlers using event delegation mechanism

instead of registering event handlers directly, in line 23 and 24,

which register two event handlers to document element instead of

the text input and submit button elements.

Our example illustrates several important features of web

applications. Web applications always use JavaScript libraries to

ease the development, which takes a large proportion of all

JavaScript code. Libraries always provide powerful APIs so that

developers are able to implement a function within a few lines of

code, which causes a lot of details to be hidden in libraries. Lastly,

a function can be registered as event handlers to more than one

DOM elements at the same time, no matter whether they serve for

the same feature or not.

3. Approach Overview
Web pages can be viewed as a collection of web controls which

can be used in different web pages [16]. Our approach is to

extract web controls from web pages efficiently. Here, we define a

web control is a subset of a web page, which satisfies: 1) it

contains a set of visually distinct HTML elements, 2) it

encapsulates behaviors on the HTML elements, 3) it is self-

contained, i.e. it never interacts with other elements out of the

control. Based on this definition, we can find that there are two

web controls in the above example, i.e. the search engine entry

and the hot news viewer. Note that the big picture viewer and the

hot news list are not web controls, because they are not self-

contained (they interact with each other).

Web pages are developed with a combination of three different

languages: HTML, CSS and JavaScript. HTML is a markup

language that defines structure and content of a web page. CSS is

a style sheet language that expresses the presentation of web

pages. JavaScript is a scripting language that defines the behavior

of web pages. Elements of HTML form a tree structure, which is

quite simple to extract. CSS is often used through the whole web

sites, and we believe that it can be kept fully. JavaScript code is

always composed of user code and libraries. Libraries are often

used through the whole web sites, just like CSS, so we believe

there is no need to slice them. Different user code is developed for

different web pages, thus only user code that related to web

controls should be extracted.

The life-time of the web pages can be divided into two steps: 1)

page initialization, when the browser parses the web page code

and builds the DOM of the page, and 2) event-handling, when

users interact with the pages. In the first step, JavaScript is used to

build the DOM, including mutating DOM states, registering event

handlers. In the second step, JavaScript is used as event handlers

to interact with users.

To identify JavaScript code of a specified web control, we need to

identify code that 1) mutates the web control, 2) defines event

handlers of the web control and 3) registers these event handlers.

We identify code that mutates the web control by monitoring the

1 function updateMainStory(msg) {

2 $('#main_story_content').html(msg);

3 }

4 function showMainStory() {

5 var id = this.getAttribute('data');

6 var url = 'http://www.demo.org/main-story?id=' + id;

7 $.ajax({ url: url, success: updateMainStory });

8 }

9 function showHint(e) {

10 if (!$('#hint').length) {

11 $(document.body).append('<div id="hint"></div>');

12 }

13 $('#hint').html(this.getAttribute('hint'));

14 $('#hint').css({'display':'block',

15 'left':e.pageX,

16 'top':e.pageY});

17 }

18 function hideHint() {

19 $('#hint').css({'display':'none'});

20 }

21 $('.footer-img').click(showMainStory);

22 $('.footer-img').mouseover(showHint).mouseout(hideHint);

23 $(document).on('mouseover', '#key, #submit', showHint);

24 $(document).on('mouseout', '#key, #submit', hideHint);

Figure 3. The JavaScript Code of the Example

effect of executing JavaScript code on DOM state, identify code

that defines event handlers by firing all events on the specified

web control, which triggers execution of event handlers, and then

record the executing functions and identify their definitions via

the dependency graph. Finally, we identify code that registers

these event handlers via the same dependency graph, and the

registration code should depend on the definition code.

In order to identify the three types of JavaScript code efficiently,

we conduct a dynamic analysis on only user defined JavaScript

code, which results in a dependency graph that cannot cover the

full dependency relationships. In essence, the process of

identification is performing dynamic program slicing on HTML

and JavaScript code. To accomplish the process, we define four

sets as the slicing criterion: a selected-DOM-element set (S1), a

sibling-of-selected-DOM-element set (S2), a triggered-event-

handler set (S3), and a un-executed-function set (S4). Elements in

S1 represent the presentation of specified web control, and

JavaScript code depending on them is the code that mutates the

control. Elements in S3 are event handlers registered on the

specified web control, and JavaScript code depending on them is

the code that registers them, and JavaScript code depended by

them defines them. Elements in S2 and S4 are the same for other

web controls. We perform the slicing by preserving code that is

related to specified web control, and discarding code that is

related to other web controls, and we preserve code that has no

relationship with any web controls.

Our approach is composed of two phases: execution phase and

extraction phase. In the execution phase, our approach monitors

the execution of page initialization and event handlers registered

on the web control. We require the user to specify the root DOM

element of intended web control, and to interact with the control

to trigger all event handlers registered on that control. We assume

that the one who wants to extract a web control has the knowledge

of the internal details of the web control. This is in line with the

hideHintshowHint

showMainStory

updateMainStory

4-1

1
body

10
div

2
div

11
div

23
div

...

24
span

27
span

......

25
img

28
img

2

7 6 5

1
4 9 18

13 14 19

21 22 23 24

1-1

9-1 9-218-1 18-2

DOM Element

Function

Dummy Function

Expression

10

11

Figure 4. The Dependency Graph of the Example

1 <body>

10 <div class="main_story">

11 <div id="main_story_content">

12 <div class="main-story-content">

13

14

15

16 </div>

17 <div class="package-body">

18

19 How American homes have changed since the '50s

20

21 </div>

22 </div>

23 <div class="footer-section">

24

25

26

… ……

39 </div>

40 </div>

41 </body>

Figure 5. The Extracted HTML Code

assumptions presented in [16] [17]. While the code is executing,

we build a dependency graph of the DOM tree and executed user

JavaScript code, and generates the four sets as the slicing criterion.

In the extraction phase, we perform program slicing based-on the

dependency graph and the slicing criterion, and generate the

HTML code and JavaScript code of the specified web control.

We illustrate the process of our approach via extracting the hot

news viewer from above example.

Before the start of process, the user is required to point out user

defined JavaScript code of the web page, which will be

instrumented with analyzing code. We believe that the user who

wants to mobilize a web application should be very familiar with

the target web application.

Firstly, in execution phase, user opens the web page in a browser,

and the web page starts to initialize automatically. Then the user

gives out a XPath “/html/body/div[2]”, which specifies root

HTML element of the hot news viewer, and triggers all the three

event handlers on hot news viewer via moving on/out and clicking

on each of the five small pictures at the bottom. At the same time,

our approach builds a dependency graph for executed JavaScript

code and initialized DOM tree, as shown in Fig. 4, and generates

the four sets as following:

 S1 : selected-DOM-element set

{ 10, c10 | c10 is a child node of node 10 }

 S2 : sibling-of-selected-DOM-element sets

{ 2, c2 | c2 is a child node of node 2 }

 S3 : triggered-event-handler set

{ 1-1, 4-1, 9-1, 18-1 }

 S4 : un-executed-function set

{ 9-2, 18-2 }

Secondly, in the extraction phase, we traverse the dependency

graph, and perform extraction as following. For the HTML code,

we extract HTML elements in S1 and their parent elements, as

shown in Fig. 5. For the JavaScript code, we discard JavaScript

code that depends on or is depended by nodes in S2 and S4, and

does not depend on or is not depended by nodes in S1 and S3, i.e.

node 23 and 24 in Fig. 5. Then we get the JavaScript code of the

intended web control, as shown in Fig. 6.

4. Approach
Our approach is composed of two phases, execution phase and

extraction phase. Initially, we instrument the web page with the

monitoring code. Then, in the execution phase, our approach runs

the instrumented web page in a web browser, along with an XPath

specifying the root HTML element of intended web control, and a

series of user actions triggering event handlers on the control.

When the web page is running, our approach monitors the

executed JavaScript code, generates a dependency graph and four

node sets as the slicing criterion as output. Finally, the extraction

phase receives the dependency graph and the slicing criterion as

input, performs slicing upon the source code of the web page, and

generates the source code of intended web control as output. The

overall process is shown in Fig. 7.

4.1. The Execution Phase
This phase monitors the execution of JavaScript code, and

generates a dependency graph and a slicing criterion for the next

phase.

As mentioned above, the lifetime of a web page can be divided

into two steps, page initialization and event-handling. In the page

initialization step, all initialization code executes, no matter

whether it is related to the specified web control or not, we have

to distinguish control related code from others; while in event-

handling step, only event handlers of specified web control are

triggered, and functions executed in this step should be extracted

distinctly. We identify code related to the specified web control

based on the dependency relationships between initialization code

and executed event handlers.

We build a dependency graph to describe the relationships

between event handlers and initialization code. When the

JavaScript is executing, our approach records expressions that

1 function updateMainStory(msg) {

2 $('#main_story_content').html(msg);

3 }

4 function showMainStory() {

5 var id = this.getAttribute('data');

6 var url = 'http://www.demo.org/main-story?id=' + id;

7 $.ajax({ url: url, success: updateMainStory });

8 }

9 function showHint(e) {

10 if (!$('#hint').length) {

11 $(document.body).append('<div id="hint"></div>');

12 }

13 $('#hint').html(this.getAttribute('hint'));

14 $('#hint').css({'display':'block',

15 'left':e.pageX,

16 'top':e.pageY});

17 }

18 function hideHint() {

19 $('#hint').css({'display':'none'});

20 }

21 $('.footer-img').click(showMainStory);

22 $('.footer-img').mouseover(showHint).mouseout(hideHint);

Figure 6. The Extracted JavaScript Code

Instrumented

Web Page

XPath for

Root of

 Web Control

User Actions

on Web

Control

Phase 1:

Execution

Dependency

Graph

Slicing

Criterion

Phase 2:

Extraction

Source Code

of

Web Control

Figure 7. The Process of Our Approach

mutate DOM elements within and outside the specified web

control, functions that ever and never run, as the slicing criterion.

4.1.1. The Dependency Graph
The dependency graph represents the dependency relationships

between DOM elements and JavaScript expressions. We introduce

two types of nodes, DOM node and JavaScript node, to represent

DOM elements and JavaScript expressions respectively, and four

types of edges to represent relationships:

 A DOM-to-DOM edge represents a DOM element

depending on another DOM element, i.e. a child DOM

element depends on its parent DOM element.

 A DOM-to-JavaScript edge represents a DOM element

depending on a piece of JavaScript expression, i.e. a DOM

element depends on a piece of JavaScript expression which

writes on it, including attribute assignment and some

method invocations.

 A JavaScript-to-JavaScript edge represents a piece of

JavaScript expression depending on another piece of

JavaScript expression, there are several cases: 1) an

expression reading a value depends on the expression set the

value; 2) an expression inside a compounded expression

depends on the compounded expression (for, if, etc.); 3) an

invoked function depends on the expression that invokes it.

 A JavaScript-to-DOM edge represents a piece of JavaScript

expression depending on a DOM element, i.e. a piece of

JavaScript expression reads values from a DOM element,

including values of attributes and return values of a method

invocations.

Additionally, we divide JavaScript nodes into three sub-types:

function node, dummy function node, and expression node.

Because we perform slicing based on whether a function is an

event handler of intended web control, we define function node to

distinguish function expressions from ordinary expressions.

Besides, a function may be registered as event handlers on

elements within or outside the intended web control at the same

time (e.g., the showHint and hideHint are registered to the search

engine entry and the hot news viewer in the above example). To

distinguish functions that may be registered to different DOM

elements as event handlers, we create a dummy function for each

function that may be registered as an event handler, i.e. passed as

a parameter to another function call. We define a dummy function

node to represent a dummy function.

4.1.2. The Slicing Criterion
As mentioned above, in order to extract web control efficiently,

we perform dynamical analysis on only user defined JavaScript

code, which causes we cannot get a dependency graph that covers

the full dependency relationships.

We introduce a hybrid method to perform program slicing based

on the incomplete dependency graph. Based on this dependency

graph, simply extracting code related to the intended web control,

or simply discarding code related to other DOM elements, may

not generate an executable web control. Therefore, our approach

not only identifies code related to intended web control, which

should be preserved, but also identify code related to other DOM

elements, which should be discarded. Furthermore, code related to

both should be preserved because the intended web control does

depend on it, and code related to neither should be preserved

because the intended web control may depend on it.

In detail, we define four sets as slicing criterion: DOM elements

within the intended web control (S1), sibling elements of intended

web control (S2), event handlers of the intended web control (S3),

and un-executed functions (S4), where S1 and S3 are used to

identify code related to intended web control, S2 and S4 are used

to identify code related other DOM elements.

We generate S1 and S3 by checking the relationship between each

DOM element and the root element of intended web control

recursively. Initially, we put the root element into S1, and set S3

to empty; then we traverse the DOM tree recursively and check: if

an element is a child of the root element, we put it into S1. If it is

neither a child nor a parent of the root element, we put it into S3.

We generate S2 and S4 by checking whether a dummy function is

executed in event-handling phase. Initially, we set S2 to empty,

and put all functions created but not executed in page

initialization phase into S4; in event-handling phase, when a

dummy function is executed, we remove it from S4 and put it into

S2.

4.2. The Extraction Phase
This phase perform slicing base on the incomplete dependency

graph and the slicing criterion generated in the execution phase.

We preserve all CSS code and JavaScript libraries specified by

users, only extract code from HTML and user defined JavaScript.

4.2.1. Extracting HTML Code
We extract DOM elements within the intended web control and

their parent elements via the following steps: 1) we extract all

elements in S1, 2) because all the elements in S1 are under the

same sub DOM tree, we can determine their parent elements

based on any element in S1, so we randomly select an element

from S1, traverse the path following the element's parent chain

upward, and extract each encountered DOM element.

4.2.2. Extracting JavaScript Code
We extract JavaScript code via the follow steps: 1) we mark on

each node of dependency graph to represent whether it should be

preserved or discarded; 2) we discard nodes marked with

discarded only.

Marking Graph

We pick up a node from S1, S2, S3, and S4 sequentially, and

mark the graph as follows:

 For a node n from S1, we mark each succeed node of n with

a flag P recursively, which represents that nodes depending

on n should be preserved;

 For a node n from S2, we mark each succeed node of n with

a flag D recursively, which represents that nodes depending

on n should be discarded;

 For a node n form S3, we mark n, each succeed and

previous node of n with a flag P recursively, which

represents that n and nodes depending on or depended by n

should be preserved;

 For a node n form S4, we mark n, each succeed and

previous node of n with a flag D recursively, which

represents that n and nodes depending on or depended by n

should be discarded.

Discarding Code

After the dependency graph is marked, we traverse the

dependency graph and discard nodes that are marked with D only,

which means JavaScript code of these nodes is determined to have

relationships with DOM elements out of the intended web control

only.

To keep the executability of extracted JavaScript code, an

additional work is to fix expressions that depend on discarded

functions. Because the discarded functions are never invoked

during event-handling phase of extracted web control, we replace

the reference to a discarded function with an empty artifact

function within a preserved expression, to avoid the extracted web

control to raise an “Uncaught Reference Error” in the future.

5. Evaluation
We performed two case studies on real-world web applications.

We extracted two web controls from two popular web

applications using our approach, and manually checked whether

each extracted web control presented and acted as same as that in

the context of original web page. We try to answer the following

research questions:

RQ1: Is our approach able to extract web controls executing

correctly?

RQ2: What is the effect of our approach on reducing code size

and resource size?

RQ3: How efficient can our approach extract a web control?

5.1. Case Study 1

Our first web control came from sina.com [3]. Sina.com is the

largest Chinese-Language web portal, which provides a lot of

feature news as the focus of the lead story or the main photo. We

extracted the focus news control from the home page of news

center of sina.com, http://news.sina.com.cn.

The focus news control is composed of four components: a tab at

the top, an image viewer at the bottom, a pair of arrows at two

sides, and a switcher without presentation, as shown in Fig. 8. The

tab is composed of five items, mouse moving over which causes

switch of images displayed in the image viewer. The image viewer

periodically displays one image out of five, which is under control

of the switcher. Lastly, the pair of arrows allows users to switch

images manually, by clicking one of the two arrows.

Before extraction, we downloaded the source code of subject web

page to local storage. The web page could not execute correctly

locally, because it dynamically loaded external JavaScript code

from remote server. Moreover, it encrypted the core of remote

code loading library. So we modified and simplified the

JavaScript code of that page, to ease the manual work in the future.

Firstly, we distinguished user code from libraries and

advertisements manually, and instrumented user code by Jalangi

[19]. Then we started the extraction process by giving out the

XPath of the focus news control,

//*[@id="wrap"]/div[8]/div[1]/div[1], and performed the

following actions on the control: firstly, we waited for the image

viewer automatic cycling, then we moved the mouse over each of

the five items of the tab, finally we clicked the left and right

arrows per five times. Then the control is extracted, and we run

the extracted control and compared it with that in the context of

the original page. We did these works on a Google Chrome

browser, on a personal computer with Intel Core i7 CPU 3.40

GHz processer, 8GB of memory.

RQ1: we evaluated the correctness of extracted focus news

control by checking: 1) whether it presents the same as in the

context of the original web page, 2) whether it acts the same as in

the context of the original web page. We manually compared the

presentations of the extracted web control with the one in the

original web page, and they looked the same exactly. Then we

performed the same actions as doing in extracting phase on the

extracted control, and it played just the same as before. So we

believe we extracted the focus news control correctly.

RQ2: To measure the effect of our approach on focus news

control, we counted the code size and resource size of extracted

control, and compared them with the ones before extracting. Table

1 shows the result. The code includes HTML code, CSS code, and

JavaScript code, while the resource includes images besides code.

From the table we can find that our approach deduces the code

size and resource size of the focus news control by 78% and 98%,

and deduced codes are mainly HTML code out of intended web

control, JavaScript code of advertisements and other controls.

Deduced resources are mainly images of other controls. The result

shows that visiting only focus news control extracted by our

approach brings great code size and resource size reduction

compared to visiting the original web page, which means great

computation and bandwidth saving consequently.

RQ3: To measure the efficiency of our approach, we performed

the extraction process for ten times, and computed the average

time cost on extraction phase. We found that it took from 0.77s to

0.86s, with an average 0.82s, to finish the extracting process.

Compared with our approach, FireCrow [16], which is another

client side extracting tool, was not able to finish the process

within 20 minutes. Therefore, we believe that our approach is able

to extract a web control from a rich web page like sina efficiently.

Table 1 Comparing Result of Sina News

 Original Extracted Save

Code Size 1,122 KB 252 KB 78 %

Resource Size 19,586 KB 447 KB 98 %

Figure 8. Focus News from Sina.com

5.2. Case Study 2

Our second web control came from WordReference [20].

WordReference is the most famous online translation dictionary

for multiple languages. The home page of WordReference is very

simple, it defines only two web controls, and uses only an external

image less than 1 KB as a search icon, and no external CSS file.

The two web controls are a navigator at the top and a search entry

in the middle, as shown in Fig. 9. Our goal is to extract the search

entry control in the middle.

The search entry control is composed of four components: a text

input, a submit button, a selector, and a word recommender. Users

are allowed to type a searching word via the text input, and submit

the search request by clicking the submit button. When users are

typing a character, the word recommender appears showing words

starting with user typed characters. Lastly, users are allowed to

switch source and destine language for translating by changing the

value of the selector.

We performed the extraction process following the same steps as

that had been done in case 1. We downloaded the source code to

local storage, identified user defined JavaScript code manually,

and instrumented it by Jalangi. Then we gave out the XPath,

//*[@id="text_form"], and performed the following actions:

firstly, we moved the mouse over the input control, then typed ‘a’

two times, finally, we changed the value of the selector to

“Chinese-English”. Then we run the extracted control and

compared it with that in the context of the original page. We did

these works in the same environment as case 1.

RQ1: we evaluated the correctness from representation and

behavior respects respectively. Firstly, we compared the

representation of extracted search entry control with the one in the

original page, and found it represented exactly the same as that

before extracting, not only the appearance, but also the position

where it displayed. Secondly, we submitted ten requests for

searching “aa” under different language settings through the

extracted search entry, and found it submitted the requests to the

same pages as doing through the original page, except the word

recommender didn’t appear on the extracted one. This is because

the appearance of recommender is triggered by the callback

function of an asynchronous request, while executing the

extracted control locally is forbidden to submit a synchronous

request to a remote server because of the Same-Origin-Policy [21].

However, we analyzed the source code and found that all code

required by the control was preserved correctly, so we believe that

it would work correctly when deployed at the same server of

original page.

RQ2: Table 2 shows the effect of our approach on the search entry

control, comparing the code size and resource size of extracted

control with the ones before extracting. The code includes HTML

code and JavaScript code only, while the resource includes one

image less than 1 KB besides code. From the table we can find

that our approach deduces both the code and resource size by 23%.

The result shows even for an almost the simplest web page, our

approach is able to bring considerable deduction on the code size

and resource size.

RQ3: As done in case 1, we computed the average time cost on

extracting the search entry control for ten times. We found it took

from 0.14s to 0.17s, with an average 0.15s, to finish the extracting

process, compared with FireCrow [16], which took about 4

seconds. So we believe that our approach is able to extract a web

control from a simple web page such as WordReference

efficiently.

5.3. Threads to Validity

Our evaluation is performed on only two web applications.

However, these web applications considered are selected from

Alexa top sites [18], of different categories, and of different sizes.

They are representative in web application mobilization. Further,

we manually checked the correctness of extracted web controls,

which may be unsound. But, we have done our best. In future

work, we will evaluate our approach on more web applications of

more categories.

6. Discussion
Our approach extracts web controls with event handlers only

triggered by user actions performed in execution phase. Currently

we perform both the execution and extraction on a computer, and

can trigger only traditional desktop events, such as MouseEvent

and KeyboardEvent, rather than mobile events, such as

TouchEvent. So performing the whole extraction process on

desktop devices can extract web controls that execute correctly

only on desktop devices, rather than mobile devices. A simple

extension can be made to handle such issue, i.e. migrating the

execution phase to mobile devices, thus mobile events can be

triggered and corresponding JavaScript code can be extracted.

Our approach focuses on extracting user-specified web controls

which act and appear the same as the one in the original context.

However, web controls that are designed for desktop devices may

not fit mobile screens of vary sizes well. Manual work is required

to adapt the extracted web controls to different mobile screens.

We try to accomplish this manual work automatically in our

future work.

Generally, developers use a CSS selector to locate DOM elements,

which is often composed of a single element id, or a list of style

rules representing the contextual information. From CSS Level 3

[22], developers are allowed to locate an element by the

relationship of siblings, such as, the selector div:nth-child(2)

Figure 9. Home Page of WordReference

The Search Entry Control

Table 2 Comparing Result of WordReference

 Original Extracted Save

Code Size 225 KB 173 KB 23 %

Resource Size 226 KB 174 KB 23 %

represents a div element which is the second child of its parent.

However, our approach extracts only the elements within intended

web control and its parent elements, and discards their siblings,

which destroys the structure of the DOM tree, and may invalidate

the selectors composed of relationships of siblings. We find cases

like that rarely occur, and we will handle them in the future work.

7. Related Works
User Interface Adaptation. Many works use user interface

adaptation to fit traditional desktop web pages into small displays

for mobile devices. Huang et al. [12] detect blocks fitting a given

size of screen in a runtime web page by their actual width and

height. Chen et al. [1] detect blocks by explicit or implicit

separators of a web page. These are vision based page

segmentation works. Hua et al. [10] identify semantic blocks

based on the observation that semantics blocks are designed with

distinct themes and are distinguishable from the other parts of a

dynamic page, which is a content based page segmentation work.

These works focus on only the problem of different screen size, by

detecting blocks from a whole web page automatically and

locating to the block that users may be interested in, but users are

still forced to download the whole web page. While our approach

focus on problems causes by huge resource size rather than caused

by small screen size. Using our approach, users is allowed to

download only part of a web page, which not only fits better than

the whole web page, but also saves bandwidth and power for them.

Web Control Extraction. Maras et al. presents a series of works

to extract web controls from web pages for programming reuse

[16] [23] [24] [25]. It is similar to our approach that they use

dynamic analysis to extract related code of a web control from

executed JavaScript code. The difference is they concern the

accuracy of extraction, they analyze all executed code including

large scale of libraries, and perform a fine-grained extraction on

each expression, which makes their approach hardly handle real-

world web applications of large scale of JavaScript code. While

our approach concerns scalability, we analyze only user defined

JavaScript code, and perform slicing based on function definitions.

8. Conclusion
Traditional web applications are not suitable for accessing via

mobile devices directly. We propose an approach that is able to

extract a part of web page efficiently. Our approach monitors the

execution of web page initialization functions and event handlings

of the web control, and performs extraction by discarding code

that does not depend on or is not depended by the specified web

control. Two case studies on real-world web applications show

that our approach is able to extract correct web controls efficiently.

9. ACKNOWLEDGMENTS
The work was supported by National Grand Fundamental

Research 973 Program (2015CB352201) and National Natural

Science Foundation (61379044) and National High Technology

Research & Development 863 Program (2013AA041301) and

National Key Technology R&D Program (2015BAH18F02) of

China.

10. REFERENCES
[1] Y. Chen, W. Ma, and H. Zhang. Detecting Web Page

Structure for Adaptive Viewing on Small Form Factor

Devices, In Proc. WWW, 2003, 225-233.

[2] http://zeendo.com/info/mobile-screen-sizes.

[3] SinaNews. http://news.sina.com.cn.

[4] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl. MAUI: Making

Smartphones Last Longer with Code Offload, in Proc.

MobiSys, 2010, 49-62.

[5] SinaWap. http://sina.cn/?from=wap.

[6] SiteApp. http://zhanzhang.baidu.com/tools/siteapp.

[7] Baidu. http://www.baidu.com.

[8] IBM. http://www.ibm.com.

[9] Worklight. http://www.ibm.com/software/products/en/mobile

firstfoundation.

[10] Z. Hua, X. Xie, H. Liu, H. Lu, and W. Ma. Design and

Performance Studies of an Adaptive Scheme for Serving

Dynamic Web Content in a Mobile Computing Environment.

In IEEE Trans. on Mobile Computing, 5, 12, Dec. 2006,

1650-1662.

[11] X. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W. Ma.

Browsing on Small Displays by Transforming Web Pages

into Hierarchically Structured Subpages. In ACM Transs on

the Web, 3, 1, Jan. 2009, 1-36.

[12] G. Huang, and D. Wang. Adapting User Interface of Service-

Oriented Rich Client to Mobile Phones. In Proc. SOSE, 2011,

140-145.

[13] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic

Symbolic Testing of JavaScript Web Applications. In Proc.

FSE, 2014, 449-459.

[14] Yahoo. Https://www.yahoo.com.

[15] jQuery. http://www.jquery.com.

[16] J. Maras, M. Stula, J. Carlson, and I. Crnkovic. Identifying

Code of Individual Features in Client-side Web Applications.

In IEEE Trans. on Software Engineering, 39, 12, Dec. 2013,

1680-1697.

[17] T. Eisenbarth, and R. Koschke. Locating Features in Source

Code. In IEEE Trans. on Software Engineering, 29, 3, Mar.

2003, 210-224.

[18] Alexa. http://www.alexa.com/topsites.

[19] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A

Selective Record-Replay and Dynamic Analysis Framework

for JavaScript. In Proc. FSE, 2013, 488-498.

[20] WordReference. http://www.wordreference.com/.

[21] Same Origin Policy. http://www.w3.org/Security/wiki/Same_

Origin_Policy.

[22] CSS Selector Level 3. http://www.w3.org/TR/2009/PR-css3-

selectors-20091215/.

[23] J. Maras, M. Stula, and J. Carlson. Reusing Web Application

User-Interface Controls. In Proc. ICWE, 2011, 228-242.

[24] J. Maras, J. Carlson, and I. Crnkovic. Extracting Client-side

Web Application Code. In Proc. WWW, 2012, 819-828.

[25] J. Maras, J. Carlson, and I. Crnkovic. Towards Automatic

Client-side Feature Reuse. In Proc. WISE, 2013, 479-488.

