
Towards Web Application Mobilization via Efficient Web

Control Extraction

Shuai Wang, Wensheng Dou, Guoquan Wu, Jie Wang, Chushu Gao, Jun Wei, Tao Huang
Technology Center of Software Engineering

Institute of Software at Chinese Academy of Sciences, Beijing, China
{wangshuai, wsdou, gqwu, wangjie12, gaochushu, wj, tao}@otcaix.iscas.ac.cn

ABSTRACT

Traditional web applications are not suitable for mobile devices,

because mobile devices are usually equipped with small screens

and use slow and expensive mobile network. Existing approaches

to adapt web applications to mobile devices include

reconstructing particular web applications, which requires much

additional work, or adapting only views of web pages, which still

requires a lot of network bandwidth. In this paper we propose an

approach which extracts a part of a web page as an executable

web control efficiently. Our approach only monitors the execution

of user code, builds a dependency graph of executed user code,

and performs slicing upon the dependency graph. The evaluation

on two real-world web applications shows that our approach is

able to extract executable web controls efficiently, and visiting

extracted web controls instead of the whole web page saves 99%

and 23% of bandwidth separately.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – Restructuring, reverse engineering, and

reengineering

General Terms

Algorithms, Theory.

Keywords

Web Application, Web Control, Code Extraction, Program Slicing

1. INTRODUCTION
More and more people access web information through mobile

devices, but traditional web pages are developed for desktop

devices, such as PCs, which are not suitable for displaying in

mobile devices directly. Traditional web pages always contain

many kinds of information, such as news, navigations, ads, and so

on, while mobile devices aim to display single kind of information

[1], because of their small screens, limited network and power.

 Most mobile devices use 3–3.5 inch screens [2], while

mainstream desktop devices use screens around 20 inches.

Therefore, web pages designed for 20 inch screens will be

zoomed out to fit small screens of mobile devices, which

degrades the readability of original web pages.

 Mobile devices always use wireless network, which is

bandwidth-limited, unstable, and charged by consumption.

Traditional web pages are designed for desktop devices

using unlimited network, and they always contain

information as much as possible, which causes a huge size

for a single web page. For example, users may download

19.59 MB resources before visiting the home page of

SinaNews [3]. Therefore, visiting traditional web pages via

mobile devices is a time-consuming and money-consuming

work.

 Mobile devices uses batteries as their power supplier, which

is one of the short boards of mobile device usability. Some

smartphones last less than 2 hours only if they continuously

download files over 3G connections [4]. As mentioned

above, traditional web pages always have huge sizes, which

causes huge cost of power on downloading these web pages.

A lot of work has been done to solve these problems. Some

organizations build an individual mobile version of the original

web site, which is totally different, such as sina wap [5]. While

building a mobile version does solve the problems completely, it

requires additional budget. Some organizations present develop

tools to reduce the budget. SiteApp [6] provided by Baidu [7]

helps developers to build mobile version of an existing web site in

only four simple steps, but it only works on certain type of web

sites. IBM [8] presents Worklight [9], which is claimed to support

all kinds of web sites, but it requires a lot of developing efforts.

Some research works have been presented to solve these problems

too [1] [10] [11] [12], which supply readable views of web pages

via displaying only part of web pages fitting the screen at one time.

These works mainly aim to solve the problem caused by

differences of screen sizes, and they don’t care about the high cost

of bandwidth and power caused by visiting web pages of huge

size.

It is a better way to download only user-interested part instead of

the whole one while visiting web pages via mobile devices, as part

of web pages fits better to the mobile screens than the whole ones,

and downloading only a part saves bandwidth and power

obviously. To achieve this goal, we present an approach to

perform efficient web control extraction for web application

mobilization. Our approach is inspired by the following

observation: web applications are event-driven [13]. Event

handlers implemented in JavaScript are used to interact with users,

which have to be registered to some HTML DOM elements firstly,

and then will be triggered by events fired on it or its child

elements. Based on this observation, our approach extracts

selected DOM elements as presentation of specified web control,

and infers event handlers of specified web control by monitoring

execution of event handlers; in order to perform the process

efficiently, we monitor only user defined code. Compared to

existing extracting technique [16] which monitors all the executed

code containing the JavaScript code inside the third-party library,

the proposed approach can extract web controls from web

applications of a large scale efficiently.

In summary, our contributions are as follows:

 We propose an approach to efficiently extract web controls

from web pages.

 We implement a prototype system for our approach. Our

prototype system allows developers to extract web controls

from real-world web pages.

 We perform two case studies on popular real-world web

applications, and the result shows that our approach is able

to extract executable user specified web controls efficiently.

The rest of the paper is organized as follows. We illustrate the

motivation of our approach by a real-world example in Section 2,

and the overview in Section 3. In Section 4, we describe our

approach in detail. We show how we have evaluated the approach

Section 5, and discuss the limitations of the approach in Section 6.

Related works are presented in Section 7. Finally we give a

conclusion in Section 8.

2. Motivation Example
In this section, we introduce a real-world example that will be

used throughout the paper. The example is a simplified version of

part of Yahoo home page [14], and is built on jQuery [15].

Yahoo is one of the most popular web sites of the world, it is

globally known for its web portal and search engine. We build a

simple web page following Yahoo home page, which consists of a

search engine entry and a hot news viewer, as shown in Fig. 1.

The search engine entry lies at the top of page, which consists of a

text input control and a submit button control. The hot news

viewer lies at the bottom, which consists of a large picture viewer

marked with news title and a hot news list containing five small

pictures. Users are allowed to submit a search request by typing

search keywords and then clicking the submit button, or switch

the large picture by clicking on some small picture in news list, or

navigate to news detail page by clicking on the large picture.

Additionally, the page displays hints to direct user interaction, e.g.,

when a user move his mouse over the text input control, a hint

displaying ‘Enter your search term’ appears.

Fig. 2 shows the HTML code of the example. There are two child

DIV elements of body, i.e. searchWrapper, and main_story. The

searchWrapper DIV (line 5 - 10) contains elements of the search

engine entry. The main_story DIV (line 11 - 41) contains

elements of the hot news viewer, and it is composed of two sub

DIV elements, main_story_content (line 12 - 23), which is served

as the large picture viewer, and footer-section (line 24 - 40),

which is served as the hot news list.

Fig. 3 shows the JavaScript code of the example. It defines four

functions. The first one, updateMainStory (line 1 - 3), updates the

content of the large picture viewer by the received msg.

updateMainStory is asynchronously invoked by the second one,

showMainStory (line 4 - 8), which asynchronously updates

content of the large picture viewer according to data attribute of

the DOM element that triggers the function. The third one,

showHint (line 9 - 15), displays the hint attribute as the hint

information to users, and the last one, hideHint (line 16 - 18),

hides the hint information. The last four lines of code (line 19 - 22)

register the above four functions to some DOM elements as their

event handlers. Line 19 registers showMainStory as the click

event handler of each item of the hot news list (.footer-img-

holder). Line 20 - 22 add features of show and hide hint to each

hot news item (.footer-img-holder), the text input control (#key),

and the submit button (#search-submit). Note that the code

register event handlers using event delegation mechanism instead

of registering event handlers directly, in line 21 and 22, which

register two event handlers to document element instead of the

text input and submit button elements.

Figure 1. The Web Page of the Example

Figure 2. The HTML Code of the Example

Figure 3. The JavaScript Code of the Example

Our example illustrates several important features of web

applications. Web applications always use JavaScript libraries to

ease the development, which make up a large percentage of all

JavaScript code. Libraries always supply powerful APIs so that

developers are able to do their jobs within a few lines of code,

which causes a lot of details to be hidden in libraries. Lastly, a

function can be registered as event handlers to multiple DOM

elements at the same time, no matter whether they belong to the

same web control or not.

3. Approach Overview
Our approach extracts web controls from web pages. Here, we

define a web control is a subset of a web page, which satisfies: 1)

it contains a set of visually and behaviorally distinct HTML

elements, 2) it encapsulates structure and the behavior on that

structure, 3) it is self-contained, i.e. it never interacts with other

elements out of the control. Based on this definition, we can find

that there are two web controls in the above example, i.e. the

search engine entry and the hot news viewer. Note that the big

picture viewer and the hot news list are not web controls, because

they are not self-contained (they interact with each other).

Web pages are developed with a combination of three different

languages: HTML, CSS and JavaScript. HTML is a markup

language that defines structure and content of a web page. CSS is

a style sheet language that expresses the presentation of web

pages. JavaScript is a scripting language that defines the behavior

of web pages. Elements of HTML form a tree structure, which is

quite simple to extract. CSS is often used through the whole web

sites, and we believe that it can be kept fully. JavaScript code is

always composed of user code and libraries. Libraries are often

used through the whole web sites, and just like CSS, there is no

need to slice them. Different user code is developed for different

web pages, and thus only user code that related to web controls

should be extracted.

The life-time of the web pages can be divided into two steps: 1)

page initialization, when the browser parses the web page code

and builds the DOM of the page, and 2) event-handling, when

users interact with the pages [16]. In the first step, JavaScript is

used to build the DOM, including mutating DOM states,

registering event handlers. In the second step, JavaScript is used

as event handlers to interact with users.

To identify JavaScript code of a specified web control, we need to

identify code that 1) mutates the web control, 2) defines event

handlers of the web control and 3) registers these event handlers.

We identify code that mutates the web control by monitoring the

effect of executing JavaScript code on DOM state, identify code

that defines event handlers by firing all events on the specified

web control, which triggers execution of event handlers, and then

record the executing functions and identify their definitions via

the dependency graph. Finally, we identify code that registers

these event handlers via the same dependency graph, the

registration code should depend on the definition code.

In order to identify the three types of JavaScript code efficiently,

we conduct a dynamic analysis on only user defined JavaScript

code, which results in a dependency graph that cannot cover the

full dependency relationships. In essence, the process of

identification is performing dynamic program slicing on HTML

and JavaScript code. To accomplish the process, we define four

set of nodes as the slicing criterion: generates a selected-DOM-

element set (S1), a sibling-of-selected-DOM-element set (S2), an

executed-function set (S3), and a un-executed-function set (S4),

where code depended on by S1 is the one that mutates the

specified web control, code depended on by S3 is the one that

hideHintshowHint

showMainStory

updateMainStory

4-1

4
body

11
div

5
div

12
div

24
div

...

25
span

28
span

......

26
img

29
img

2

7 6 5

1
4 9 16

13 14 17

19 20 21 22

1-1

9-1 9-216-1 16-2

DOM Element

Function

Dummy Function

Expression

10

11

Figure 4. The Dependency Graph of the Example

defines event handlers of specified web control and code

depended by S3 registers them, and S2 and S4 for other web

controls as well. We perform the slicing by preserving code that is

related to specified web control, discarding code that is related to

other web controls, and preserving code having no relationship

with these web controls.

Our approach is composed of two phases: execution and

extraction. In execution phase, our approach monitors the

execution of page initialization and event handlers registered on

the web control. We require the user to point out the root DOM

element of intended web control, and to interact with the control

to trigger all event handlers registered on that control. We assume

that the one who wants to extract a web control has the knowledge

of the internal details of the web control. This is in line with the

assumptions presented in [16] [17]. While the code is executing,

we build a dependency graph of the DOM tree and executed

JavaScript code, and generates the four sets as slicing criterion. In

extraction phase, we perform program slicing based-on the

dependency graph and the slicing criterion, and generate the

HTML code and JavaScript code of the specified web control.

We illustrate the process of our approach via extracting the hot

news viewer from above example.

Before the start of process, the user are required to point out user

defined JavaScript code of a web page, which is the target of

analysis in the next step.

Firstly, in execution phase, user opens the web page in a browser,

and the web page starts to initialize automatically. Then user gives

out a XPath “/html/body/div[2]”, which specifies root HTML

element of hot news viewer, and triggers all the three event

handlers on hot news viewer via moving on/out and clicking on

each of five small pictures at the bottom. At the same time, our

approach builds a dependency graph for executed JavaScript code

and initialized DOM tree, as shown in Fig. 4, and generates four

sets list as following:

 S1 : selected-DOM-element set

{ 11, c11 | c11 is a child node of node 11 }

 S2 : sibling-of-selected-DOM-element sets

{ 5, c5 | c5 is a child node of node 5 }

 S3 : executed-event-handler set

{ 1-1, 4-1, 9-1, 16-1 }

 S4 : un-executed-function set

{ 9-2, 16-2 }

Secondly, in the extraction phase, we traverse the dependency

graph, and perform extraction by the following steps. For HTML

code, we extract HTML elements in S1 and their parent elements,

as shown in Fig. 5. For JavaScript code, we discard JavaScript

code that depends on or is depended on by nodes in S2 and S4,

and does not depend on or is not depended on by nodes in S1 and

S3, i.e. node 21 and 22. Then we get the JavaScript code of

intended web control, as shown in Fig. 6.

4. Approach
Our approach is composed of two phases, execution and

extraction. Initially, we instrument the web page with the monitor

code. Then, in the execution phase, our approach runs the

instrumented web page in a web browser, along with an XPath

specifying the root HTML element of intended web control, and a

series of user actions triggering event handlers on the control.

When the web page is running, our approach monitors the

executed JavaScript code, generates a dependency graph and four

node sets as slicing criterion as output. Finally, the extraction

phase receives the dependency graph and the slicing criterion as

input, performs slicing upon the source code of the web page, and

generates the source code of intended web control as output. The

overall process is shown in Fig. 7.

4.1 The Execution Phase
This phase monitors the execution of JavaScript code, and

generates a dependency graph and slicing criterion for the next

phase.

As mentioned above, the lifetime of a web page can be divided

into two steps, page initialization and event-handling. In page

initialization step, all initialization code executes, no matter

whether it is related to the specified web control or not, we have

to separate related code from others; while in event-handling step,

only event handlers of specified web control are triggered, and

functions executed in this step should be extracted

indiscriminately. We separate initialization code related to the

Figure 5. The Extracted HTML Code

Figure 6. The Extracted JavaScript Code

specified web control based on the dependency relationships

between initialization code and executed event handlers.

We build a dependency graph to describe the relationships

between event handlers and initialization code. When the

JavaScript is executing, our approach records expressions that

mutate DOM elements within and outside the specified web

control, functions that ever and never run, as the slicing criterion.

4.1.1 The Dependency Graph
The dependency graph represents the dependency relationships

between DOM elements and JavaScript expressions. We introduce

two types of nodes, DOM node and JavaScript node, to represent

DOM elements and JavaScript expressions respectively, and four

types of edges to represent relationships:

 A DOM-to-DOM edge represents a DOM element

depending on another DOM element, i.e. a child DOM

element depends on its parent DOM element.

 A DOM-to-JavaScript edge represents a DOM element

depending on a piece of JavaScript expression, i.e. a DOM

element depends on a piece of JavaScript expression which

writes on it, including attribute assignment and some

method invocations.

 A JavaScript-to-JavaScript edge represents a piece of

JavaScript expression depending on another piece of

JavaScript expression, there are several cases: 1) an

expression reading a value depends on the expression set the

value, 2) an expression inside a compounded expression

depends on the compounded expression, such as for, if, etc.,

3) an invoked function depends on the expression that

invokes it.

 A JavaScript-to-DOM edge represents a piece of JavaScript

expression depending on a DOM element, i.e. a piece of

JavaScript expression reads values from a DOM element,

including values of attributes and return values of a method

invocations.

Additionally, we divide JavaScript nodes into three sub-types:

function node, dummy function node, and expression node.

Because we perform slicing based on whether a function is an

event handler of intended web control, we define function node to

distinguish function expressions from ordinary expressions.

Besides, a function may be registered as event handlers on

elements within or outside the intended web control at the same

time (e.g., the showHint and hideHint are registered to the search

engine entry and the hot news viewer in the above example). To

distinguish functions that may be registered to different DOM

elements as event handlers, we create a dummy function for each

function that may be registered as an event handler, i.e. passed as

a parameter to another function call. We define a dummy function

node to represent a dummy function.

4.1.2 The Slicing Criterion
As mentioned above, in order to extract web control efficiently,

we perform dynamical analysis on only user defined JavaScript

code, which causes we cannot get a dependency graph that covers

the full dependency relationships.

We introduce a hybrid method to perform program slicing based

on the incomplete dependency graph. Based on this dependency

graph, simply extracting code related to the intended web control,

or simply discarding code related to other DOM elements, may

not generate an executable web control. Therefore, our approach

not only identifies code related to intended web control, which

should be preserved, but also identify code related to other DOM

elements, which should be discarded Furthermore, code related to

both should be preserved because the intended web control does

depend on it, and code related to neither should be preserved

because the intended web control may depend on it.

In detail, we define four sets as slicing criterion: DOM elements

within the intended web control (S1), sibling elements of intended

web control (S2), event handlers of the intended web control (S3),

and un-executed functions (S4), where S1 and S3 are used to

identify code related to intended web control, S2 and S4 are used

to identify code related other DOM elements.

We generate S1 and S3 by checking the relationship between each

DOM element and the root element of intended web control

recursively. Initially, we put the root element into S1, and set S3

to empty; then we traverse the DOM tree recursively and check: if

an element is a child of the root element, we put it into S1, else if

it is neither a child nor a parent of the root element, we put it into

S3.

We generate S2 and S4 by checking whether a dummy function is

executed in event-handling phase. Initially, we set S2 to empty,

and put all functions into S4; in event-handling phase, when we

monitor a dummy function is executed, we remove it from S4 and

put it into S2.

4.2 The Extraction Phase
This phase perform slicing base on the incomplete dependency

graph and the slicing criterion generated in the execution phase.

We preserve all CSS code and JavaScript libraries pointed out by

users, only extract code from HTML and user defined JavaScript

code.

4.2.1 Extracting HTML Code
We extract DOM elements within the intended web control and

their parent elements via the following steps: 1) we extract all

elements in S1, 2) we randomly select an element from S1 (all

elements in S1 are under the same sub DOM tree), traverse the

path following the element's parent chain upward, and extract

each encountered DOM element.

4.2.2 Extracting JavaScript Code
We extract JavaScript code via the follow steps: 1) we mark on

each node of dependency graph to represent whether it should be

preserved or discarded; 2) we discard nodes marked with being

discarded only.

Instrumented

Web Page

XPath for

Root of

 Web Control

User Actions

on Web

Control

Phase 1:

Execution

Dependency

Graph

Slicing

Criterion

Phase 2:

Extraction

Source Code

of

Web Control

Figure 7. The Process of Our Approach

Marking Graph

We pick up a node from S1, S2, S3, and S4 sequentially, and

mark the graph as follows:

 For a node n from S1, we mark each succeed node of n with

a flag P recursively, which represents that nodes depending

on n should be preserved;

 For a node n from S2, we mark each succeed node of n with

a flag D recursively, which represents that nodes depending

on n should be discarded;

 For a node n form S3, we mark n, each succeed and

previous node of n with a flag P recursively, which

represents that n and nodes depending on or depended on by

n should be preserved;

 For a node n form S4, we mark n, each succeed and

previous node of n with a flag D recursively, which

represents that n and nodes depending on or depended on by

n should be discarded.

Discarding Code

After the dependency graph is marked, we traverse the

dependency graph and discard nodes that are marked with D only,

which means JavaScript code of these nodes is determined to have

nothing to do with the intended web control totally.

To keep the executability of extracted JavaScript code, an

additional work is to fix expressions that depend on discarded

functions. Because the discarded functions are never invoked

during event-handling phase of extracted web control, we replace

the reference to a discarded function with an empty artifact

function within a preserved expression, to avoid the extracted web

control to raise an “Uncaught Reference Error” in the future.

5. Evaluation
We performed two case studies using real-world web applications.

We extracted two web controls from two popular web

applications using our approach, and manually checked whether

each extracted web control presented and acted the same as that in

the context of original web page. We try to answer the following

research questions:

RQ1: Is our approach able to extract web controls executing

correctly?

RQ2: What is the effect of our approach?

RQ3: How efficient can our approach extract a web control?

5.1 Case Study 1

Our first web control came from sina.com [3]. Sina.com is the

largest Chinese-Language web portal, which provides a lot of

feature news as the focus of the lead story or the main photo. We

extracted the focus news control from the home page of news

center of sina.com, http://news.sina.com.cn.

The focus news control is composed of four components: a tab at

the top, an image viewer at the bottom, a pair of arrows at two

sides, and a switcher without presentation, as shown in Fig. 8. The

tab is composed of five items, mouse moving over which causes

switch of images displayed in the image viewer. The image viewer

periodically displays one image out of five, which is under control

of the switcher. Lastly, the pair of arrows allows users to switch

images manually, by clicking one of the two arrows.

Before extraction, we downloaded the source code of subject web

page to local storage. The web page could not execute correctly

locally, because it dynamically loaded external JavaScript code

from remote server. Moreover, it encrypted the core of remote

code load library. So we modified and simplified the JavaScript

code of that page, to ease the manual work in the future. Firstly,

we separated user code from libraries and advertisements

manually, and instrumented user code by Jalangi [19]. Then we

started the extraction process by giving out the XPath of the focus

news control, //*[@id="wrap"]/div[8]/div[1]/div[1], and

performed the following actions on the control: firstly, we waited

for the image viewer automatic cycling, then we moved the mouse

over each of the five items of the tab, finally we clicked the left

and right arrows per five times. Then the control is extracted, and

we run the extracted control and compared it with that in the

context of the original page. We did these works on a Google

Chrome browser, on a personal computer with Intel Core i7 CPU

3.40 GHz processer, 8GB of memory.

RQ1: we evaluated the correctness of extracted focus news by

checking: 1) whether it presents the same as in the context of the

original web page, 2) whether it acts the same as in the context of

the original web page. We manually compared the presentations

of the extracted one with the one in the original web page, and

they looked the same exactly. Then we performed the same

actions as doing in extracting phase on the extracted control, and

it played just the same as before. So we believe we extracted the

focus news control correctly.

RQ2: To measure the effect of our approach on focus news

control, we counted the code size and resource size of extracted

control, and compared them with the ones before extracting. Table

1 shows the result. The code includes HTML code, CSS code, and

JavaScript code, while the resource includes images besides code.

From the table we can find that our approach deduces the code

size and resource size of the focus news control by 78% and 99%,

and deduced codes are mainly HTML code out of intended web

Figure 8. Focus News from Sina.com

Table 1 Comparing Result of Sina News

 Original Extracted Save

Code Size 1,122 KB 252 KB 78 %

Resource Size 19,586 KB 195 KB 99 %

control, JavaScript code of advertisements and other controls.

Deduced resources are mainly images of other controls. The result

shows fewer computation and bandwidth is needed to visit focus

news of Sina via our approach, which means great energy and

bandwidth saving.

RQ3: To measure the efficiency of our approach, we performed

the extraction process for ten times, and computed the average

time cost on extraction phase. We found that it took from 0.77s to

0.86s, with an average 0.82s, to finish the extracting process.

Compared with our approach, FireCrow [16], which is another

client side extracting tool, was not able to finish the process

within 10 minutes. Therefore, we believe that our approach is able

to extract a web control from a rich web page like sina efficiently.

5.2 Case Study 2

Our second web control came from WordReference [20].

WordReference is the most famous online translation dictionary

for multiple languages. The home page of WordReference is very

simple, it defines only two web controls, and uses only an external

image less than 1 KB as a search icon, and no external CSS file.

The two web controls are a navigator at the top and a search entry

in the middle, as shown in Fig. 9. Our goal is to extract the search

entry control in the middle.

The search entry control is composed of four components: a text

input, a submit button, a selector, and a word recommender. Users

are allowed to type a searching word via the text input, and submit

the search request by clicking the submit button. When users are

typing a character, the word recommender appears showing words

starting with user typed characters. Lastly, users are allowed to

switch source and destine language for translating by changing the

value of the selector.

We performed the extraction process following the same steps as

that had been done in case 1. We downloaded the source code to

local storage, identified user defined JavaScript code manually,

and instrumented it by Jalangi. Then we gave out the XPath,

//*[@id="text_form"], and performed the following actions:

firstly, we moved the mouse over the input control, then typed ‘a’

two times, finally, we changed the value of the selector to

“Chinese-English”. Then we run the extracted control and

compared it with that in the context of the original page. We did

these works in the same environment as case 1.

RQ1: we evaluated the correctness from representation and

behavior respects separately. Firstly, we compared the

representation of extracted search entry control with the one in the

original page, and found it represented exactly the same as that

before extracting, not only the appearance, but also the position

where it displayed. Secondly, we submitted ten requests for

searching “aa” under different language settings through the

extracted search entry, and found it submitted the requests to the

same pages as doing through the original page, except the word

recommender didn’t appear on the extracted one. This is because

the appearance of recommender is triggered by the callback

function of an asynchronous request, while executing the

extracted control locally is forbidden to submit a synchronous

request to a remote server because of the Same-Origin-Policy [21].

However, we analyzed the source code and found that all code

required by the control was preserved correctly, so we believe that

it would work correctly when deployed at the same server of

original page.

RQ2: Table 2 shows the effect of our approach on the search entry

control, comparing the code size and resource size of extracted

control with the ones before extracting. The code includes HTML

code and JavaScript code only, while the resource includes one

image less than 1 KB besides code. From the table we can find

that our approach deduces both the code and resource size by 23%.

The result shows even for an almost the simplest web page, our

approach is able to deduce cost on energy and bandwidth.

RQ3: As done in case 1, we computed the average time cost on

extracting the search entry control for ten times. We found it took

from 0.14s to 0.17s, with an average 0.15s, to finish the extracting

process, compared with FireCrow [16], which took about 4

seconds. So we believe that our approach is able to extract a web

control from a simple web page such as WordReference

efficiently.

5.3 Threads to Validity

Our evaluation is performed on only two web applications.

However, these web applications considered are selected from

Alexa top sites, of different categories, and of different sizes. They

are representative in web application mobilization. Further, we

manually checked the correctness of extracted web controls,

which may be unsound. But, we have done our best. In future

work, we will evaluate our approach on more web applications of

more categories.

6. Discussion
Generally, developers use a CSS selector to locate DOM elements,

which is often composed of a single element id, or a list of style

rules representing the contextual information. From CSS Level 3

[21], developers are allowed to locate an element by the sequence

number of siblings. However, our approach extracts only the

elements within intended web control and its parent elements, and

discards its parent’s siblings, which destroys the structure of the

DOM tree, and may invalidate the selectors composed of

sequence number of siblings. We find cases like that seldom exist,

and we will handle them in the future.

Figure 9. Home Page of WordReference

Table 2 Comparing Result of WordReference

 Original Extracted Save

Code Size 225 KB 173 KB 23 %

Resource Size 226 KB 174 KB 23 %

The Search Entry Control

Our approach extracts event handlers only triggered by user

actions performed in execution phase. Currently we perform the

execution and extraction on a computer, and can only trigger

traditional desktop event handlers, such as MouseEvent and

KeyboardEvent. So the extracted web controls don’t match

mobile devices well. To extract web controls exactly match

mobile devices on a desktop device is another work in the future.

7. Related Works
User Interface Adaptation. Many works use user interface

adaptation to fit traditional desktop web pages into small displays

for mobile devices. Huang et al. [12] detect blocks fitting a given

size of screen in a runtime web page by their actual width and

height. Chen et al. [1] detect blocks by explicit or implicit

separators of a web page. These are vision based page

segmentation works. Hua et al. [10] identify semantic blocks

based on the observation that semantics blocks are designed with

distinct themes and are distinguishable from the other parts of a

dynamic page, which is a content based page segmentation work.

These works focus on only the problem of different screen size, by

detecting blocks from a whole web page automatically and

locating to the block that users may be interested in, but users are

still forced to download the whole web page. While our approach

focus on problems causes by huge resource size besides caused by

small screen size, with the assist of our approach, users can not

only get fitting views, but also save their bandwidth and power.

Web Control Extraction. Maras et al. presents a series of works

to extract web controls from web pages for programming reusing

[16] [23] [24] [25]. It is similar to our approach that they use

dynamic analysis to extract related code of a web control from

executed JavaScript code. The difference is they concern the

accurate of extracted code, they analysis all executed code

including large scale of libraries, and perform a fine-grained

extraction on each expression, which results their approach hardly

handles real-world web applications of large scale of JavaScript

code. While our approach concerns scalability, we analysis only

user defined JavaScript code, and extracts code based on function

definitions.

8. Conclusion
Traditional web applications are not suitable for accessing via

mobile devices directly. We propose an approach that is able to

extract a part of web page efficiently. Our approach monitors the

execution of functions of initialization and event handlings of the

web control, and performs extraction by discarding code that

doesn’t depend on or is depended on by the intended web control.

Two case studies on real-world web applications show that our

approach is able to extract web controls correctly and efficiently.

9. REFERENCES
[1] Y. Chen, WY. Ma, and HJ. Zhang. Detecting Web Page

Structure for Adaptive Viewing on Small Form Factor

Devices, In Proc. World Wide Web, 2003

[2] http://zeendo.com/info/mobile-screen-sizes

[3] SinaNews. http://news.sina.com.cn

[4] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S.

Saroiu, R. Chandra, and P. Bahl. MAUI: Making

Smartphones Last Longer with Code Offload, in The 8th

Annual International Conference on Mobile Systems,

Applications, and Services, 2010

[5] SinaWap. http://sina.cn/?from=wap

[6] SiteApp. http://zhanzhang.baidu.com/tools/siteapp

[7] Baidu. http://www.baidu.com

[8] IBM. http://www.ibm.com

[9] Worklight. http://www.ibm.com/software/products/en/mobile

firstfoundation

[10] Zg. Hua, X. Xie, H, Liu, Hq. Lu, and Wy. Ma. Design and

Performance Studies of an Adaptive Scheme for Serving

Dynamic Web Content in a Mobile Computing Environment.

In IEEE Transactions on Mobile Computing, 2006

[11] Xy. Xiao, Q. Luo, D. Hong, HB. Fu, X. Xie, and Wy. Ma.

Browsing on Small Displays by Transforming Web Pages

into Hierarchically Structured Subpages. In ACM

Transactions on the Web, 2009

[12] G. Huang, and Dm. Wang. Adapting User Interface of

Service-Oriented Rich Client to Mobile Phones. In

Proceedings of The 6th IEEE International Symposium on

Service Oriented System Engineering, 2011

[13] G. Li, E. Andreasen, and I. Ghosh. SymJS: Automatic

Symbolic Testing of JavaScript Web Applications. In

Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, 2014

[14] Yahoo. Https://www.yahoo.com

[15] jQuery. http://www.jquery.com

[16] J. Maras, M. Stula, J. Carlson, and I. Crnkovic. Identifying

Code of Individual Features in Client-side Web Applications.

In IEEE Transactions on Software Engineering, 2011

[17] T. Eisenbarth, and R. Koschke. Locating Features in Source

Code. In IEEE Transactions on Software Engineering, 2003

[18] Alexa. http://www.alexa.com/topsites

[19] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A

Selective Record-Replay and Dynamic Analysis Framework

for JavaScript. In Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering, 2013

[20] WordReference. http://www.wordreference.com/

[21] Same Origin Policy. http://www.w3.org/Security/wiki/Same_

Origin_Policy

[22] CSS Selector Level 3. http://www.w3.org/TR/2009/PR-css3-

selectors-20091215/

[23] J. Maras, M. Stula, and J. Carlson. Reusing Web Application

User-Interface Controls. In The 11th International

Conference on Web Engineering, 2011

[24] J. Maras, J. Carlson, and I. Crnkovic. Extracting Client-side

Web Application Code. In The World Wide Web Conference,

2012

[25] J. Maras, J. Carlson, and I. Crnkovic. Towards Automatic

Client-side Feature Reuse. In The 14th International

Conference on Web Information System Engineering, 2013

