
VEnron: A Versioned Spreadsheet Corpus and

Related Evolution Analysis
Wensheng Dou1, Liang Xu1, Shing-Chi Cheung2, Chushu Gao1, Jun Wei1, Tao Huang1

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

2Dept. of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

1{wsdou, xuliang12, gaochushu, wj, tao}@otcaix.iscas.ac.cn, 2scc@cse.ust.hk

ABSTRACT

Like most conventional software, spreadsheets are subject to

software evolution. However, spreadsheet evolution is rarely as-

sisted by version management tools. As a result, the version in-

formation across evolved spreadsheets is often missing or highly

fragmented. This makes it difficult for users to notice the evolu-

tion issues arising from their spreadsheets.

In this paper, we propose a semi-automated approach that lever-

ages spreadsheets’ contexts (e.g., attached emails) and contents to

identify evolved spreadsheets and recover the embedded version

information. We apply it to the released email archive of the En-

ron Corporation and build an industrial-scale, versioned spread-

sheet corpus VEnron. Our approach first clusters spreadsheets that

likely evolved from one to another into evolution groups based on

various fragmented information, such as spreadsheet filenames,

spreadsheet contents, and spreadsheet-attached emails. Then, it

recovers the version information of the spreadsheets in each evo-

lution group. VEnron enables us to identify interesting issues that

can arise from spreadsheet evolution. For example, the versioned

spreadsheets popularly exist in the Enron email archive; changes

in formulas are common; and some groups (16.9%) can introduce

new errors during evolution.

According to our knowledge, VEnron is the first spreadsheet cor-

pus with version information. It provides a valuable resource to

understand issues arising from spreadsheet evolution.

CCS Concepts

•Applied computing→Computers in other domains→Personal

computers and PC applications→Spreadsheets •Software and

its engineering → Software creation and management →

Software post-development issues→Software reverse engineer-

ing.

Keywords

Version; spreadsheet; evolution

1. INTRODUCTION
Spreadsheets have been widely used by companies for various

business tasks, such as data capturing and analysis, decision sup-

port, financial reporting, and so on. Scaffidi [29] estimated that

over 55 million users in the United States used spreadsheets in

2012.

Since spreadsheets are mostly written by users unfamiliar with

software engineering practice, errors are easily induced into

spreadsheets during maintenance and updates [26]. If these errors

are not timely detected and fixed, they can induce great financial

losses [24]. In order to improve the quality of spreadsheets, re-

searchers have applied many software engineering methods and

techniques, which have been developed for conventional pro-

grams, on spreadsheets, such as testing [1][12], error detection

[7][9][17], and debugging [2][28].

Like conventional program code, spreadsheets can be copied,

modified and renamed during evolution. The studies on conven-

tional program evolution have significantly affected software

engineering practice. Examples of these studies include clone

[20][23][30], defect predication [13][21], and bug fixing [19].

However, there are few studies made on the spreadsheet evolution

despite its importance [18]. The unavailability of industrial-scale

spreadsheet corpora with change histories and version information

is a key obstacle to study spreadsheet evolution problems scientif-

ically. First, the change history of spreadsheets is rarely docu-

mented. A lot of spreadsheets are being maintained without ver-

sion control [10]. Second, although some companies may use

SharePoint1, Google Spreadsheets2, SpreadGit3 or other version

management tools (e.g., Github4) to store the version information

of spreadsheets, the information is not publicly accessible due to

business confidentiality. Third, the two most popular spreadsheet

corpora used by a significant amount of prior work on spread-

sheets are EUSES [11] and Enron [14]. However, both of them do

not include any version information, and no relations among the

spreadsheets are provided. As such, it is difficult to infer the con-

text in which the spreadsheets were created and modified.

Lack of version information also puts a major threat to the quality

assurance of spreadsheets and impose difficulties in tracing root

causes of spreadsheet errors [10]. In order to understand the is-

sues arising from spreadsheet evolution, extracting versions across

spreadsheets is a practical problem encountered by the industry.

1 https://products.office.com/en-us/sharepoint
2 http://www.google.com/sheets
3 https://spreadgit.com/
4 https://github.com

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICSE’16 Companion, May 14–22, 2016, Austin, TX, USA.

© 2016 ACM. ISBN 978-1-4503-4205-6/16/05…$15.00.

DOI: http://dx.doi.org/10.1145/2889160.2889238

However, no methodologies or tools are available to address this

problem. In this paper, we recover the missing change history by

clustering spreadsheets that are likely the multiple versions origi-

nated from the same spreadsheet into an evolution group. We

build a spreadsheet corpus VEnron with change histories and

version information. VEnron was extracted from the email archive

within the Enron Corporation [22], which is one of the largest

industrial, real-world data set. In the Enron email archive, we

observe that, due to the lack of version control systems, users

often exchange their new, updated or revised spreadsheets to oth-

ers by emails. Therefore, the valuable version information about

spreadsheets are hidden in these emails. We cluster the same or

similar spreadsheets, and use the information contained in the

emails and spreadsheets to recover the linkage among spread-

sheets, such as the sending time of an email, the filenames and

contents of spreadsheets, and so on. After obtaining the versioned

corpus, we perform several spreadsheet evolution analyses on it.

VEnron provides the first publicly available spreadsheet corpus

with the historical version information. It serves a valuable re-

source to facilitate future scientific studies on spreadsheet mainte-

nance. The contributions of this paper are as follows:

 A semi-automated approach to identifying spreadsheets that

correspond to multiple versions originated from the same

spreadsheet and clustering them into evolution groups.

 An industrial-scale and public spreadsheet evolution corpus of

360 evolution groups, including 7,294 spreadsheets

(http://sccpu2.cse.ust.hk/venron/).

 An analysis on these evolution groups, including the users

involved in a group, spreadsheet changes, error trend.

The remainder of this paper is organized as follows. Section 2

gives a real-world example about spreadsheet evolution. Section 3

proposes the details of our extraction approach. Section 4 presents

our analysis on VEnron. We discuss our approach and results in

Section 5, and related work in Section 6. Finally, we review our

contributions and new research directions in Section 7.

2. A REAL-WORLD EXAMPLE
In this section, we illustrate version information using several

related spreadsheets extracted from the Enron email archive [22].

We explain how to recover the versions among these spreadsheets.

2.1 Example
Figure 1 gives five worksheets whose spreadsheet files are clus-

tered into an evolution group. They report the monthly and daily

amount of different storage services in each month. Since each

month has different numbers of days, the constants used in the

formulas vary across months. For example, in version v1, the for-

mulas (e.g., the one in D10) use 31 (the number of days in May)

as constants, and in version v2, the formulas (e.g., the one in D10)

use 30 (the number of days in June) as constants. These five

worksheet names and their associated spreadsheet filenames are

listed Table 1. We found 11 spreadsheets in this evolution group.

Since the related worksheets (FOM Storage) in versions v3, v4, v5,

v8, v10 and v11 are the same as their previous versions, we do not

show them in Figure 1.

2.2 Spreadsheet Evolution in the Example
In Figure 1, we use the red rounded rectangles to show the key

changes from its preceding version. We observed several interest-

ing changes.

v1. Storage services in May

v2. Updated for June, removed two formulas (E14 and E16)

v6. Updated for July, added four formulas (in column D) that

were previously missed, forgot to adjust one formula (E15)

v7. Updated data (D17) for July

v9. Updated for August, adjusted two formulas (E10 and E11)

Figure 1. A real-world evolution group.

We did not find any inconsistency among the formulas in version

v1. When version v1 evolves to v2, the formulas in cells E14 and

E16 are changed to 0. These values are consistent with those

computed by the original formulas in v1 because cells D14 and

D16 contain 0. It is likely that users entered a 0 value to E14 and

E16 before doing so for D14 and D16. This is because users do

not need to substitute the original formulas in E14 and E16 with 0

if they first made changes to D14 and D16. We note that v2 in-

duces a discrepancy on how values are computed in cells E12:E17.

In version v6, users likely found that the values in cells D14 and

D16 should be computed instead of a constant value 0. They add-

ed formulas in cells D14 and D16. The users also introduced an-

other two issues. (1) The formula in cell E15 should be D15/31

(31 days in July). Since cell D15’s value is 0, no data error hap-

pens. (2) The users added two formulas to cells D18 and D19. The

rows 18 and 19 are empty, and are not used in the spreadsheets. In

the later version v7, the users changed the value of cell D17, but

they did not notice the issue in cell E15.

In version v9, users changed the formulas in cells D10 and E10.

Cell E11’s formula was changed to 96068/31 (where its input cell

D11’s value is 96068). This is likely an error. Although Excel

gives a warning at cell E11 (its formula is inconsistent with its

neighboring cells), the users did not fix it. We find that the error

in cell E15 remains in the subsequent versions (v10 and v11).

According to the Enron email archive [22], two users were in-

volved in the modifications of these spreadsheets. We found that

more errors were introduced during evolution, and some errors in

these spreadsheets can last for several versions.

2.3 Version Information in Spreadsheets
From the evolution group in Figure 1, we find that the hidden

version information in the spreadsheets can be manifested in sev-

eral ways. (1) The spreadsheet filenames may suggest the files of

different versions. In Table 1, all the spreadsheets follow the nam-

ing convention “<Month>00_FOM_Req<id>.xsl”, which indi-

cates these spreadsheets are likely the different versions of

“FOM_Req.xsl”. Here, <Month> can be May/Jun/Jul(y)/Aug, and

<id> is an integer index referring to the same month. (2) The

worksheet names can suggest the different versions, too. For ex-

ample, all the five worksheets follow the naming convention

“FOM <Month> Storage”. This indicates that these worksheets

are likely the different versions of “FOM Storage”. (3) The work-

sheet contents may indicate their versions. In one case, the title of

each worksheet shows the month of the worksheet. In another

case, all the tables in the five worksheets show similar structures.

This indicates that they should be evolved from the same original

spreadsheet.

The version information in the spreadsheets can also be used to

determine their version order. For example, based on the temporal

order, we can infer that version v2 should follow version v1.

2.4 Version Information in Emails
When users sent a spreadsheet by email, they often explained in

the same email the changes that they made to the spreadsheet. For

example, the user in an email containing the spreadsheet

Jun00_FOM_Req.xls (v2) said: “The attached file is an update to

the original one sent on Friday with our May daily volume re-

quirements. Please refer to the ‘comments’ worksheet and the

comments dated 4/24/00 for differences between this version and

the original”. The other user in his email said: “The attached file

contains updated July 2000 volume requirements for CES. The

changes relative to the original request sent on 6/23/00. Changes

are described on the worksheet labelled 'Comments' under the

date 06/26/00”.

This indicates that describing spreadsheet changes in emails is

commonly adopted by users. The information in these emails is

useful to confirm the relationship between different spreadsheets.

2.5 Approach Overview
Two technical challenges need to be addressed when building a

versioned spreadsheet corpus on the Enron email archive [22].

The first challenge is how to check if a spreadsheet is similar to

another one. Unlike conventional software, spreadsheets are a

special kind of programs, which are indexed by two-dimensional

cell addresses. Code clone detection approaches on conventional

software [5] cannot be used to measure the similarity of spread-

sheets. Data clone detection in spreadsheets [17] can only detect a

region of cells with the (almost) same data, and cannot measure

the similarity of spreadsheets, because different versions (e.g.,

versions v1 and v2 in Figure 1) often have different data. There-

fore, no existing tools can help us measure the similarity of con-

tents in spreadsheets. Worse, there are many (15,879) spread-

sheets in the Enron email archive. It is impractical to check each

pair of spreadsheets one by one. The second challenge is how to

decide the order of versioned spreadsheets in a group. The order

of versions is implicit in the Enron email archive.

Our approach works as follows: 1) Extract a shortened filename

from each spreadsheet by deleting version-related substrings from

its filename, such as “May”, “Jun”, “July”, “Aug”, “00”, “02”, “2”,

and so on in Table 1. 2) Cluster spreadsheets into groups based on

their shortened filenames. 3) Identify from each group those

spreadsheets that likely belong to the different versions of the

same spreadsheet. 4) Determine a version order in each group

according to the version information manifested in spreadsheets

and emails.

3. BUILDING VENRON
Let us illustrate our approach by building VEnron. We observed

that the spreadsheets in the Enron email archive mostly follow the

same naming convention varied with version number, such as

versions v1, v2, v6, v7 and v9 in Table 1. We built the VEnron

corpus in four steps: 1) Extracted the spreadsheets and their short-

ened filenames from email files. The extraction process needs to

preserve the spreadsheet filenames. 2) Clustered these spread-

sheets into different evolution groups based on their shortened

filenames extracted. 3) Validated if the spreadsheets in each group

share similar worksheet names, table structures (including table

titles, row/column labels and cell formulas) and email contents.

This step was carried out manually to identify irrelevant spread-

sheets in each group. 4) Reordered the spreadsheets in every

group according to the version information of these spreadsheets

and related emails.

Table 1. The spreadsheets and worksheets in our motivating

evolution group

Version id Spreadsheet filename Worksheet name

v1 May00_FOM_Req2.xls FOM May Storage

v2 Jun00_FOM_Req.xls FOM Jun Storage

v6 July00_FOM_Req.xls FOM Jul Storage

v7 July00_FOM_Req02.xls FOM Jul Storage

v9 Aug00_FOM_Req.xls FOM Aug Storage

3.1 Obtaining the Enron Email Archive
The spreadsheets extracted by Hermans [14] have discarded the

spreadsheets’ contexts and version information. Therefore, we

used the original Enron email archive as our study subject. We

obtained the Enron email archive from its website5. The version

for the Enron email archive is v1.3, and the update time is 29 July,

2013. The emails in the Enron archive span a period of about 15

months, from August 2000 to December 2001. The Enron email

archive has 130 folders (one folder per user), which contain

190 .pst files. These .pst files contain 752,604 .eml files (a .eml

file per email) in total. We filtered out the “Contacts” and

“Drafts” folders of the mailboxes in our study.

3.2 Extracting Spreadsheets and Related

Emails
To extract spreadsheets and related emails, we used JavaMail6,

which is a platform-independent and protocol-independent

framework to build mail and messaging applications. We identi-

fied 41,945 related emails that contain at least one spreadsheet as

attachment. These emails contain altogether 49,863 spreadsheets.

If two spreadsheets have the same filename and MD5 file hash,

we assumed that they are the same spreadsheet, and kept only one

of them. If two spreadsheets have the same MD5 file hash but

different filenames, we kept both of them. Finally, we extracted

17,152 unique spreadsheets from these emails. After removing

those spreadsheets that are password-protected, saved in very old

Excel format or contain damaged worksheets, we obtained 15,879

spreadsheets. We also kept the email content associated with these

spreadsheets.

3.3 Clustering Spreadsheets
It is labor-intensive to manually cluster 15,879 spreadsheets into

different evolution groups, in which all the spreadsheets have

similar/same structures and semantics. Hence, we partially auto-

mate the process by clustering spreadsheets according to their

filenames. The process is motivated by an observation made from

the Enron spreadsheets: the difference between the similar file-

names occurs often only in numbers, date time, or special charac-

ters (e.g., “final” and “_”). An example is given in Table 1. The

observation enables us to cluster spreadsheets based on their file-

names shortened by removing three following types of characters.

 Numbers: Numbers can be used as version IDs, months, years,

and so on. For example, for the spreadsheet filename Ju-

ly00_FOM_Req02.xls in Table 1, “00” is used as year 2000,

and “02” is used as the version ID.

 The full and abbreviated month names: The months can be

used as the different versions in an evolution group. For ex-

ample, for the spreadsheet filename July00_FOM_Req02.xls

in Table 1, “July” is used as the version of July’s spreadsheet.

We delete january, jan, february, feb, march, mar, april, apr,

may, june, jun, july, jul, august, aug, september, sep, october,

oct, november, nov, december and dec.

 Some special characters and words: Special characters, such

as _, - , (,), ~, +, $, and #, can be used to combine different

parts of the filenames. The special words “version” and “fi-

nal” can be used to mark versions. The spreadsheet filenames’

5 http://info.nuix.com/Enron.html
6 http://javamail.java.net

suffix “.xls” is the same for all the spreadsheets in the Enron

email archive, so we delete it, too.

Note that we kept the spreadsheets with the same MD5 file hashes

but different in filenames. Take the Enron spreadsheets “NP 2-

26.xls” and “NP 15 pages.xls” as examples. They have the same

MD5 hash values. After deleting the special characters from their

filenames, we got “NP” and “NPpages”. We found that there are

70 spreadsheets in the group “NPpages”, and only 1 spreadsheet

in the group “NP”. Since the chances of extracting useful version

information from a group of one spreadsheet are low, we excluded

the “NP” group from VEnron.

We found that the filenames of 404 spreadsheets are shortened to

an empty string after removing the three types of characters. These

spreadsheets are excluded from VEnron because it is hard to clus-

ter them based on an empty string. Figure 2 shows the identified

evolution groups from the Enron email archive. In practice, it is

unnecessary to validate all 6,205 groups (15,475 spreadsheets)

because those groups that contain too few spreadsheets unlikely

expose issues arising from spreadsheet evolution. As such, we

manually validated only those groups that contain more than five

spreadsheets. This contributes to 307 groups and 46.9%

(7,445/15,879) of the spreadsheets in the Enron email archive.

3.4 Validating the Evolution Groups
As explained in Section 3.3, evolution groups are clustered by

means of heuristics over spreadsheet filenames. The clustering is

subject to three types of errors. 1) Clustered groups may contain

unrelated spreadsheets where no version information can be found.

2) Multiple versions of the same spreadsheet may be clustered

into multiple groups. 3) The versions of different spreadsheets

may be clustered into the same group. To address this, we need to

manually validate the spreadsheets in the clustered groups.

The key idea to validate a group is to check whether all the

spreadsheets in a group share similar table structures and formulas.

If we cannot find such similarity in a spreadsheet, we remove it

from the group. For each spreadsheet that is removed from a

group, we further check if it belongs to another group. We delete

groups that contain one spreadsheet after the validation process.

Since we are not the authors of the Enron spreadsheets, we em-

ployed the Spreadsheet Compare tool (a Microsoft Excel 2013

Add-In) [31] to compare two spreadsheets. Spreadsheet Compare

can compare two spreadsheets (or two versions of the same

Figure 2. Identified evolution groups in the Enron email ar-

chive (horizontal axis: the number of spreadsheets in a group,

vertical axis: the number of groups, the groups in the rectan-

gular box have been manually validated).

spreadsheets), and shows the differences by means of histograms

and colors.

We use the following heuristics to determine whether two spread-

sheets should belong to the same group:

 Similarity on spreadsheet filenames: Two spreadsheets likely

belong to the same group if their filenames share a meaningful

substring. The shared substring often briefly explains the pur-

pose of the spreadsheets. An example is the substring

“FOM_Req” in Table 1.

 Similarity on worksheet names: Two spreadsheets likely

belong to the same group if each contains more than one

worksheet name that matches a worksheet name found in an-

other spreadsheet. An example is the string “FOM Storage” of

the worksheet names in Table 1. As a special case, the default

names of worksheets (e.g., Sheet1 and Sheet2) are not consid-

ered.

 Similarity on the structure of corresponding worksheets: At

least two worksheets, which come from two spreadsheets re-

spectively, have similar layout. For example, the titles (labels)

of tables and formulas are similar. Therefore, these worksheets

may have similar semantics.

 Email contents: Email contents may tell if a spreadsheet was

an update to another one. This enables us to confirm if two

spreadsheets belong to the same group.

Figure 3 shows the results of our manual validation. We con-

firmed 360 groups, which contain 7,294 spreadsheets (45.9% of

15,879 spreadsheets in total), from the 307 clustered evolution

groups. We find that our clustering approach in Section 3.3 pre-

cisely identified 231 (64.2%) out of the 360 groups. This suggests

that our hypothesis is reasonable.

3.5 Recovering Version Orders
The version order of spreadsheets that belong to the same group

provides critical information of update history. Given a group of

spreadsheets, it is challenging to recover the version order among

them. This is because we do not know how the spreadsheets were

created or modified. The version orders can be complex in the

Enron email archive. However, we find that the version orders of

our 360 confirmed groups can be represented by a total order. In

the following, we explain the heuristics based on which a total

order for each of these evolution groups can be recovered.

Several pieces of information extracted from the Enron email

archive can help us figure out the version orders. 1) Version order

information can be manifested in the spreadsheet filenames, work-

sheet names, and the contents in the spreadsheets. For example, in

Table 1, the spreadsheet filenames and worksheet names can con-

tain the version orders. 2) Emails have timestamps. The emails’

sending time may reflect the version orders of attached spread-

sheets. For example, an update version can be sent later after the

original one. 3) The email contents may also reflect from which

spreadsheet the current one was derived. We describe these heu-

ristics as follows.

3.5.1 The Time in the Spreadsheets/Worksheets
The version orders can sometimes be inferred from the spread-

sheet artefacts such as filenames, worksheet names, and worksheet

contents. The date/time and index information found in these

artefacts provide useful hints on the time when a spreadsheet was

created/modified.

Table 2 shows the statistics of the spreadsheets in the 360 groups

that contain artefacts encoding time information. We note that

only 11.9% (43/360) groups contain spreadsheets whose artefacts

encode no time information. 88.1% (317/360) groups encode at

least one piece of time information in their spreadsheet artefacts.

We also find that 58.3% (210/360) groups encode at least two

pieces of time information in their spreadsheet artefacts. The en-

coded time information in these groups can help identify the ver-

sion orders of spreadsheets.

Spreadsheet filenames: The spreadsheet filenames often contain

various version information. For example, in Table 1, all the

spreadsheet files are named using the convention

“<Month>00_FOM_Req<id>.xsl”, where <Month> is

May/Jun/July/Aug, <id> is the spreadsheet index for the same

month. From these filenames, we can infer the version order. As

shown in Table 2, 200 (55.6%) out of 360 groups have spread-

sheets encoding time information in their filenames.

Worksheet names: Worksheets in a spreadsheet may be named by

a certain date/time. For example, in Table 1, the worksheets are

named using the convention “FOM <Month> Storage”, where

<Month> is May/Jun/Jul/Aug. In another case, worksheets are

named by the date when they were created or updated. One

spreadsheet may contain more than one worksheet of this type. In

the case where a spreadsheet contains multiple worksheets named

by dates, we associate the latest one among these dates with the

spreadsheet. Spreadsheets that encode time information in their

embedded worksheet names can be found in 59 (16.4%) out of

360 groups as shown in Table 2.

The time in the worksheet contents: Cells in worksheets may

contain the time when the worksheets were created/modified. For

example, in Figure 1, the first row in each worksheet shows this

case. This type of cells usually appear on the left or top of a table,

or serve as the labels of a table. We observe that some spread-

sheets in a group may add or modify records daily, monthly or

yearly. If there is more than one cell of this type, then we select

the latest time as the creation/modification time of the spreadsheet.

As shown in Table 2, 278 (77.2%) out of 360 groups encode time

information in this way.

Figure 3. Confirmed evolution groups in Enron (horizontal

axis: the number of spreadsheets in a group, vertical axis: the

number of groups).

Table 2. The statistics of the groups containing time

The type of time The number of groups

Spreadsheet filenames 200

Worksheet names 59

Worksheet contents 278

None 43

3.5.2 The Email Sending History
In the Enron email archive, all the spreadsheets were exchanged

through email attachments. The emails’ sending time can suggest

when the spreadsheets were created or modified. For example, we

assume that S’ is an updated version of S if they belong to the

same group and S’ was sent by an email later than that sending S.

In the case where a spreadsheet was exchanged by multiple emails,

we recover spreadsheet version order based on the earliest email.

Given two different spreadsheets S and S’ in a group. In the fol-

lowing two cases, we consider that S’ is a later version of S.

 A user sends S before S’ to another user. In this case, the first

user might have updated S, saved it as S’, and then sent S’ to

the second user.

 A user receives S before sending S’ by email. In this case, the

user might have modified S, saved it as S’, and then sent S’ by

email.

Note that a user may send the newer version S’ before the older

version S. We can use the heuristics in Sections 3.5.1 and 3.5.3 to

identify and rectify such scenarios.

3.5.3 Email Contents
When users email a spreadsheet, they may put down in the email

some description of the spreadsheet as well as the changes they

have made. For example, “The attached file is an update to the

original one sent on Friday with our May daily volume require-

ments”, and “…the changes relative to the original request sent

on 6/23/00…”. The description facilitates us to locate an earlier

version of the spreadsheets attached in the email.

4. EVOLUTION ANALYSIS ON VENRON
It is interesting to study how spreadsheets evolve in companies,

and specially, whether VEnron contains interesting changes for

further studies. We perform several analyses to study the evolu-

tion characteristics of VEnron.

4.1 Basic Statistics of VEnron
Table 3 shows an overview of VEnron. 251 (69.7%) of the 360

groups contain formulas. In total, 7,294 spreadsheets (4,149 con-

taining formulas) are analyzed, containing 35,373 worksheets,

which is an average of 4.8 worksheets per spreadsheet. These

spreadsheets have 2,841,073 rows and 500,821 columns respec-

tively. These spreadsheets together have 41,208,082 non-empty

cells of which 9,225,740 have formulas. This is an average of

5,650 cells and 1,265 formulas per spreadsheet.

The distribution of evolution groups in VEnron is shown in Fig-

ure 3. 183 (50.8%) groups contain no more than 10 spreadsheets,

and 165 (45.9%) groups contain 11-100 spreadsheets. 12 (3.3%)

groups contain more than 100 spreadsheets. The largest group

contains 204 spreadsheets.

4.2 Committers of Spreadsheets
The Enron email archive contains 130 users’ email data. If a user

sent a spreadsheet different from its previous version, we consider

the user a committer of the corresponding group. The committers

often gave a new version of a spreadsheet to others.

Figure 4 shows the distribution of committers in the 360 groups.

260 (72.2%) of the evolution groups involve more than one com-

mitter. This suggests that spreadsheets were often maintained by

multiple users, and consistent modification among users would be

important to the integrity of spreadsheets. We find 315

(=80+100+65+42+28), i.e., 87.5% of the groups involve no more

than 5 committers (3.8% of all users). This indicates that spread-

sheets were often updated by a small group of users, such as the

users who belong to the same department or have some business

relationship. We find that only 5 (1.4%) of the groups have more

than 10 committers.

4.3 Various Version Representations
We find no evidence in the Enron email archive that the spread-

sheets were managed by a version control system. This suggests

that the spreadsheets were likely stored in their users’ local file

systems. To avoid conflicting filenames, users deployed different

filenames to denote the multiple versions of the same spreadsheet.

To study how users managed the different versions of the same

spreadsheets, we manually validated the 360 groups. Three com-

mon types of version representations (as shown in Table 4) were

found. In Table 4, if a group has used one type of representation

in some spreadsheets, we count it as 1. Therefore, a group may

use more than one type of version representations. 1) Time is the

most common type (66.7%, 240/360) used to represent different

versions. For example, in Table 1, users used the months (May,

Jun, July, or Aug) to distinct different versions. This result is also

reasonable. It is a useful and simple way to manage a set of

spreadsheets for users who only care about the freshest data. Us-

ers can quickly get the version information about whether a

spreadsheet contains more updated data than the other one. 2)

Users may use indexes in the filenames’ prefixes or suffixes

Table 3. An overview of VEnron

Number of groups 360

Number of groups with formulas 251

Number of spreadsheets 7,294

Number of spreadsheets with formulas 4,149

Number of worksheets 35,373

Number of rows 2,841,073

Number of columns 500,821

Number of non-empty cells 41,208,082

Number of formulas 9,225,740

Table 4. The types of version representations

The type of version representation # Group

1. Time 240

2. Prefix or suffix 68

3. None 142

At least two of 1, 2, 3 66

All of 1, 2, 3 12

Figure 4. The distribution of committers in VEnron (horizon-

tal axis: the number of committers involved, vertical axis: the

number of groups).

(18.9%, 68/360) for different versions. For example, in Table 1,

version v7 “July00_FOM_Req02.xls” uses the suffix “02” to dis-

tinct from version v6 “July00_FOM_Req.xls”. 3) Users did not

use any version representation above to distinct different ver-

sioned spreadsheets (39.4%, 142/306). For example, the spread-

sheets used the same filenames. We find that this case is common

in the Enron email archive. Users may not be able to correctly

identify different versions in an evolution group.

In Table 4, we also find that users may use different version repre-

sentations in the same group. For example, in Table 1, versions v1

and v7 use time and suffix as version presentations in the same

time. Among 360 groups, we find that 18.3% (66/360) groups

uses at least two types of version representations, and 3.3%

(12/360) groups uses all the three version representations. Varied

version representation would make it complicated to manage dif-

ferent versions of spreadsheets in a group.

Further, we find duplicated spreadsheet filenames in 71.1%

(256/360) groups. Without any further information, users cannot

distinct these different spreadsheets. This aggravates the difficul-

ties in applying version management to spreadsheets.

4.4 Spreadsheet Changes during Evolution
In this section, we investigate what changes happened during the

evolution in each evolution group.

We employed the tool Spreadsheet Compare 2013 [31] to com-

pare every two adjacent versions in a group. This tool offers 14

options to analyze different types of changes between two spread-

sheets. Among these options, four (starting with SysGen) are re-

lated to the changes generated by Excel. SysGen (System Generat-

ed) changes are those that are not made directly by users but made

by the system (Excel) as a by-product of a user change. For exam-

ple, when a row is deleted, Excel will automatically change the

formula to account for the row deletion by changing the refer-

ences to cells. Therefore, we did not consider these four SysGen

changes. Six options are related to cell format, sheet visibility, cell

protection, and so on. These changes are unrelated to the correct-

ness of spreadsheets, and we did not consider these changes, too.

We are specifically concerned with the following four options,

which are related to the correctness of spreadsheets:

 Structural: The tool can analyze the changes of the structure

of each worksheet, including eight different types of opera-

tions: added/ renamed/ deleted sheet at position n, moved

sheet from position n to position m, added/ deleted column(s)

and added/ deleted row(s).

 Entered Values: The tool can analyze the changes of the value

of each cell, including three different types of operations: en-

tered value added/changed/deleted.

 Formulas: The tool can analyze the changes of each formula,

including three different types of operations: formula added/

changed/ deleted.

 Calculated Values: The tool can analyze the changes of the

value in a formula cell. Those changes are caused when a user

changes some values of a formula’s input cells. These changes

include three different types of operations: calculated value

added/ changed/ deleted.

We exported the comparison results of Spreadsheet Compare

2013 to spreadsheets, and obtained statistics from these results.

The results are shown in Table 5. Calculated value changes are

not direct changes made by users, so we ignore them in the fol-

lowing discussion.

4.4.1 Structural Changes
Worksheet changes: Among the 360 groups, 166 groups contain

3,297 structural worksheet changes. The changes concern 9.3% of

all worksheets and spread across 1,357 (18.6%) of all spread-

sheets.

Row/column changes: Among the 360 groups, 275 groups con-

tain 332,957 structural row changes and 204 groups contain

17,451 structural column changes. These row and column changes

concern 11.7% of all rows and 3.5% of all columns, respectively.

The row changes spread across 2,802 (38.4%) of all spreadsheets

while the column changes spread across 1,518 (21.9%) of all

spreadsheets.

4.4.2 Entered Value Changes
Among the 360 groups, 346 groups have entered value changes.

In total, 6,912 (94.8%) spreadsheets contain 8,347,649 entered

value changes, which concern 20.3% of all cells. This indicates

that most spreadsheets contain entered values changes. Intuitively,

structural changes are relatively fewer than cell value changes as

spreadsheets evolve. For example, users make cell value changes

when they update the corresponding cells in last month’s report to

generate a similar report for this month (e.g., version v9 in Figure

1).

4.4.3 Formula Changes
Among the 360 groups, 217 groups have formula changes. In total,

2,860 (39.4%) spreadsheets contain 1,755,900 formula changes,

which concern 19.0% of all formula cells and 4.2% of all cells.

The changes in formula cells could introduce errors. For example,

in version v2 of Figure 1, the formulas in cells E14 and E16 were

wrongly removed; in version v6, the formula in cell E15 was not

consistently updated. In the future, we will investigate these for-

mula changes, and try to identify and validate errors in them.

From above spreadsheet change analyses during evolution, we can

conclude: 1) For structural changes, row changes are much more

common than column changes (11.7% vs. 3.5%). 2) For cell

changes, entered value changes are much more common than

formula changes (20.3% vs. 4.2%). 3) Formula changes are com-

mon (19.0% of all formula cells), too.

4.5 The Error Trend
We do not have the ground truth telling the intended semantics of

formulas in the spreadsheets of VEnron. It is therefore difficult for

us to decide which cells are erroneous. As such, we followed a

recent work by Hermans [14] and analyzed those errors reported

by Excel. Seven types of errors were reported: 1) divide by 0

(#DIV/0!), 2) a formula or a function inside a formula cannot find

its referenced data (#N/A!), 3) the text in a formula is not recog-

nized (#NAME?), 4) a space was used in a formula that references

multiple ranges (#NULL!), 5) a formula has invalid numeric data

(#NUM!), 6) a reference is invalid (#REF!), 7) the wrong type of

operand or function argument is used (#VALUE!).

Table 5. The statistics of various changes during evolution

The type of change Total # Groups # Spreadsheets

Change on worksheet 3,297 166 1,357

Change on row 332,957 275 2,802

Change on column 17,451 204 1,518

Change on entered value 8,347,649 346 6,912

Change on formula 1,755,900 217 2,860

Change on calculated value 2,794,083 234 3,817

Other changes 1,087,420 284 3,674

To get insights into the error trend during evolution, we analyzed

the number of formulas that result in Excel errors in every spread-

sheet in each evolution group. Excel reported at least one error in

72 (20.0%) of the 360 groups. In the following discussion, we

only consider these 72 groups. Figure 5 shows the cumulative

results of added and removed Excel errors for each group during

evolution. We can see that Excel errors change a lot during evolu-

tion.

In order to analyze the trends of Excel errors in an evolution

group, we built a linear regression model y = mx + b by the least

square method (LSM), where x is the version ID (starting from 1),

and y is the number of Excel errors in the spreadsheet with ver-

sion ID x. Therefore, if the slope m > 0, it indicates that the num-

ber of errors increases during evolution, whereas, if the slope m <

0, it indicates the number of errors decreases during evolution.

Figure 6 shows how the slopes change in these 72 groups. The

numbers of errors increase in 42 groups; the numbers do not

change in 7 groups, and the numbers decrease in 23 groups.

We also studied whether new errors were introduced during evo-

lution. For two adjacent versions in an evolution group, if the

later version contains more errors than the previous version, we

consider that the later version introduced new errors. We find that

61 (16.9%) of all groups introduced new errors.

4.6 The Emails Describing Spreadsheets
In order to collect further information about the versioned spread-

sheets in VEnron, we analyzed their concerning emails.

The 7,294 VEnron spreadsheets concern 8,587 non-redundant

emails. Following the email analysis in a recent work by Hermans

[14], we indexed the emails based on a set of keywords found in

their contents. Spreadsheets are mentioned in 648 (7.5%) emails,

which contain one of the following keywords: model, spreadsheet,

excel or worksheet. Spreadsheet errors are described in 468 (5.5%)

emails, which contain one of the following keywords: error, mis-

take, problem, discrepancy, anomaly, anomalies, incorrect, bug,

fault or failure. Spreadsheet modification are described in 1,347

(16.7%) emails, which contain one of the following keywords:

new version, update, change, revision, revising or revised. Exam-

ples of such emails can be found in Section 2.4.

We find altogether 1,948 (22.7%) emails describing spreadsheets,

errors or modifications. Still, 6,639 (77.3%) emails do not refer

spreadsheets in their contents. These emails provide no infor-

mation on the changes made to their attached spreadsheets.

5. DISCUSSION
In prior sections, we have introduced a semi-automated approach

to recover version information of spreadsheets and applied it to

the Enron email archive, constructing a versioned spreadsheet

corpus VEnron. The approach is based on several heuristics (such

as the spreadsheets in an evolution group have the similar file-

names) and manual validation. In this section, we discuss a variety

of issues that may affect the applicability and suitability of our

proposed approach and VEnron.

5.1 Enron Email Archive
1) Incomplete Enron email archive: To protect user privacy, all

the sensitive personal information in the Enron email archive had

been removed before being publicly available [6]. This cleaning

process may have removed some version information.

2) Spreadsheets saved in unsupported Excel formats or with

password protection: Some spreadsheets in the email archive are

password-protected, or contain damaged worksheets. We omitted

them from VEnron. Our employed spreadsheet analysis tool Java

Excel API [32] cannot handle the spreadsheets saved in very old

unsupported Excel formats. 1,273 spreadsheets fall into this cate-

gory. Some of these spreadsheets may carry version information.

5.2 Undetected Spreadsheet Versions
1) Dissimilar spreadsheet filenames: Our spreadsheet clustering

approach is based on an assumption that the spreadsheets in a

group share similar filenames. This would exclude the spread-

sheets with dissimilar filenames in a group.

2) Missing evolution groups: Although 8,685 spreadsheets were

not clustered by our approach into any evolution groups, it is

possible that some of these spreadsheets contain version infor-

mation and form evolution groups. Since there are numerous pos-

sible ways to partition these spreadsheets, clustering them manu-

ally is impractical. A tool, which can measure the similarity of

spreadsheet contents, may help identify these missing evolution

groups, and alleviate this threat.

5.3 Evolution Orders
1) Parallel evolution: Currently, we find that total order works

well for our identified evolution groups. In practice, this observa-

tion may not always hold. A user may create two different succes-

Figure 5. The added and removed errors in 72 groups (hori-

zontal axis: the group id, vertical axis: the cumulative number

of Excel errors, red and solid lines denote the cumulative

number of added Excel errors, green and dashed lines denote

the cumulative number of removed Excel errors).

Figure 6. The error trends in 72 groups (horizontal axis: the

group id, vertical axis: the slope of linear regression result).

sive versions from the same spreadsheet. Our approach cannot

capture this type of spreadsheet evolution. The reason is that it is

difficult to extract this evolution from the email and spreadsheet

contents.

2) Lost evolution: Without the support of version management

systems, users may make a lot of small changes in spreadsheets

before exchanging them in emails. Some interesting evolution

with respect to these small changes could have been lost.

5.4 Manual Validation
One threat to internal validity of our approach is that we were

unable to validate analysis results of spreadsheet evolution in the

VEnron corpus by their original users. Therefore, we validated the

results by ourselves manually in due diligence. For example, we

consider various information from emails and spreadsheets to

judge the evolution orders. To alleviate this threat, two authors of

this paper have cross-checked all the results.

6. RELATED WORK
In this section, we present and discuss related work in recent years.

We focus on those pieces of work that concern spreadsheet corpo-

ra, spreadsheet evolution and spreadsheet error detection.

Spreadsheet corpora. EUSES [11] is a spreadsheet corpus widely

used by the software engineering community in studying spread-

sheets. The EUSES corpus contains 4,037 spreadsheets published

in 2005. The spreadsheets of the EUSES corpus were extracted

from World Wide Web. These spreadsheets are not necessarily

used by real companies. The EUSES corpus has been for problem

motivation and empirical experimentation by most existing work

including GoalDebug [2], data clone detection [17], AmCheck [9]

and CUSTODES [8]. In 2015, Hermans [14] published another

spreadsheet corpus based on the over 15,000 spreadsheets found

in Enron email archive. This is the first corpus built entirely on

top of spreadsheets used by a real company. FUSE [4] is the big-

gest corpus (containing about 250,000 spreadsheets) so far. FUSE

was extracted from a public web archive with about 26 billion

web pages. However, EUSES, Enron and FUSE corpora do not

provide any version information. All the spreadsheets in them are

archived independently. Unlike these three corpora, VEnron pro-

vides a versioned spreadsheet corpus, facilitating studies, e.g.,

evolution analysis and regression testing, which require version

information.

Spreadsheet evolution. We only notice one piece of work [18]

related to spreadsheet evolution, which compared 54 pairs of

spreadsheets consisting of the original spreadsheets developed by

the customers and the rebuilt ones created by a professional com-

pany F1F9. But due to the commercial confidentiality, these

spreadsheets are not publicly available. VEnron can complement

this work by studying the evolution process through the 360 evo-

lution groups.

Spreadsheet error detection. Spreadsheet errors are common

[25][27]. Therefore, various techniques have been proposed to

detect spreadsheet errors. UCheck [3] used the type system to

check unit errors. Hermans et al. proposed to visualize spread-

sheets by dataflow graphs [15], and detect inter-worksheet smells

in these graphs [16]. Our work AmCheck [9] and CUSTODES [8]

detect ambiguous computation smells and model spreadsheet

smells as outliers, respectively. For these studies, it is difficult to

validate the detected errors and smells. VEnron makes it possible

to validate the results by cross-checking different versions of the

same spreadsheet.

7. CONCLUSION AND FUTURE WORK

7.1 Conclusion
In this paper, we introduce a versioned spreadsheet evolution

corpus VEnron, which was extracted from the industrial Enron

email archive. VEnron comprises 7,294 spreadsheets in 360

groups and their evolution relationship. Multiple versions of the

same spreadsheet are grouped together. We have performed a

preliminary analysis on all the evolution groups in VEnron, and

found interesting results. To the best of our knowledge, VEnron is

the first spreadsheet corpus with version information provided.

Our contributions are twofold:

 An industrial-scale and public spreadsheet evolution corpus,

containing 360 evolution groups and 7,294 spreadsheets.

 Spreadsheet evolution analyses on these industrial evolution

groups, including committers, version representations, error

trends, and so on.

The analysis results suggest that VEnron contains version infor-

mation reflecting real-world changes for further studies, specially:

 Most (87.5%) evolution groups have less than 5 committers.

 Users deploy various ways to represent version information of

spreadsheets. Users may adopt more than one representation

across multiple versions.

 Formula changes are common (19.0% of all formula cells)

during evolution.

 New errors can be easily (61 groups; 16.9% of all groups)

introduced during evolution.

7.2 Future Work
We have published VEnron corpus, and believe that this paper

lays the foundation for more evolution analysis on spreadsheets.

We have identified several interesting research directions.

1) Mining more evolution groups from the Enron email archive:

Although we have found lots of evolution groups and spread-

sheets with version information, the version information for about

half of the spreadsheets in the email archive are still unclear. We

need to develop a new approach to handle these spreadsheets.

2) The error detection and fixing in spreadsheets: After we ob-

tain the historical information of an evolution group, we can use

them to detect the inconsistencies between different versions, and

fix them by combining different semantics from different versions.

3) Study on the semantic error evolution of spreadsheets: It is

interesting to know how a semantic error (e.g., cell E15 in v6 and

v9 of Figure 1) was introduced into a spreadsheet, how and when

it was fixed during evolution.

4) Designing a version control software for spreadsheets: Our

analysis has shown that users may use different types of version

representations for their intentions. As we have shown in Table 1,

we can use months as versions to represent the reports of different

months, and indexes for the versions in a month. For a version

control system for spreadsheets, it should provide the flexibility

for different kinds of version representations.

8. ACKNOWLEDGMENTS
This work was supported in part by National Grand Fundamental

Research 973 Program (2015CB352201), and by the Hong Kong

SAR RGC/GRF grant (611811), and by Beijing Natural Science

Foundation (4164104).

9. REFERENCES
[1] R. Abraham and M. Erwig. AutoTest: A Tool for Automatic

Test Case Generation in Spreadsheets. In IEEE Symposium

on Visual Languages and Human-Centric Computing

(VL/HCC), pages 43 –50. 2006.

[2] R. Abraham and M. Erwig. GoalDebug: A Spreadsheet De-

bugger for End Users. In Proceedings of the 29th Interna-

tional Conference on Software Engineering (ICSE), pages

251–260. 2007.

[3] R. Abraham and M. Erwig. UCheck: A Spreadsheet Type

Checker for End Users. Journal of Visual Languages &

Computing, 18(1):71–95, 2007.

[4] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-

Hill. FUSE: A Reproducible, Extendable, Internet-scale

Corpus of Spreadsheets. In Proceedings of the 12th Working

Conference on Mining Software Repositories (MSR). 2015.

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.

Comparison and Evaluation of Clone Detection Tools. IEEE

Transactions on Software Engineering (TSE), 33(9):577–

591, 2007.

[6] A. Cassidy and M. Westwood-Hill. Removing pii from the

edrm enron data set: Investigating the prevalence of unse-

cured financial, health and personally identifiable infor-

mation in corporate data. [Online]. Available: http://www.

nuix.com/images/resources/case_study_nuix_edrm_enron_d

ata_set.pdf.

[7] C. Chambers and M. Erwig. Reasoning About Spreadsheets

with Labels and Dimensions. Journal of Visual Languages

& Computing, 21(5):249–262, 2010.

[8] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu. CUSTODES:

Automatic Spreadsheet Cell Clustering and Smell Detection

Using Strong and Weak Features. In Proceedings of the 38th

International Conference on Software Engineering (ICSE).

2016. To appear.

[9] W. Dou, S.-C. Cheung, and J. Wei. Is Spreadsheet Ambigui-

ty Harmful? Detecting and Repairing Spreadsheet Smells

Due to Ambiguous Computation. In Proceedings of the 36th

International Conference on Software Engineering (ICSE),

pages 848–858. 2014.

[10] P. Durusau and S. Hunting. Spreadsheets - 90+ million End

User Programmers With No Comment Tracking or Version

Control. In Proceedings of Balisage: The Markup Confer-

ence. 2015.

[11] M. Fisher and G. Rothermel. The EUSES Spreadsheet Cor-

pus: A Shared Resource for Supporting Experimentation

with Spreadsheet Dependability Mechanisms. ACM SIG-

SOFT Software Engineering Notes, 30(4):1–5, 2005.

[12] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What You

See Is What You Test: A Methodology for Testing Form-

based Visual Programs. In Proceedings of the 20th Interna-

tional Conference on Software Engineering (ICSE), pages

198–207. 1998.

[13] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A

Systematic Literature Review on Fault Prediction Perfor-

mance in Software Engineering. IEEE Transactions on

Software Engineering (TSE), 38(6):1276–1304, 2012.

[14] F. Hermans and E. Murphy-Hill. Enron’s Spreadsheets and

Related Emails: A Dataset and Analysis. In Proceedings of

the 37th International Conference on Software Engineering

(ICSE), pages 7–16. 2015.

[15] F. Hermans, M. Pinzger, and A. van Deursen. Supporting

Professional Spreadsheet Users by Generating Leveled Data-

flow Diagrams. In Proceedings of the 33th International

Conference on Software Engineering (ICSE), pages 451–460.

2011.

[16] F. Hermans, M. Pinzger, and A. van Deursen. Detecting and

Visualizing Inter-worksheet Smells in Spreadsheets. In Pro-

ceedings of the 34th International Conference on Software

Engineering (ICSE), pages 441–451. 2012.

[17] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen. Data

Clone Detection and Visualization in Spreadsheets. In Pro-

ceedings of the 35th International Conference on Software

Engineering (ICSE), pages 292–301. 2013.

[18] B. Jansen and F. Hermans. Code Smells in Spreadsheet

Formulas Revisited on an Industrial Dataset. In 31st Interna-

tional Conference on Software Maintenance and Evolution

(ICSME). 2015.

[19] D. Kim, J. Nam, J. Song, and S. Kim. Automatic Patch Gen-

eration Learned from Human-written Patches. In Proceed-

ings of the 35th International Conference on Software Engi-

neering (ICSE), pages 802–811. 2013.

[20] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An Empir-

ical Study of Code Clone Genealogies. In Proceedings of the

10th European Software Engineering Conference Held

Jointly with 13th ACM SIGSOFT International Symposium

on Foundations of Software Engineering (ESEC/FSE), pag-

es 187–196. 2005.

[21] S. Kim, T. Zimmermann, E.J. Whitehead Jr., and A. Zeller.

Predicting Faults from Cached History. In Proceedings of

the 29th International Conference on Software Engineering

(ICSE), pages 489–498. 2007.

[22] B. Klimt and Y. Yang. Introducing the Enron Corpus. In

First Conference on Email and Anti-Spam (CEAS) in Coop-

eration with AAAI and The International Association for

Cryptologic Research and The IEEE Technical Committee

on Security and Privacy. 2004.

[23] H.A. Nguyen, T.T. Nguyen, N.H. Pham, J. Al-Kofahi, and

T.N. Nguyen. Clone Management for Evolving Software.

IEEE Transactions on Software Engineering (TSE),

38(5):1008–1026, 2012.

[24] R. Panko. Facing the Problem of Spreadsheet Errors. Deci-

sion Line, 37(5):8–10, 2006.

[25] R.R. Panko and S. Aurigemma. Revising the Panko–

Halverson taxonomy of spreadsheet errors. Decision Support

Systems, 49(2):235–244, 2010.

[26] S.G. Powell, K.R. Baker, and B. Lawson. A Critical Review

of the Literature on Spreadsheet Errors. Decision Support

Systems, 46(1):128–138, 2008.

[27] K. Rajalingham, D.R. Chadwick, and B. Knight. Classifica-

tion of Spreadsheet Errors. arXiv:0805.4224 [cs], 2008.

[28] J. Reichwein, G. Rothermel, and M. Burnett. Slicing Spread-

sheets: An Integrated Methodology for Spreadsheet Testing

and Debugging. ACM SIGPLAN Notices, 35(1):25–38, 1999.

[29] C. Scaffidi, M. Shaw, and B. Myers. Estimating the Num-

bers of End Users and End User Programmers. In Proceed-

ings of the IEEE Symposium on Visual Languages and Hu-

man-Centric Computing (VL/HCC), pages 207–214. 2005.

[30] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta.

An Empirical Study on the Maintenance of Source Code

Clones. Empirical Software Engineering, 15(1):1–34, 2010.

[31] Spreadsheet Compare. https://technet.microsoft.com/en-

us/library/dn205148.aspx. [Accessed: 7-Feb-2016].

[32] Apache POI - the Java API for Microsoft Documents.

http://poi.apache.org/. [Accessed: 7-Feb-2016].

