
A Comprehensive Study on Real World Concurrency

Bugs in Node.js

Jie Wang1,2, Wensheng Dou1,*, Yu Gao1,2, Chushu Gao1, Feng Qin3, Kang Yin1,2, Jun Wei1,2
1State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, China

2University of Chinese Academy of Sciences, China
3Dept. of Computer Science and Engineering, The Ohio State University, United States

1{wangjie12, wsdou, gaoyu15, gaochushu, yinkang15, wj}@otcaix.iscas.ac.cn, 3qin.34@osu.edu

Abstract—Node.js becomes increasingly popular in building

server-side JavaScript applications. It adopts an event-driven

model, which supports asynchronous I/O and non-deterministic

event processing. This asynchrony and non-determinism can

introduce intricate concurrency bugs, and leads to unpredictable

behaviors. An in-depth understanding of real world concurrency

bugs in Node.js applications will significantly promote effective

techniques in bug detection, testing and fixing for Node.js.

In this paper, we present NodeCB, a comprehensive study on

real world concurrency bugs in Node.js applications. Specifically,

we have carefully studied 57 real bug cases from open-source

Node.js applications, and have analyzed their bug characteristics,

e.g., bug patterns and root causes, bug impacts, bug manifestation,

and fix strategies. Through this study, we obtain several

interesting findings, which may open up many new research

directions in combating concurrency bugs in Node.js. For example,

one finding is that two thirds of the bugs are caused by atomicity

violation. However, due to lack of locks and transaction

mechanism, Node.js cannot easily express and guarantee the

atomic intention.

Index Terms—JavaScript, Node.js, event-driven, concurrency

bug, empirical study.

I. INTRODUCTION

JavaScript has become one of the most popular
programming languages. According to the recent surveys from
Stack Overflow [1] and Node.js foundation [2], JavaScript is
quickly surpassing the popularity of other back-end
programming languages (e.g., PHP and Java). As a server-side
framework, Node.js, which is built on Google’s V8 JavaScript
engine [3], is becoming a popular platform for server-side
applications. One prominent evidence is that, the Node.js’
default package repository, npm [4], has become the largest
package registry in the world, and contains over 400,000
available packages, doubling the next most popular package
registry (the Apache Maven repository) [5].

In order to optimize throughput and scalability of server-side
applications, Node.js adopts an event-driven architecture, which
is capable of asynchronous I/O. Thus, developers can create
highly scalable server-side applications without using threading.
However, asynchronous I/O and non-deterministic event
processing in Node.js can introduce intricate concurrency bugs.
These concurrency bugs can result in unreliable and

unpredictable application behaviors, such as crashes, and
inconsistent states in databases and files.

Existing studies have focused on concurrency bugs in multi-
threaded systems [6], distributed systems [7], Android and
client-side JavaScript applications [8], and also proposed many
interesting testing and analysis techniques [9][10][11][12]. The
concurrency bugs in Node.js differ from those in traditional
systems as they originate from different programming
paradigms and execution environments. First, multi-threaded
systems and distributed systems focus on concurrency bugs
related to multi-thread [6] or untimely external events [7], while
Node.js atomically processes each event one by one in a single
thread, without interruption. Second, the concurrency in
Android mostly concerns the Android GUI model and
asynchronous tasks executed in other threads [10][11], while
Node.js does not have these features. Third, existing studies on
concurrency bugs in client-side JavaScript applications mostly
focus on the features like DOM and AJAX [8][12], while
Node.js does not have DOM and AJAX. In contrast, Node.js has
the ability to access system resources, e.g., databases and files.

Node.js is relatively new, and little is known about
concurrency bugs in Node.js applications. Whether existing
studies and techniques [6][7][8][10][11][12] are applicable to
Node.js applications remains an open question. Therefore, we
aim to bridge this gap by conducting a comprehensive study on
such concurrency bugs in Node.js applications. We believe a
deep understanding of real world concurrency bugs will
significantly promote effective techniques in concurrency bug
detection, testing, and fixing in Node.js.

In this paper, we present NodeCB, the first (to the best of our
knowledge) comprehensive real world concurrency bug study in
Node.js applications. By using the keyword-based searching, we
obtain 1,583 concurrency- and JavaScript- related bug reports in
GitHub. Then we check these bug reports and finally collect 57
real world concurrency bugs in 53 open-source Node.js projects.
We thoroughly study these 57 concurrency bugs, and try to
answer the following research questions:

 RQ1 (Bug patterns and root causes): What are
common bug patterns of concurrency bugs in Node.js?
What are their root causes?

 RQ2 (Bug impacts): Do concurrency bugs have severe
failure symptoms? What impacts do they have in Node.js
applications? * Corresponding author

 RQ3 (Bug manifestation): How do concurrency bugs in
Node.js manifest themselves? How are they triggered,
e.g., the timing condition, and input conditions?

 RQ4 (Bug fix strategies): How do developers fix
concurrency bugs in Node.js in practice? Are there any
common fix strategies?

Through investigating the above four research questions, we
made many interesting findings. The main ones are:

 Concurrency bugs in Node.js can be caused by atomicity
violation (65%), order violation (30%), and starvation
(5%). Although each event is guaranteed to be processed
atomically by Node.js, atomicity across multiple events
cannot be properly enforced without lock or transaction
mechanisms. Furthermore, existing work mostly focuses
on order violation in event-driven applications (e.g.,
client-side JavaScript [8][12] and Android[10][11][13]).
This suggests that more research should be conducted on
atomicity violation in Node.js.

 Most concurrency bugs contend against shared variables
(54%), databases (26%) and files (14%). This suggests
that, besides shared variables [10][11], concurrency bug
detection approaches should pay more attention to shared
resources like databases and files.

 APIs in Node.js are written in an asynchronous and
event-driven way. They usually have unclear API
protocols (e.g., event order and atomicity specifications).
28 (49%) of concurrency bugs are caused by API misuse,
indicating that developers may misunderstand the
specifications of asynchronous APIs.

 Almost all (93%) concurrency bugs in Node.js are
triggered by enforcing orders among no more than 4
events. This indicates that exploring possible orders
among every small group of events can test Node.js
concurrency efficiently.

 Almost all the studied concurrency bugs cause severe
failures, including crashes/exceptions (33%), hangs (7%),
incorrect database/file states (32%), wrong outputs (11%)
and other operation failures (17%).

 Most concurrency bugs were fixed by a small set of fix
strategies. But, only a small portion (23%) of bugs were
fixed by simply adding synchronization (e.g., nested
callbacks), which is the main approach used by existing
automated concurrency bug fixing approaches [14]. This
indicates that further automated bug fixing approaches
are needed.

In summary, we make the following contributions:

 We conduct the first comprehensive study of real world
concurrency bugs in Node.js applications. Our findings
can help better understand concurrency bugs in Node.js
applications, and provide guidelines to this topic.

 Our 57 documented concurrency bugs can serve as a
basis for future work on finding and fixing them. We
have made the collected bugs available online for future
studies (http://www.tcse.cn/~wsdou/project/NodeCB).

II. BACKGROUND

In this section, we first introduce the event-driven model in

Node.js, and then explain the sources of non-determinism in

this model.

A. Event-Driven Model in Node.js

The event-driven model in Node.js is shown in Fig. 1. It
mainly consists of two parts: a single looper thread and a worker
pool. Both parts are supported by libuv [15] in Node.js. The
looper thread is responsible for executing user code, including
callbacks that are defined to respond to events. For some
expensive tasks, e.g., file operations, Node.js offloads them to
the worker pool, and executes them asynchronously. By
offloading expensive tasks to the worker pool, the looper thread
would not be blocked by these expensive tasks.

In Node.js, the basic event processing flow is described as
follows: (1) The looper thread fetches an event in the event loop,
and executes its callback cb. (2) If the callback cb invokes an
asynchronous I/O operation, the looper thread will offload it to
the worker pool, and register a new callback associated with the
asynchronous I/O operation. For example, in Fig. 1, callback cb
offloads two I/O operations createFile (‘a.txt’, cb1) and readFile
(‘a.txt’, cb2) to the worker pool, and uses cb1 and cb2 as their
callbacks, respectively (steps 1.1 and 1.2). Thus, the looper
thread can proceed with other events in the event loop, instead
of waiting for the completion of these two operations. (3) The
worker pool can use a worker thread to perform each
asynchronous I/O operation, and put an event into the event loop
when the operation is done. For example, the worker pool puts
two events ‘read done’ and ‘create done’ into the event loop
(steps 2.1 and 2.2). (4) The looper thread fetches these two
events one by one sometime later, and executes their callbacks
cb2 and cb1 (steps 3.2 and 3.1). The Node.js application
continues the above steps until the application exits. Note that,
each callback is guaranteed to be executed without interruption.

In Node.js, the event loop consists of seven FIFO event
queues that hold different types of events: timer, I/O, pending,
idle, prepare, check, and close [16]. For example, all events
scheduled by setTimeout will be put into the timer event queue,
while I/O events will be put into the I/O event queue. The looper
thread in turn processes these seven event queues in a round-
robin manner: when a queue has been exhausted or the amount

Worker pool

Fig. 1. The event-driven model in Node.js. The solid arrows denote the
invocation of an asynchronous operation (1.1 and 1.2), the dotted arrows

denote that the operations are completed (2.1 and 2.2) and the corresponding

callbacks are invoked (3.1 and 3.2). The looper thread executes each callback
one by one, without interruption.

Looper thread

1.1 createFile(‘a.txt’, cb1)

2.2 read done

1.2 readFile (‘a.txt’, cb2)

2.1 create done

timer

3.2 cb2

3.1 cb1

cb2 ∙∙∙ cb1

t1

…

cb

I/O

of the invoked callbacks for a queue reaches a given threshold,
the looper thread will move on to the next queue. Although the
events in each queue are scheduled in order, the events across
queues can be scheduled non-deterministically. For example, we
cannot know the processing order of a timer event and an I/O
event. Worse, the looper thread may register high-priority
callbacks first. For example, a callback scheduled by
process.nextTick will be executed immediately after the current
callback completes, and the I/O events will be processed before
moving on to process the events set by setImmediate.

B. Non-determinism in Node.js

Node.js applications make heavy use of asynchronous
operations, and further handle these operations’ results by their
callbacks. Although the looper thread atomically processes each
event one at a time without interruption, Node.js applications
still suffer from various non-determinism. We summarize the
sources of non-determinism in a single Node.js process into the
following three phases according to the time when it occurs.

Non-deterministic execution of asynchronous operations.
When multiple asynchronous tasks are delegated to the worker
pool simultaneously, their processing order is unknown. For
example, in Fig. 1, operations 1.1 and 1.2 (createFile and
readFile) are issued almost simultaneously. We cannot know
which operation is scheduled first. If operation 1.2 (readFile) is
scheduled first, then an error “file not exist” will be thrown since
the file ‘a.txt’ has not been created yet.

Non-deterministic event triggering. For two asynchronous
operations scheduled by the worker pool, their completion order
is unknown. The system environments, e.g., CPU, can affect the
completion order of the operations. For example, in Fig. 1, if
operation 2.2 completes before operation 2.1, the read done
event of operation 2.2 will be put into the queue first. Thus,
callback cb2 will be invoked before cb1. Besides, a network
request may arrive at any time, its order relative to other events,
e.g., completion events of asynchronous operations, is unknown.

Non-deterministic event handling. It is possible to have
multiple callbacks available for execution at any point, and the
choice for which one of these callbacks to schedule next is non-
deterministic (as discussed earlier in Section II.A). Thus,
callbacks may not be processed in their expected order.

Non-determinism among multiple Node.js processes. The
looper thread in Node.js is single-threaded. So, in order to take
advantage of multi-core processors, Node.js can spawn many
processes to distribute the workload. Node.js provides an
elegant solution, cluster [17], to scale up applications by
splitting a single process into multiple ones. These Node.js
processes may have conflicting accesses to the same resources,
e.g., a Node.js process copies a file in a directory while another
process deletes the directory. This non-determinism could
introduce concurrency bugs.

III. METHODOLOGY

To answer the research questions RQ1-4, we collect real
world concurrency bugs in open-source Node.js applications as
our study subjects. This section presents how we collect real
world concurrency bugs from Node.js applications, and further
explains the methodology of our characteristic study.

A. Collecting Concurrency Bugs

Existing bug studies, e.g., [6][7], often first identify the
mature projects, and then collect bugs in the projects. However,
Node.js is relatively new, and its applications are still young. We
find that Node.js applications usually report very few
concurrency bugs. Therefore, in order to collect sufficient bugs
for our study, we directly collect concurrency bugs from all
Node.js projects in GitHub. Our approach to collect concurrency
bugs in Node.js is described as follows.

Step 1: Searching concurrency bug reports in GitHub
Node.js projects. As the most popular open-source platform,
GitHub has hosted about 97,000 Node.js projects. Through an
initial investigation on some Node.js projects, we find that there
is no clear categorization for concurrency bugs in these projects.
Thus, we use concurrency-related keywords to search candidate
concurrency bugs in Node.js projects from GitHub. The
keywords we used are as follows: “concurrent”, “race”,
“synchronization”, “atomic”, “mutex”, “transaction”,
“deadlock”, “compete” and “starve”. To answer our research
questions, we further use advanced search conditions provided
by GitHub to filter out bugs that are labeled as bug, already in
closed state, and contains keywords like “submit” or “fix”. This
implies that these bugs are confirmed as bugs and may have
fixing solutions. After this step, we obtain 1,583 bug reports.

Step 2: Selecting concurrency bugs in Node.js projects.
Since containing the previous mentioned keywords does not
mean that a selected bug report really contains a concurrency
bug in Node.js, we manually validate these 1,583 bug reports,
and exclude bug reports that are not related to concurrency and
Node.js. Finally, we obtain 214 concurrency bug reports in 147
Node.js projects. We further carefully inspect these 214
concurrency bug reports, and only keep the concurrency bug
reports that contain enough information to answer the research
questions RQ1-4. Some concurrency bug reports are incomplete,
e.g., we cannot find its corresponding bug fixing patch, or the
bug report only contains a one-line description and we cannot
infer how the bug happens. We exclude these incomplete bug
reports from our characteristic study. After this step, we obtain
57 concurrency bugs for our bug characteristic study.

These 57 concurrency bugs come from 53 Node.js projects,
including 12 server-side applications, 6 desktop applications,
and 35 libraries, e.g., network communication API socket.io
[18]. Fig. 2 shows the statistics of our studied 53 projects. These
projects are popular: there are on average 2,426 stars, and 32%
of them have more than 1,000 stars (Fig. 2a). These projects are
well-maintained: there are on average 1,516 revisions and 1,152
issues; 56% of them have more than 500 revisions (Fig. 2b), and
23% of them have more than 1,000 issues (Fig. 2c). These

(a) Popularity distribution (# of stars)

(b) Code revision distribution (# of revisions)

(c) Issue distribution (# of issues) (d) Project size distribution (Lines of code)

Fig. 2. Statistics of our studied Node.js projects.

projects are big and complicated: there are on average 10,390
lines of JavaScript code, and 40% of them contain more than
5,000 lines of code (Fig. 2d).

B. Analyzing Concurrency Bugs in Node.js

We manually study all the 57 concurrency bugs to answer
the research questions RQ1-4. Specially, we study the bug
reports, bug fixing patches and related discussions (e.g.,
comments), and then assign them into different categories
according to their bug patterns and root causes (Section IV),
failure impacts (Section V), bug manifestation (Section VI) and
fix strategies (Section VII), respectively.

Specially, we categorize concurrency bugs into different
categories in three phases. (1) We propose initial categories in
advance according to the taxonomy in related work [6][7]. (2)
We carefully study each bug and try to assign it into different
categories. If a bug does not belong to any known category, we
create a new category for it. (3) In the last, we review the above
categorization, and ensure that the categorization demonstrates
common bug characteristics, does not overlap, and covers most
bugs. In this phase, we may need to adjust current categories,
e.g., merge categories, rename category names or remove
useless categories. In the above process, we make sure that each
bug is studied at least by two authors. If we have conflicts about
the bug or categorization, we will reinvestigate the bug further,
until we form a final decision.

C. Threats to Validity

Similar to other bug characteristic studies, our study is
subject to the validity problem. Potential threats to the validity
include the representativeness of our studied concurrency bugs
and our study methodology.

Representativeness of the studied concurrency bugs. All
concurrency bugs we studied are collected from open-source
Node.js projects. The keywords we used to select these bugs are
a union set of keywords used by related studies [7][19][20]. We
keep all the bugs that have enough information for
categorization without bias. Further, our studied 53 projects
include various types of Node.js applications, e.g., server-side
applications and libraries. Most of these projects have high
popularity and are well-maintained. Of course, some
concurrency bugs may never be reported or fixed by developers.
However, there is no proper way to study these bugs. We believe
our studied bugs provide a representative sample of real world
concurrency bugs in Node.js.

Study methodology. For each bug, every piece of
information related to the bug, including developers’
explanations, source code, fixing patches, and bug triggering test
cases, needs to be studied. To minimize subjective errors in our
study, each bug is studied by at least two authors in this paper.

IV. BUG PATTERNS AND ROOT CAUSES

Concurrency bugs in Node.js applications can have complex
timing, involving multiple events and asynchronous operations.
First, we study the triggering conditions to categorize the studied
bugs into different bug patterns (Section A). Second, we study
the root cause of each bug from two aspects, bug-inducing phase
and bug-inducing API, to understand why these bugs are
introduced by developers (Section B).

A. Bug Patterns

We study the bug reports of the selected 57 concurrency
bugs in Node.js, and then assign them into different categories
according to their triggering conditions. Finally, we categorize
these 57 bugs into three bug patterns: order violation, atomicity
violation and starvation. Note that, we do not find deadlock bugs
in Node.js, which are common in multi-threaded systems [6].

Order violation. About one third (17/57=30%) of the
studied concurrency bugs are caused by violation to developers’
order intention between two events or asynchronous operations.
In this case, two or more events / asynchronous operations,
which access the same shared resources (e.g., variables, files),
are expected to be processed in a certain order. However, the
order is not enforced during execution.

Order violation can happen in two situations. First, it
happens between two asynchronous operations. Consider bug
gp-js-client#41 [21] in Fig. 3. The two asynchronous operations
create and uploadStr are issued one after another. Developers
assume that these two operations are executed sequentially.
Since these two operations are asynchronous, Node.js may
execute them in any order. In the buggy order, the uploadStr
operation is first processed by the remote server and returns an
error “the data to update does not exist”. To avoid this buggy
order, the uploadStr operation can be moved to the callback of
the create operation (Line 3). Second, order violation can also
happen between two callbacks. In Fig. 1, the callbacks of two
operations (steps 1.1 and 1.2), i.e., cb1 and cb2, are expected to
be invoked as cb1→cb2. However, this order is not enforced by
user code and there is a chance that cb2 is invoked before cb1.

Atomicity violation. About two thirds (37/57=65%) of the
studied concurrency bugs are caused by violation to developers’
atomic intention among several callbacks or asynchronous

1. var bundle = client.bundle('someBundle');

2. bundle.create(…, function(){ // create is async

3.+ bundle.uploadStr(…);

4. });

5.- bundle.uploadStr(…); // uploadStr is async

Fig. 3. gp-js-client#4: Order violation caused by non-deterministic execution

of asynchronous operations [21]. The code snippet aims to create a data in the

remote server in line 2 and then updates the data in line 5 (create and uploadStr

are two asynchronous operations). The two asynchronous operations are

issued almost simultaneously, and may result in a possible buggy order in

which the uploadStr operation is first processed by the remote server and

returns an error “the data to update does not exist”. The fix is to move the

uploadStr operation into the callback of the create operation, so that the two

asynchronous operations are ordered, and can be executed sequentially.

1gp-js-client#4 denotes the concurrency bug reported by the issue 4 in project

gp-js-client. Other concurrency bugs have the same representation in this
paper.

Looper Remote server

Buggy order

uploadStr

create

Data not

exist yet!

err

Fixed order

Looper Remote server

create

uploadStr

operations. In this case, a set of events / asynchronous operations
are assumed to be processed atomically without interruption, but
the atomicity is not enforced during execution.

Consider bug Porybox#157 [22] in Fig. 4. When a user
requests to add a new id, the function addIdToArray first triggers
an asynchronous operation findOne (Line 2) to query the user’s
current ids from the database, and then triggers another
asynchronous operation save (Line 4) to save the updated ids
back to the database. Note that, for each user request, the above
two asynchronous operations are correctly ordered through
nested callbacks, and thus there is no order violation. For each
user request, developers assume that this small code region will
be executed atomically. However, the two operations findOne
and save are executed in response to two different events, and
other events may interleave in between. For example, if two user
requests with the same username (ownerName) arrive
simultaneously, it may trigger the following interleaving
findOne1→findOne2→save1→save2. Here, the subscripts denote
the user request ID. In this case, findOne1 and findOne2 both
obtain the same ids (e.g., < >). For the first request, it updates
ids from < > to <1>, and then saves ids to the database (save1).
For the second request, it updates ids from < > to <2>, and then
saves ids to the database (save2). Now, ids in the database
becomes <2>, and the update by the first request is lost. The
correct interleaving of two user requests should be findOne1
→save1 →findOne2 →save2, as shown in the right part of Fig. 4.
In this case, the second request updates ids based on the first
request’s result. Thus, ids in the database becomes <1, 2>.

Atomicity violation can also originate from multiple
processes. Two bugs are in this case. In bug cordova-lib#7 [23],
the application (a tool for installing/uninstalling plugins)

extracts each .tgz file into the same directory and then copies the
extracted files out. When installing two different plugins: (1) the
first process has extracted a .tgz file into the directory, and then
is copying the extracted files; (2) the second process is extracting
another .tgz file into the same directory. Thus, the first process
can copy some files that belong to the second process.

Starvation. Few concurrency bugs (3/57=5%) happen when
some tasks take a long time and prevent other events from
processing. Usually, callbacks registered by higher priority can
starve the lower ones.

Consider bug hapi#3347 [24] in Fig. 5. For each I/O request
from the client, the internals.emit (Line 1) is called to push the
notification to the queue _notificationsQueue (Line 3). If no
notification is in process (Lines 5-7), the first notification is
obtained from the queue _notificationsQueue (Line 9) and
scheduled in a deferred task through setImmediate (Line 12). It
further iteratively emits the internals.emit in another deferred
task in order to process the remaining notifications in the queue
_notificationsQueue (Lines 16). As mentioned in Section II.A,
the I/O events have higher priority than events scheduled by
setImmediate. So, if the I/O keeps busy, the events scheduled by
setImmediate will have no chance to be processed. As a result,
the _notificationsQueue keeps increasing and hits an error
“allocation failed - process out of memory”.

1. function addIdToArray (ownerName, id) {

2. - return User.findOne({name: ownerName}).then(user => {

3. - user._ids.push(id);

4. - return user.save();

5. - });

6. + db.user.update({name:ownerName},{$push:{_ids: id}})

7. }

Fig. 4. Porybox#157: Atomicity violation caused by non-deterministic event

triggering [22]. Each user request (addIdToArray) triggers two asynchronous

operations (findOne and save) in order. First, it triggers findOne operation

(Line 2), which queries a list of IDs from the database asynchronously. Second,

after findOne returns, it modifies the data and triggers save operation (Line 4),

which saves the data back to the database asynchronously. For each user

request, the above two steps should be atomic. However, two successive user

requests with the same ownerName may cause buggy interleaving findOne1

→findOne2→save1→save2, resulting in the first save to the database getting

lost (i.e., the IDs should be <1, 2>, not <2>). This bug is fixed by changing

findOne and save into an atomic API (update) supported by MongoDB.

1. internals.emit = function (emitter, notification) {

2. if (notification) {

3. emitter._notificationsQueue.push(notification);

4. }

5. if (emitter.isProcessing || !emitter._notificationsQueue.length) {

6. return;

7. }

8. emitter._isProcessing = true;

9. const item = emitter._notificationsQueue.shift();

10. const finalize = () => {

11. if (item.callback) {

12. – setImmediate(() => item.callback());

13. + process.nextTick(itemCallback, item);

14. }

15. emitter._isProcessing = false;

16. – setImmediate(() => internals.emit(emitter));

17. + process.nextTick(emitEmitter, emitter);

18. };

19. //Some code invoking finalize asynchronously.

20. }
Fig. 5. hapi#3347: Starvation caused by non-deterministic event handling [24].

An I/O request results in the invocation of internals.emit (Line 1) which pushes

a notification to _notificationsQueue (Line 3). If no notification is in process,

it then shifts an item from the queue (Line 9), processes it in a deferred

setImmediate task (Line 12), and invokes internal.emit in another deferred task

(Line 16) to process the remaining notifications in the queue later. This will

cause a starvation bug since the event loop keeps processing the I/O event

queue when the I/O is busy before it proceeds with the event queue that the

setImmediate event lies in. As a result, the _notificationsQueue increases a lot

before the notifications are processed and ends up throwing the error

“allocation failed - process out of memory”.

Finding #1. Concurrency bugs in Node.js can be

categorized into three simple bug patterns: order violation,

atomicity violation, and starvation. Two thirds of the

studied bugs are atomicity violation.

Looper libuv

setImmediate

I/O

I/O

I/O

Looper

Buggy interleaving

findOne1

findOne2
ids: < >

ids: < >

ids: <1>

save1

save2
ids: <2>

Looper

Correct interleaving

findOne1

save1
ids: < >

ids: <1>

ids: <1>

findOne2

save2
ids: <1,2>

The 1st save

gets lost!

Database Database

B. Root Causes

It is difficult to know why these concurrency bugs were
introduced by developers. By analyzing bug patterns and related
bug descriptions in the bug reports, we try to understand the root
causes from the following two aspects. (1) Bug-inducing phase:
in which phase non-determinism is introduced? (2) Bug-
inducing API: what asynchronous APIs are responsible for the
racing events? Further, we try to postulate some possible and
common misunderstanding behind these concurrency bugs.

Bug-inducing phase. As discussed in Section II.B,
concurrency bugs can be introduced in three different phases:
execution of asynchronous operations, event triggering and
event handling. As shown in Table 1, concurrency bugs mostly
happen due to non-determinism in event triggering (40/57=70%)
and execution of asynchronous operations (20/57=35%). Only 3
bugs happen due to non-deterministic event handling. Note that
9 bugs are introduced by both non-deterministic execution of
asynchronous operations and event triggering, so the
accumulated percentages exceed 100%. Additionally, 3 bugs
happen among multiple Node.js processes.

Bug gp-js-client#4 in Fig. 3 is caused by non-deterministic
execution of asynchronous operations. In this example, the two
asynchronous I/O operations (i.e., create and uploadStr) may be
reordered by the underlying worker pool. Fig. 4 shows an
example of concurrency bug due to non-deterministic execution
of asynchronous operations and event triggering. For the buggy
interleaving, the Node.js framework determines the two
asynchronous I/O operations (i.e., findOne and save) in one
request happen in order. However, the event order between two
requests is non-deterministic. While, Fig. 5 shows an example
of concurrency bugs due to non-deterministic event handling.
This kind of bugs are rare since they only relate to non-
deterministic event schedule for the looper thread.

Bug-inducing API. Understanding which asynchronous
APIs are responsible for the racing events (i.e., events involved
in a concurrency bug) is important for understanding the root
cause of a concurrency bug. We categorize related APIs into two
categories: Schedule API and high-level API protocol. Schedule
APIs refers to native APIs provided by Node.js, e.g., setTimeout,
process.nextTick and Promise [25], which are used to schedule
deferred tasks. The APIs in Node.js are usually developed in the
asynchronous and event-drive style. High-level API protocol
refers to the asynchronous and event-driven specification that
developers should follow when they use those APIs. The code
snippet in Fig. 3 shows a typical example for high-level API
protocol: for a bundle, before it is created by the create
asynchronous operation, no further actions on the bundle (e.g.,
uploadStr) should be performed. For another example, a xlsx file
extraction API provides two types of events: row event issued

when a row in the xlsx file is parsed, and end event issued when
the whole file is parsed. The end event should be processed only
after all row events have been processed. Bug xlsx-extract#7 [26]
does not respect this protocol, and causes an exception.

Table 2 shows the statistics about bug-inducing APIs. Note
that, the remaining bugs are not related to schedule APIs or
wrong assumptions about high-level API protocols. For example,
two user requests trigger two events that modify the same
variables non-deterministically. We exclude them in Table 2.

 Schedule API in Node.js. Asynchronous operations can
be scheduled by the commonly used schedule APIs. 11
(19%) concurrency bugs schedule their events with
schedule APIs in Node.js, including setTimeout (7),
process.nextTick (2), setInterval (1), setImmediate (1),
and Promise (0). Thus, these schedule APIs can
introduce non-determinism to Node.js applications.

 High-level API protocol. 28 (49%) concurrency bugs are
caused by improper high-level API usage, e.g., bugs gp-
js-client#4 and xlsx-extract#7 [26]. The asynchronous or
event-driven-style protocols are usually not clearly
described or understood by developers. Thus, developers
may have wrong assumptions of the event order and/or
atomicity. For example, in bug sequelize#1599 [27], a
developer commented: “I would expect findOrCreate()
method to be atomic. However, it just calls find() and if
unsuccessful, it will call create().” In bug kue#154 [28],
a developer commented: “The redis client.subscribe is
asynchronous but that is completely ignored”.

V. BUG IMPACTS

We study the failure symptom of each bug to better
understand how severe a concurrency bug is. Our studied
concurrency bugs can cause fatal failures including crashes /
exceptions, incorrect states, wrong outputs, hangs / no response,
and other operation failures. Note that, incorrect states and
wrong outputs can also cause some operation failures. To avoid
double counting, we consider a bug as causing operation failures
only when it does not cause incorrect states and wrong outputs.

Crashes / Exceptions. 19 (33%) of the studied bugs can
cause crashes or uncaught exceptions, e.g., null pointer
exception. For example, in bug hapi#3347 (Fig. 5), Node.js
crashes due to out of memory.

Finding #2. Non-deterministic event triggering (70%) and
execution of asynchronous operations (35%) are two main
sources of concurrency bugs, while existing work only
focuses on non-deterministic event triggering. 28 (49%)
bugs are caused by using high-level API protocols in an
improper way.

TABLE 2. BUG-INDUCING API

 Cases Order Atomicity Starvation Total

Schedule API

setTimeout
process.nextTick
setInterval
setImmediate
Promise

2
0
1
0
0

5
0
0
0
0

0
2
0
1
0

7
2
1
1
0

API protocol 11 17 0 28

TABLE 1. BUG-INDUCING PHASE

 Order Atomicity Starvation Total

Asynchronous operation 4 16 (9)* 0 20 (9)*

Event triggering 12 28 (9)* 0 40 (9)*

Event handling 0 0 3 3

Multi processes 1 2 0 3
*9 atomicity violation bugs, shown in (), can be introduced by both non-

deterministic execution of asynchronous operations and event triggering.

Incorrect states. 18 (32%) of the studied bugs can cause
incorrect states, e.g., incorrect persistence data in database. For
example, in bug Porybox#157 (Fig. 4), the first update is lost in
the database.

Wrong outputs. 6 (11%) bugs can generate wrong results
and present them to users.

Hangs / no response. 4 (7%) bugs can cause hangs or no
response. For example, in bug fiware-pep-steelskin#269 [29],
the application registers a listener for an event. However, an
unexpected event may happen and remove the listener before it
is triggered. As a result, the event cannot be processed correctly.

Operation failures. The other 10 (17%) bugs cause
unexpected behaviors: jobs getting processed incompletely (2),
jobs getting rejected (2), jobs getting processed twice (2), I/O
starvation issues under heavy load (2), and others (2), e.g., a
server cannot be shut down normally.

VI. BUG MANIFESTATION

Understanding how concurrency bugs manifest themselves
in Node.js applications can provide useful implications on how
to effectively detect and test concurrency bugs.

A. Input Preconditions

While Section IV.A presents the timing conditions of
concurrency bugs, this section focuses on input preconditions.
In practice, many input conditions should be satisfied in order to
trigger the concurrency bugs, such as external requests,
application configuration, and deploy environment. For example,
in bug Porybox#157, two external requests with the same
ownerName are required. Otherwise, this concurrency bug
cannot be triggered. Table 3 shows the input preconditions for
our studied bugs.

External requests. Node.js is usually used to process user
requests in server-side applications. These user requests are
external to Node.js applications, and can happen anytime. As
Table 3 shows, 23 (40%) bugs do not need any external request.
These bugs usually occur in desktop applications and libraries,
and they do not receive any external request. 2 bugs only need 1
external request. 28 (49%) bugs need only 2 concurrent requests,
and interestingly, 18 of them only require 2 same requests with
the same inputs (e.g., Porybox#157). For the remaining 10 bugs,
they require 2 different external requests. Only 4 concurrency
bugs require more than 2 external requests.

We observe that about three quarters (43/57=75%) of the
studied bugs can manifest themselves with no more than one

external request or two same requests. This indicates that input
preconditions are usually simple, and developers can test their
applications with simple input preconditions first. The other 14
bugs need relatively complicated conditions and are not easy to
trigger. They require at least two different external requests and
may also require a specific order among them. For example, bug
browser-laptop#3273 [30] is triggered only when three external
requests are ordered as on → off → on.

Configuration and deploy environment. We observe that
6 (11%) bugs require special configuration (4 cases) or deploy
environment (2 cases). For example, it requires specific database
for bug five-bells-shared#64 [31] and certain Node.js version for
bug asset-smasher#8 [32] to be manifested.

B. Racing Resources

Racing resources usually denote the states of an application
and a concurrency bug is introduced when these states hold
unexpected or inconsistent values. We categorize racing
resources as shared variable, database, file, and others.

Shared variable. 31 (54%) bugs contend against shared
variables. Shared variables are commonly used to store shared
data in memory, or as condition variables used for
synchronization between callbacks.

Database. 15 (26%) bugs contend against the data in
database. This usually happens when several database
operations (e.g., query and update) are not ordered or executed
in an atomic region, and cause inconsistency in the database. For
example, bug Porybox#157 in Fig. 4 contends against database.

File. 8 (14%) bugs contend against files, e.g., bug cordova-
lib#7 [23]. This usually happens when several file operations
(e.g., read and write) to the same file are not ordered.

Other. 3 bugs do not have racing resources, such as a
starvation bug that is only sensitive to event schedule.

C. Triggering Scope

We analyze the triggering scope to provide a complexity
measure of the triggering of a concurrency bug in Node.js. We
use the following metrics to measure the triggering scope: events
/ asynchronous operations count, Node.js process count, and
racing resource count, as shown in Table 4.

Events / asynchronous operations. For each concurrency
bug, we identify the smallest set of events / asynchronous
operations E, so that a specific order of E can guarantee that the
bug manifests. As Table 4 shows, most (93%) bugs only involve
no more than 4 events / asynchronous operations. This indicates
that testing Node.js applications and detecting concurrency bugs
in Node.js can be simplified to check no more 4 events /
asynchronous operations without losing bug detection capability
much.

Finding #3. All the studied concurrency bugs in Node.js can

cause severe consequences, e.g., crashes, incorrect states,

hangs, and operation failures.

Finding #4. Three quarters of the studied concurrency bugs
only require simple input preconditions. 11% of the studied
bugs require special configuration or deploy environment.

Finding #5. A significant number (23 out of 57) of
concurrency bugs contend against databases or files, rather
than variables.

TABLE 3. PRECONDITIONS

 Cases Order Atomicity Starvation Total

External request

0
1
2
>=3

13
1
2 (1)*
1

8
1
26 (17)*
2

2
0
0
1

23
2
28 (18)*
4

Configuration 1 2 1 4

Deploy environment 0 1 1 2
*The bugs, shown in (), only require 2 same external requests with the same inputs.

Involved Node.js processes. 54 (95%) concurrency bugs
only involve 1 Node.js process. This indicates most concurrency
bugs happen in one single Node.js process and bug detection
approaches only focusing on one Node.js process can cover
most concurrency bugs.

Racing resources. 49 (86%) bugs race for only 1 resource
(e.g., a shared variable, a file or an entity in database). Bug
change-propagation#84 [33] is an example of racing for two
shared variables: the program makes a commit to database if
certain conditions about two shared variable are satisfied.

VII. BUG FIXING

A. Fix Strategies

Before we investigate how concurrency bugs in Node.js
were fixed in practice, our intuition is that adding
synchronization (forcing orders among events / asynchronous
operations) should be the most common way to fix concurrency
bugs in Node.js. Surprisingly, it is not the case. In total, we
summarize 8 fix strategies that can fix 46 out of 57 bugs, as
shown in Table 5. Only one quarter of the bugs were fixed by
adding synchronization. There are several potential reasons.
First, it is difficult to enforce atomic intentions by forcing orders
among callbacks or asynchronous operations. Second, simply
using synchronization on all the operations can lower the
parallelization and thus degrade the performance. Therefore,
about three quarters of bugs were fixed without synchronization.
Developers usually need to consider correctness and
performance to decide the most appropriate fix strategies. In the
following, we describe these different strategies.

Adding synchronization. One quarter of concurrency bugs
were fixed by changing the timing of callbacks or asynchronous
operations. Node.js can use callbacks or equivalent async
control flow libraries, e.g., async[34] and syncify[35], to add
synchronization. For example, bug gp-js-client#4 in Fig. 3 was
fixed by moving uploadStr into the callback of create (Line 3).
Thus, the order of these two asynchronous operations is
enforced. Node.js can also use condition variables to enforce
orders. For example, in the code snippet in Fig. 5, two callbacks
(Lines 13 and 17) by process.nextTick() should be invoked as an
atomic region. It uses a condition variable isProcessing to avoid
concurrent processing of external requests. If isProcessing is
true, it just puts the new incoming request in a queue (Line 3)
and will reschedule it later. An equivalent way to do this is using

third-party lock [36] or mutex [37]. Only 7 out of 37 atomicity
violation bugs were fixed by adding synchronization: 3 bugs
were fixed by using shared variables, and 4 bugs were fixed by
using third-party lock/mutex. Most atomicity violation bug were
not fixed by adding synchronization. Developers would try to
fix these bugs by tolerating wrong event timing instead of
preventing the buggy timing with synchronization.

Bypassing. 15 bugs were fixed by bypassing code when
certain variable conditions are satisfied. 5 order violation bugs
were fixed this way. For example, bug js-ipfs#318 [38] results
in calling a callback twice and finally throws an exception. It
was fixed by introducing a variable denoting whether the
callback has been called to avoid calling it again. 10 atomicity
violation bugs were fixed by skipping code to avoid erroneous
behaviors when its concerned variable is modified by an
unexpected event (i.e., under buggy interleaving). The fix of bug
strider#745 [39] just moves on if certain variable is not null.

Tolerance. 5 bugs were fixed by tolerating the buggy event
timing. 1 order violation bug was fixed by tolerating buggy
timing. For example, bug session#340 [40] was fixed by
correcting the states of shared variables so that the following
code can also run under buggy event order. 4 atomicity violation
bugs were fixed by tolerating the incorrectly interleaved events.
For example, the fix of bug fiware-pep-steelskin#279 [41]
corrects the value of the concerned variable when it detects the
variable is modified by an unexpected event’s callback. Note
that, this kind of fixes are usually semantic-related, developers
need to confirm how to update the corrupted states.

Switching to atomic APIs. 4 bugs were fixed by replacing
current APIs with their atomic versions. For example, bug
Porybox#157(Fig. 4) was fixed by replacing findOne and save
with the atomic API update which can do the same task in a
single query supported by MongoDB.

Ignoring / retrying. 2 bugs were fixed by catching the
failure or retrying the failed operation. For example, bug
browser-laptop#3273 was fixed by catching the error and
showing it to users. In bug done-ssr#62 [42], the application
launches the component can-serve and live-reload at the same
time, the can-serve may get ready first and tries to send a request
to the live-reload server which has not started yet. This bug was
fixed by letting the can-serve retry the request later.

Moving code. 2 atomicity violation bugs were fixed by
moving code. Their fixes merge the supposed atomic operations
but separated in two callbacks together in one callback. Thus,
they are guaranteed to be executed atomically.

Finding #6. Most concurrency bugs only involve no more
than 4 events / asynchronous operations, 1 Node.js process,
and 1 resource.

TABLE 5. FIX STRATEGIES

Fix strategies Order Atomicity Starvation Total

Adding synchronization 7 6 13

Bypassing 5 10 15

Tolerance 1 4 5

Switching to atomic APIs 4 4

Ignoring/retrying 1 1 2

Moving code 2 2

Data privatization 2 2

Changing priority 3 3

Other 3 8 11

Total 17 37 3 57

TABLE 4. TRIGGERING SCOPE

 Cases Order Atomicity Starvation Total

Events /
asynchronous
operations

2
3
4
>4

15
0
2
0

6
14
16
1

0
0
0
3

21
14
18
4

Involved processes
1
2

16
1

35
2

3
0

54
3

Racing resources

0
1
2
3

1
14
2
0

0
34
2
1

2
1
0
0

3
49
4
1

Data privatization. 2 bugs were fixed by making shared
variables private under the same buggy context. Thus, racing
events’ callbacks cannot access the shared variables. 2 atomicity
violation bugs were fixed by data privatization.

Changing priority. 3 starvation bugs were fixed by
adjusting the priorities of relevant events. The 7 event queues
have different strategies, as shown in Section II.A. For example,
recursively scheduling events by process.nextTick can starve the
event loop since it has very high priority. This can be fixed by
using setImmediate that has relatively lower priority. Similarly,
I/O events can starve callbacks registered by setImmediate. This
can be fixed by using process.nextTick that has higher priority.

Other. The remaining 11 bugs were fixed by various ad-hoc
approaches, such as, changing underlying C/C++ Node.js plugin
code, updating dependent databases, and redesigning related
data structure and code logic.

B. Fix Complexity

To quantify the effort and complexity of fixing the
concurrency bugs in Node.js, we use five metrics to measure the
fix complexity: (1) the time to resolve the bug, (2) the number
of bug comments among developers, (3) the patch size in terms
of LOC changed, (4) the number of patches submitted, (5) the
number of shared variables introduced during fixing.

For the first four metrics, we extract the corresponding
information from the bug reports in GitHub. Table 6 shows the
statistics of the first four metrics. On average, our studied bugs
take 55 days to fix, have 8 comments, submit 2 patches and have
29 lines of code changed. Due to space constraints, we do not
provide further cross-cutting analyses, e.g., how many bugs
have patches with more than 50 LOC.

Shared variables introduced in bug fixes. Due to lack of
synchronous primitives, e.g., lock and wait/notify, shared
variables are prevalently used for fixing concurrency bugs in
Node.js. Here, we only count the number of shared variables,
which are used as condition variables for checking program
states, or to store state information for bypassing or tolerance.
The use of shared variables can complicate fixes since
developers need to consider how to form the conditional
statement and where to place it.

We analyze how many shared variables are introduced in the
patches. For 27 concurrency bugs, shared variables are used as
condition variables or to store state information. For these bugs,
17 bugs use 1 shared variable, 7 bugs use 2 shared variables, 2
bugs use 3 shared variables and 1 bug uses 4 shared variables.
For bug fixing, 17 bugs introduce new shared variables to fix

bugs. Among these 17 bugs, 8 bugs have used shared variables
for preventing concurrency bugs, but they were used in the
wrong way. The final patches fix them. This also indicates fixing
concurrency bugs with shared variables is difficult.

VIII. LESSONS LEARNED

We now discuss the lessons learned, implications to existing
tools and the opportunities for new research in combating
concurrency bugs in Node.js.

A. Concurrency Bug Detection in Node.js

Concurrency bugs in Node.js can cause severe consequences
(Finding #3), and thus resolving these bugs is of great
significance for the reliability of Node.js applications. Since
Node.js is new, concurrency bug detection tools are
unfortunately rare. Our study provides some patterns and
guidance that can facilitate future studies on concurrency bug
detection in Node.js.

Pattern-based bug detection. Finding #1 implies that
concurrency bug detection in Node.js can focus on three simple
bug patterns: order violation, atomicity violation and starvation.
Although there exists some concurrency bug detection tools in
other event-based systems, like Android[10][11] and client-side
JavaScript [8][12], they mainly focus on order violation.
Atomicity violation bugs are not well addressed in event-based
systems yet. However, atomicity violation bugs are dominant
(Finding #1). Thus, new bug detection approaches should be
developed to address atomicity violation in Node.js.

Resource-oriented bug detection. Finding #5 shows that a
significant number (23 out of 57) of concurrency bugs contend
against databases or files, other than shared variables. While
existing concurrency bug detection tools mostly focus on shared
variables (i.e., shared memory). New approaches to detect
concurrency bugs on these shared resources, e.g., databases and
files, are needed. Researchers may build the access models on
these shared resources to facilitate concurrency bug detection.

API-usage-guided bug detection. The asynchronous or
event-driven-style protocols in Node.js APIs may not be clearly
described, and then incorrectly understood by developers.
Finding #2 provides empirical evidence that automatically
extracting protocols and checking API uses against the protocols
can be effective to detect concurrency bugs in Node.js.

System testing. Testing plays an important role in exposing
concurrency bugs. However, few testing techniques are
proposed for Node.js [43]. It is challenging to systematically test
all possible event interleavings for Node.js applications. Our
Finding #4 implies that, to reduce the test complexity,
developers can focus on testing applications with simple input
preconditions for triggering most concurrency bugs. However,
testing also needs to take configurations and deploy
environments into consideration (Finding #4). Furthermore,
Finding #6 implies that testing can be simplified to check no

Finding #7. Most (81%) of the studied bugs can be fixed by
a small set of fix strategies. Three quarters of the studied
bugs are not fixed by simply adding synchronization.

Finding #8. Using shared variables to fix bugs are more
often and error-prone: In a half of the studied bugs, they use
shared variables, as condition variables or state
check/recovery, to prevent concurrency bugs. One third of
the fixes introduce new shared variables.

TABLE 6. FIX COMPLEXITY

 25th percentile Median 75th percentile Max

Time (# of days) 2 6 31 832

of comments 2 5 10 49

LOC of final patch 5 13 28 250

of patches 1 2 3 6

more than 4 events in 1 Node.js process, without losing bug
detection capability much. This will be more effective than
testing all possible interleavings.

B. Bug Fixing in Node.js

Recent studies on concurrency bug fixing mostly focus on
multi-threaded programs, and fix bugs by inserting lock/unlock
[44][45]. Due to lack of lock mechanism in Node.js, these
approaches cannot be directly used for concurrency bugs in
Node.js. ARROW [14] and EventRaceCommander [46] fix
order violation bugs using ad-hoc synchronization for client-side
web applications. They need to take advantage of UI features
(e.g., DOM) to build precise happens-before model that Node.js
does not have. Further, Finding #7 shows that using
synchronization is not appropriate for most (77%) bugs in
Node.js. Future studies should consider other fix strategies (e.g.,
bypassing or tolerance) and try to generate high-quality fixes
that are similar to human-written ones.

C. API Design and Comprehension in Node.js

In Node.js, APIs often are written in asynchronous and
event-driven style, while developers may consider them as
synchronous and non-event-driven APIs. Finding #2 indicates
that developers can easily make wrong assumptions about how
the APIs are used, and thus introduce concurrency bugs. This
indicates that good API specifications on their asynchronous
protocols should be helpful to avoid concurrency bugs. This also
presents a unique opportunity for developing and inferring good
API usage patterns in Node.js.

D. Transaction Support in Node.js

Finding #1 shows two thirds of our studied bugs are
atomicity violation bugs. However, no convenient way exists to
express developers’ atomic intentions in Node.js (i.e., two or
more events should be processed without interruption). In
Section VII.A, we can see developers use some strategies to fix
concurrency bugs, e.g., preventing other events from atomic
regions, atomic API, consistency check and retry. It is not easy
to adopt these fix strategies, as they usually introduce condition
variables, state variables for recovery, and so on. However, these
strategies are similar to transactional memory (TM) [47]. Based
on our initial analysis about whether TM can help avoid the
studied concurrency bugs, we find that 31 (54%) bugs can
benefit from TM. Thus, TM can be treated as an efficient
approach to avoid concurrency bugs in Node.js. More studies
are needed to design a simple and effective TM in Node.js.

IX. RELATED WORK

Our study relates to a large body of existing work on
detecting, debugging, and understanding for concurrency bugs.
In this section, we discuss some representative work in bug
studies, concurrency bug analysis, and program analysis.

Bug studies. There are some representative works on bug
studies in JavaScript and concurrency bugs. (1) Existing bug
studies in JavaScript mainly focus on client-side JavaScript
applications [48][49][50]. Many bugs in these studies relate to
DOM, whereas Node.js does not have DOM. These studies
merely mention concurrency bugs. Only the study [50] observes
that non-deterministic errors are common in web applications.
Node.fz [43] provides an initial study on a small set of

concurrency bugs (only 12 bugs) in Node.js, to help design a
fuzzing tool for Node.js. Whereas, we perform a compressive
study on 57 concurrency bugs in Node.js, and obtain many new
findings and implications, e.g., API misuse-related concurrency
bugs, many new fix strategies, various new statistics and lessons
learned. (2) Some studies have focused on concurrency bugs in
multi-threaded systems [6] and distributed systems [7]. These
studies have promoted a large amount of research on
concurrency bug detection, testing, automated fixing and so on
[9][51][52][53]. However, the concurrency bugs in Node.js
differ from those in traditional systems as they originate from
different programming paradigms and execution environments.

Concurrency bug analysis. Amounts of studies focus on
concurrency bug detection [54][55][56], testing [9][57][58][59],
reproduction [60] and fixing [46][44] in traditional programs
(e.g., C and Java). In recent years, much research effort has also
been devoted to concurrency bugs in event-driven applications,
e.g., Android [10][11][13][61] and Web applications
[8][12][14][62]. Our study shows that concurrency bugs in
Node.js have different characteristics in bug patterns,
manifestations and fix strategies from theirs. Thus, those
approaches may be ineffective for Node.js. Our comprehensive
study on concurrency bugs in Node.js provides further
motivations and guidance for future studies.

Program analysis on Node.js applications. Madsen et al.
[63] build an event-based call graph for a Node.js application,
and then use it to statically detect bugs related to event handling,
e.g., dead event listeners. Their tool is not designed for finding
and resolving concurrency bugs in Node.js. SYNODE [64]
combines static analysis and runtime enforcement of security
policies to allow vulnerable modules in Node.js to be used in a
safe way. SAHAND [65] builds asynchronous interactions for
full-stack JavaScript applications. It captures the behavioral
model of a full-stack JavaScript application, and provides
scheduling lifelines of callbacks. Our study can open up new
research directions on reliability issues in Node.js applications.

X. CONCLUSION

Node.js has become one of most popular platforms for
building server-side applications. Applications built on Node.js
face various non-determinism and may contain intricate
concurrency bugs. This paper presents NodeCB, a
comprehensive study on real world concurrency bugs in Node.js.
We collect 57 real world concurrency bugs from various open-
source Node.js applications. We examine their bug patterns, root
causes, failure symptoms, manifestation, and fix strategies. Our
study reveals many interesting findings, which can promote
future concurrency bug detection, testing, and automated fixing
in Node.js. In the future, we will design approaches and tools for
detecting, avoiding, and fixing concurrency bugs in Node.js.

ACKNOWLEDGMENTS

This work was supported by National Key Research and
Development Plan (2016YFB1000803), National Natural
Science Foundation of China (61672506, 61702490), Beijing
Natural Science Foundation (4164104), Frontier Science Project
of Chinese Academy of Sciences (QYZDJ-SSW-JSC036), and
the CAS/SAFEA International Partnership Program for Creative
Research Teams.

REFERENCES

[1] “Developer Survey Results 2016.” [Online]. Available:

http://stackoverflow.com/research/developer-survey-2016.

[2] “New Node.js Foundation Survey Reports New ‘Full Stack’ In Demand

Among Enterprise Developers.” [Online]. Available:

https://nodejs.org/uk/blog/announcements/nodejs-foundation-survey/.

[3] “Chrome V8.” [Online]. Available: https://developers.google.com/v8/.

[4] “npm repository.” [Online]. Available: https://www.npmjs.com/.

[5] “State of the Union: npm.” [Online]. Available:

https://www.linux.com/news/event/Nodejs/2016/state-union-npm.

[6] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes - A

Comprehensive Study on Real World Concurrency Bug Characteristics,”

in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems(ASPLOS), 2008, pp.

329–339.

[7] T. Leesatapornwongsa, J. F. Lukman, S. Lu, and H. S. Gunawi,

“TaxDC:A Taxonomy of Non-Deterministic Concurrency Bugs in

Datacenter Distributed Systems,” in Proceedings of the International

Conference on Architectural Support for Programming Languages and

Operating Systems(ASPLOS), 2016, pp. 517–530.

[8] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race Detection for
Web Applications,” in Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2012, pp.

251–262.

[9] H. Liu, G. Li, J. F. Lukman, J. Li, S. Lu, H. S. Gunawi, and C. Tian,

“DCatch : Automatically Detecting Distributed Concurrency Bugs in
Cloud Systems,” in Preceedings of International Conference on

Architectural Support for Programming Languages and Operating

Systems(ASPLOS), 2017, pp. 677–691.

[10] P. Bielik, V. Raychev, and M. Vechev, “Scalable Race Detection for

Android Applications,” in Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,

Languages, and Applications(OOPSLA), 2015, pp. 332–348.

[11] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A.
Pokam, P. M. Chen, and J. Flinn, “Race Detection for Event-driven

Mobile Applications,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 326–

336, 2014.

[12] V. Raychev, M. Vechev, and M. Sridharan, “Effective Race Detection for

Event-Driven Programs,” in Proceedings of the ACM SIGPLAN
international conference on Object oriented programming systems

languages & applications(OOPSLA), 2013, pp. 151–166.

[13] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically Verifying and
Reproducing Event-Based Races in Android Apps,” in Proceedings of the

International Symposium on Software Testing and Analysis(ISSTA), 2016,

pp. 377–388.

[14] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster, “ARROW :

Automated Repair of Races on Client-Side Web Pages,” in Proceedings
of the International Symposium on Software Testing and Analysis(ISSTA),

2016, pp. 201–212.

[15] “libuv.” [Online]. Available: https://github.com/libuv/libuv.

[16] “The Node.js Event Loop.” [Online]. Available:

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/.

[17] “Cluster.” [Online]. Available: https://nodejs.org/api/cluster.html.

[18] “socket.io.” [Online]. Available: https://github.com/socketio/socket.io.

[19] G. Pinto, W. Torres, and F. Castor, “A Study on the Most Popular

Questions about Concurrent Programming,” in Proceedings of the
Workshop on Evaluation and Usability of Programming Languages and

Tools, 2015, pp. 39–46.

[20] M. Yu, Y.-S. Ma, and D.-H. Bae, “Characterizing Non-deadlock
Concurrency Bug Fixes in Open-source Java Programs,” in Proceedings

of the Annual ACM Symposium on Applied Computing(SAC), 2016, pp.

1534–1537.

[21] “gp-js-client/issue#4: document that calls are async.” [Online]. Available:

https://github.com/IBM-Bluemix/gp-js-client/issues/4.

[22] “porybox/issue#157: when two boxes are added simultaneously, one of

the IDs get lost.” [Online]. Available:

https://github.com/porygonco/porybox/issues/157.

[23] “cordova-lib/pull#7: extract plugin .tgz files in unique directories.”
[Online]. Available: https://github.com/Icenium/cordova-lib/pull/7.

[24] “hapi/issue#3347: major performance issue with hapi.js 15.x.” [Online].

Available: https://github.com/hapijs/hapi/issues/3347.

[25] “ECMAScript 6.” [Online]. Available: http://www.ecma-

international.org/ecma-262/6.0/.

[26] “xlsx-extract/issue#7: Exception ‘write after end.’” [Online]. Available:

https://github.com/ffalt/xlsx-extract/issues/7.

[27] “sequelize/issue#1599: findOrCreate is not atomic.” [Online]. Available:

https://github.com/sequelize/sequelize/issues/1599.

[28] “kue/issues#154: Race between Job.prototype.save() and done().”
[Online]. Available: https://github.com/Automattic/kue/issues/154.

[29] “fiware-pep-steelskin/issue#269: Race condition causes requests that will
never be responsed-new race introduced in a fixed version.” [Online].

Available: https://github.com/telefonicaid/fiware-pep-

steelskin/issues/269.

[30] “browser-laptop/pull#3273: guard against race condition.” [Online].

Available: https://github.com/brave/browser-laptop/pull/3273.

[31] “five-bells-shared/issue#64: retry failed DB operations caused by

concurrent updates.” [Online]. Available:

https://github.com/interledgerjs/five-bells-shared/issues/64.

[32] “asset-smasher/issue#8: stop starving the event loop.” [Online]. Available:

https://github.com/jriecken/asset-smasher/issues/8.

[33] “change-propagation/pull#84:Fix race condition in commit logic.”

[Online]. Available: https://github.com/wikimedia/change-

propagation/pull/84.

[34] “async.” [Online]. Available: https://github.com/caolan/async.

[35] “syncify.” [Online]. Available: https://github.com/aldonline/syncify.

[36] “lock.” [Online]. Available: https://www.npmjs.com/package/lock.

[37] “mutex.” [Online]. Available: https://www.npmjs.com/package/mutex.

[38] “js-ipfs/issue#318: Uncaught Error: no writecb in Transform class.”

[Online]. Available: https://github.com/ipfs/js-ipfs/issues/318.

[39] “strider/issue#745: Strider crashes on new jobs started from a Pull

Request that has been rebased.” [Online]. Available:

https://github.com/Strider-CD/strider/issues/745.

[40] “session/issue#340: race condition between session.touch and

session.save.” [Online]. Available:
https://github.com/expressjs/session/issues/340.

[41] “fiware-pep-steelskin/issue#279: when the PEP receive two or more

simultaneous requests.” [Online]. Available:
https://github.com/telefonicaid/fiware-pep-steelskin/issues/279.

[42] “done-ssr/issue#62: race condition between can-serve and live-reload.”
[Online]. Available: https://github.com/donejs/done-ssr/issues/62.

[43] J. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing the Server-

Side Event-Driven Architecture,” in Proceedings of the European
Conference on Computer Systems(EuroSys), 2017, pp. 145–160.

[44] G. Jin, W. Xhang, D. Deng, B. Liblit, and S. Lu, “Automated
Concurrency-Bug Fixing,” in Proceedings of the USENIX conference on

Operating Systems Design and Implementation(OSDI), 2012, pp. 221–

236.

[45] P. Liu, O. Tripp, and C. Zhang, “Grail: Context-aware Fixing of

Concurrency Bugs,” in Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE), 2014, pp.

318–329.

[46] C. Q. Adamsen, A. Møller, R. Karim, M. Sridharan, F. Tip, and K. Sen,
“Repairing Event Race Errors by Controlling Nondeterminism,” in

Preceedings of International Conference on Software Engineering (ICSE),

2017.

[47] T. Harris and K. Fraser, “Language Support for Lightweight Transactions,”

ACM SIGPLAN Notices, vol. 38, no. 11, pp. 64–78, 2003.

[48] F. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “An Empirical

Study of Client-side JavaScript Bugs,” in Preceedings of the International

Symposium on Empirical Software Engineering and

Measurement(ESEM), 2013, pp. 55–64.

[49] F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “A Study of

Causes and Consequences of Client-Side JavaScript Bugs,” IEEE
Transactions on Software Engineering (TSE), vol. 43, no. 2, pp. 128–144,

2016.

[50] F. S. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript Errors in the
Wild: An Empirical Study,” in Proceedings of International Symposium

on Software Reliability Engineering(ISSRE), 2011, pp. 100–109.

[51] T. Zhang, C. Jung, and D. Lee, “ProRace: Practical Data Race Detection

for Production Use,” in Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017, pp. 149–162.

[52] M. Zhang, Y. Wu, S. Lu, S. Qi, J. Ren, and W. Zheng, “AI: A Lightweight

System for Tolerating Concurrency Bugs,” in Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), 2014, pp. 330–340.

[53] S. Lu, S. Park, and Y. Zhou, “Detecting Concurrency Bugs from the

Perspectives of Synchronization Intentions,” IEEE Transactions on

Parallel and Distributed Systems(TPDS), vol. 23, no. 6, pp. 1060–1072,
2012.

[54] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,

“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,” in
Proceedings of the ACM symposium on Operating systems principles

(SOSP), 1997, vol. 15, no. 4, pp. 27–37.

[55] J. Huang and C. Zhang, “Debugging Concurrent Software: Advances and

Challenges,” Journal of Computer Science and Technology (JCST), vol.

31, no. 5, pp. 861–868, 2016.

[56] D. Schonberg, “On-the-fly Detection of Access Anomalies,” in

Proceedings of the ACM SIGPLAN Conference on Programming
language design and implementation (PLDI), 1989, pp. 285–297.

[57] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic

Testing of Smartphone Apps,” in Proceedings of the ACM SIGSOFT
International Symposium on the Foundations of Software Engineering

(FSE), 2012, pp. 1–11.

[58] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.

Memon, “Using GUI Ripping for Automated Testing of Android

Applications,” in Proceedings of the IEEE/ACM International

Conference on Automated Software Engineering (ASE), 2012, pp. 258–

261.

[59] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated Testing with

Targeted Event Sequence Generation,” in Proceedings of the
International Symposium on Software Testing and Analysis(ISSTA), 2013,

pp. 67–77.

[60] J. Huang and C. Zhang, “LEAN: Simplifying Concurrency Bug
Reproduction via Replay-supported Execution Reduction,” in

Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications(OOPSLA), 2012, pp.
451–466.

[61] G. Safi, A. Shahbazian, W. G. J. Halfond, and N. Medvidovic, “Detecting
Event Anomalies in Event-based Systems,” in Preceedings of Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software
Engineering(ESEC/FSE), 2015, pp. 25–37.

[62] Y. Zheng, T. Bao, and X. Zhang, “Statically Locating Web Application

Bugs Caused by Asynchronous Calls,” in Proceedings of the
international conference on World wide web(WWW), 2011, pp. 805–814.

[63] M. Madsen, F. Tip, and L. Ondřej, “Static Analysis of Event-Driven
Node.js JavaScript Applications,” in Proceedings of the ACM SIGPLAN

International Conference on Object-Oriented Programming, Systems,

Languages, and Applications(OOPSLA), 2015, pp. 505–519.

[64] C.-A. Staicu, M. Pradel, and B. Livshits, “Understanding and

Automatically Preventing Injection Attacks on Node.js,” 2016.

[65] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding

Asynchronous Interactions in Full-Stack JavaScript,” in Proceedings of

the International Conference on Software Engineering(ICSE), 2016, pp.
1169–1180.

