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Abstract—Node.js becomes increasingly popular in building 

server-side JavaScript applications. It adopts an event-driven 

model, which supports asynchronous I/O and non-deterministic 

event processing. This asynchrony and non-determinism can 

introduce intricate concurrency bugs, and leads to unpredictable 

behaviors. An in-depth understanding of real world concurrency 

bugs in Node.js applications will significantly promote effective 

techniques in bug detection, testing and fixing for Node.js. 

In this paper, we present NodeCB, a comprehensive study on 

real world concurrency bugs in Node.js applications. Specifically, 

we have carefully studied 57 real bug cases from open-source 

Node.js applications, and have analyzed their bug characteristics, 

e.g., bug patterns and root causes, bug impacts, bug manifestation, 

and fix strategies. Through this study, we obtain several 

interesting findings, which may open up many new research 

directions in combating concurrency bugs in Node.js. For example, 

one finding is that two thirds of the bugs are caused by atomicity 

violation. However, due to lack of locks and transaction 

mechanism, Node.js cannot easily express and guarantee the 

atomic intention. 

Index Terms—JavaScript, Node.js, event-driven, concurrency 

bug, empirical study. 

I. INTRODUCTION 

JavaScript has become one of the most popular 
programming languages. According to the recent surveys from 
Stack Overflow [1] and Node.js foundation [2], JavaScript is 
quickly surpassing the popularity of other back-end 
programming languages (e.g., PHP and Java). As a server-side 
framework, Node.js, which is built on Google’s V8 JavaScript 
engine [3], is becoming a popular platform for server-side 
applications. One prominent evidence is that, the Node.js’ 
default package repository, npm [4], has become the largest 
package registry in the world, and contains over 400,000 
available packages, doubling the next most popular package 
registry (the Apache Maven repository) [5]. 

In order to optimize throughput and scalability of server-side 
applications, Node.js adopts an event-driven architecture, which 
is capable of asynchronous I/O. Thus, developers can create 
highly scalable server-side applications without using threading. 
However, asynchronous I/O and non-deterministic event 
processing in Node.js can introduce intricate concurrency bugs. 
These concurrency bugs can result in unreliable and 

unpredictable application behaviors, such as crashes, and 
inconsistent states in databases and files. 

Existing studies have focused on concurrency bugs in multi-
threaded systems [6], distributed systems [7], Android and 
client-side JavaScript applications [8], and also proposed many 
interesting testing and analysis techniques [9][10][11][12]. The 
concurrency bugs in Node.js differ from those in traditional 
systems as they originate from different programming 
paradigms and execution environments. First, multi-threaded 
systems and distributed systems focus on concurrency bugs 
related to multi-thread [6] or untimely external events [7], while 
Node.js atomically processes each event one by one in a single 
thread, without interruption. Second, the concurrency in 
Android mostly concerns the Android GUI model and 
asynchronous tasks executed in other threads [10][11], while 
Node.js does not have these features. Third, existing studies on 
concurrency bugs in client-side JavaScript applications mostly 
focus on the features like DOM and AJAX [8][12], while 
Node.js does not have DOM and AJAX. In contrast, Node.js has 
the ability to access system resources, e.g., databases and files. 

Node.js is relatively new, and little is known about 
concurrency bugs in Node.js applications. Whether existing 
studies and techniques [6][7][8][10][11][12] are applicable to 
Node.js applications remains an open question. Therefore, we 
aim to bridge this gap by conducting a comprehensive study on 
such concurrency bugs in Node.js applications. We believe a 
deep understanding of real world concurrency bugs will 
significantly promote effective techniques in concurrency bug 
detection, testing, and fixing in Node.js. 

In this paper, we present NodeCB, the first (to the best of our 
knowledge) comprehensive real world concurrency bug study in 
Node.js applications. By using the keyword-based searching, we 
obtain 1,583 concurrency- and JavaScript- related bug reports in 
GitHub. Then we check these bug reports and finally collect 57 
real world concurrency bugs in 53 open-source Node.js projects. 
We thoroughly study these 57 concurrency bugs, and try to 
answer the following research questions: 

 RQ1 (Bug patterns and root causes): What are 
common bug patterns of concurrency bugs in Node.js? 
What are their root causes? 

 RQ2 (Bug impacts): Do concurrency bugs have severe 
failure symptoms? What impacts do they have in Node.js 
applications? * Corresponding author 



 RQ3 (Bug manifestation): How do concurrency bugs in 
Node.js manifest themselves? How are they triggered, 
e.g., the timing condition, and input conditions? 

 RQ4 (Bug fix strategies): How do developers fix 
concurrency bugs in Node.js in practice? Are there any 
common fix strategies? 

Through investigating the above four research questions, we 
made many interesting findings. The main ones are: 

 Concurrency bugs in Node.js can be caused by atomicity 
violation (65%), order violation (30%), and starvation 
(5%). Although each event is guaranteed to be processed 
atomically by Node.js, atomicity across multiple events 
cannot be properly enforced without lock or transaction 
mechanisms. Furthermore, existing work mostly focuses 
on order violation in event-driven applications (e.g., 
client-side JavaScript [8][12] and Android[10][11][13]). 
This suggests that more research should be conducted on 
atomicity violation in Node.js. 

 Most concurrency bugs contend against shared variables 
(54%), databases (26%) and files (14%). This suggests 
that, besides shared variables [10][11], concurrency bug 
detection approaches should pay more attention to shared 
resources like databases and files. 

 APIs in Node.js are written in an asynchronous and 
event-driven way. They usually have unclear API 
protocols (e.g., event order and atomicity specifications). 
28 (49%) of concurrency bugs are caused by API misuse, 
indicating that developers may misunderstand the 
specifications of asynchronous APIs. 

 Almost all (93%) concurrency bugs in Node.js are 
triggered by enforcing orders among no more than 4 
events. This indicates that exploring possible orders 
among every small group of events can test Node.js 
concurrency efficiently. 

 Almost all the studied concurrency bugs cause severe 
failures, including crashes/exceptions (33%), hangs (7%), 
incorrect database/file states (32%), wrong outputs (11%) 
and other operation failures (17%). 

 Most concurrency bugs were fixed by a small set of fix 
strategies. But, only a small portion (23%) of bugs were 
fixed by simply adding synchronization (e.g., nested 
callbacks), which is the main approach used by existing 
automated concurrency bug fixing approaches [14]. This 
indicates that further automated bug fixing approaches 
are needed. 

In summary, we make the following contributions: 

 We conduct the first comprehensive study of real world 
concurrency bugs in Node.js applications. Our findings 
can help better understand concurrency bugs in Node.js 
applications, and provide guidelines to this topic. 

 Our 57 documented concurrency bugs can serve as a 
basis for future work on finding and fixing them. We 
have made the collected bugs available online for future 
studies (http://www.tcse.cn/~wsdou/project/NodeCB). 

II. BACKGROUND 

In this section, we first introduce the event-driven model in 

Node.js, and then explain the sources of non-determinism in 

this model. 

A. Event-Driven Model in Node.js 

The event-driven model in Node.js is shown in Fig. 1. It 
mainly consists of two parts: a single looper thread and a worker 
pool. Both parts are supported by libuv [15] in Node.js. The 
looper thread is responsible for executing user code, including 
callbacks that are defined to respond to events. For some 
expensive tasks, e.g., file operations, Node.js offloads them to 
the worker pool, and executes them asynchronously. By 
offloading expensive tasks to the worker pool, the looper thread 
would not be blocked by these expensive tasks. 

In Node.js, the basic event processing flow is described as 
follows: (1) The looper thread fetches an event in the event loop, 
and executes its callback cb. (2) If the callback cb invokes an 
asynchronous I/O operation, the looper thread will offload it to 
the worker pool, and register a new callback associated with the 
asynchronous I/O operation. For example, in Fig. 1, callback cb 
offloads two I/O operations createFile (‘a.txt’, cb1) and readFile 
(‘a.txt’, cb2) to the worker pool, and uses cb1 and cb2 as their 
callbacks, respectively (steps 1.1 and 1.2). Thus, the looper 
thread can proceed with other events in the event loop, instead 
of waiting for the completion of these two operations. (3) The 
worker pool can use a worker thread to perform each 
asynchronous I/O operation, and put an event into the event loop 
when the operation is done. For example, the worker pool puts 
two events ‘read done’ and ‘create done’ into the event loop 
(steps 2.1 and 2.2). (4) The looper thread fetches these two 
events one by one sometime later, and executes their callbacks 
cb2 and cb1 (steps 3.2 and 3.1). The Node.js application 
continues the above steps until the application exits. Note that, 
each callback is guaranteed to be executed without interruption. 

In Node.js, the event loop consists of seven FIFO event 
queues that hold different types of events: timer, I/O, pending, 
idle, prepare, check, and close [16]. For example, all events 
scheduled by setTimeout will be put into the timer event queue, 
while I/O events will be put into the I/O event queue. The looper 
thread in turn processes these seven event queues in a round-
robin manner: when a queue has been exhausted or the amount 

Worker pool 
 

Fig. 1. The event-driven model in Node.js. The solid arrows denote the 
invocation of an asynchronous operation (1.1 and 1.2), the dotted arrows 

denote that the operations are completed (2.1 and 2.2) and the corresponding 

callbacks are invoked (3.1 and 3.2). The looper thread executes each callback 
one by one, without interruption. 
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of the invoked callbacks for a queue reaches a given threshold, 
the looper thread will move on to the next queue. Although the 
events in each queue are scheduled in order, the events across 
queues can be scheduled non-deterministically. For example, we 
cannot know the processing order of a timer event and an I/O 
event. Worse, the looper thread may register high-priority 
callbacks first. For example, a callback scheduled by 
process.nextTick will be executed immediately after the current 
callback completes, and the I/O events will be processed before 
moving on to process the events set by setImmediate. 

B. Non-determinism in Node.js 

Node.js applications make heavy use of asynchronous 
operations, and further handle these operations’ results by their 
callbacks. Although the looper thread atomically processes each 
event one at a time without interruption, Node.js applications 
still suffer from various non-determinism. We summarize the 
sources of non-determinism in a single Node.js process into the 
following three phases according to the time when it occurs. 

Non-deterministic execution of asynchronous operations. 
When multiple asynchronous tasks are delegated to the worker 
pool simultaneously, their processing order is unknown. For 
example, in Fig. 1, operations 1.1 and 1.2 (createFile and 
readFile) are issued almost simultaneously. We cannot know 
which operation is scheduled first. If operation 1.2 (readFile) is 
scheduled first, then an error “file not exist” will be thrown since 
the file ‘a.txt’ has not been created yet. 

Non-deterministic event triggering. For two asynchronous 
operations scheduled by the worker pool, their completion order 
is unknown. The system environments, e.g., CPU, can affect the 
completion order of the operations. For example, in Fig. 1, if 
operation 2.2 completes before operation 2.1, the read done 
event of operation 2.2 will be put into the queue first. Thus, 
callback cb2 will be invoked before cb1. Besides, a network 
request may arrive at any time, its order relative to other events, 
e.g., completion events of asynchronous operations, is unknown. 

Non-deterministic event handling. It is possible to have 
multiple callbacks available for execution at any point, and the 
choice for which one of these callbacks to schedule next is non-
deterministic (as discussed earlier in Section II.A). Thus, 
callbacks may not be processed in their expected order. 

Non-determinism among multiple Node.js processes. The 
looper thread in Node.js is single-threaded. So, in order to take 
advantage of multi-core processors, Node.js can spawn many 
processes to distribute the workload. Node.js provides an 
elegant solution, cluster [17], to scale up applications by 
splitting a single process into multiple ones. These Node.js 
processes may have conflicting accesses to the same resources, 
e.g., a Node.js process copies a file in a directory while another 
process deletes the directory. This non-determinism could 
introduce concurrency bugs. 

III. METHODOLOGY 

To answer the research questions RQ1-4, we collect real 
world concurrency bugs in open-source Node.js applications as 
our study subjects. This section presents how we collect real 
world concurrency bugs from Node.js applications, and further 
explains the methodology of our characteristic study. 

A. Collecting Concurrency Bugs 

Existing bug studies, e.g., [6][7], often first identify the 
mature projects, and then collect bugs in the projects. However, 
Node.js is relatively new, and its applications are still young. We 
find that Node.js applications usually report very few 
concurrency bugs. Therefore, in order to collect sufficient bugs 
for our study, we directly collect concurrency bugs from all 
Node.js projects in GitHub. Our approach to collect concurrency 
bugs in Node.js is described as follows. 

Step 1: Searching concurrency bug reports in GitHub 
Node.js projects. As the most popular open-source platform, 
GitHub has hosted about 97,000 Node.js projects. Through an 
initial investigation on some Node.js projects, we find that there 
is no clear categorization for concurrency bugs in these projects. 
Thus, we use concurrency-related keywords to search candidate 
concurrency bugs in Node.js projects from GitHub. The 
keywords we used are as follows: “concurrent”, “race”, 
“synchronization”, “atomic”, “mutex”, “transaction”, 
“deadlock”, “compete” and “starve”. To answer our research 
questions, we further use advanced search conditions provided 
by GitHub to filter out bugs that are labeled as bug, already in 
closed state, and contains keywords like “submit” or “fix”. This 
implies that these bugs are confirmed as bugs and may have 
fixing solutions. After this step, we obtain 1,583 bug reports. 

Step 2: Selecting concurrency bugs in Node.js projects. 
Since containing the previous mentioned keywords does not 
mean that a selected bug report really contains a concurrency 
bug in Node.js, we manually validate these 1,583 bug reports, 
and exclude bug reports that are not related to concurrency and 
Node.js. Finally, we obtain 214 concurrency bug reports in 147 
Node.js projects. We further carefully inspect these 214 
concurrency bug reports, and only keep the concurrency bug 
reports that contain enough information to answer the research 
questions RQ1-4. Some concurrency bug reports are incomplete, 
e.g., we cannot find its corresponding bug fixing patch, or the 
bug report only contains a one-line description and we cannot 
infer how the bug happens. We exclude these incomplete bug 
reports from our characteristic study. After this step, we obtain 
57 concurrency bugs for our bug characteristic study. 

These 57 concurrency bugs come from 53 Node.js projects, 
including 12 server-side applications, 6 desktop applications, 
and 35 libraries, e.g., network communication API socket.io 
[18]. Fig. 2 shows the statistics of our studied 53 projects. These 
projects are popular: there are on average 2,426 stars, and 32% 
of them have more than 1,000 stars (Fig. 2a). These projects are 
well-maintained: there are on average 1,516 revisions and 1,152 
issues; 56% of them have more than 500 revisions (Fig. 2b), and 
23% of them have more than 1,000 issues (Fig. 2c). These 
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(c) Issue distribution (# of issues)  (d) Project size distribution (Lines of code) 

Fig. 2. Statistics of our studied Node.js projects. 

 



projects are big and complicated: there are on average 10,390 
lines of JavaScript code, and 40% of them contain more than 
5,000 lines of code (Fig. 2d). 

B. Analyzing Concurrency Bugs in Node.js 

We manually study all the 57 concurrency bugs to answer 
the research questions RQ1-4. Specially, we study the bug 
reports, bug fixing patches and related discussions (e.g., 
comments), and then assign them into different categories 
according to their bug patterns and root causes (Section IV), 
failure impacts (Section V), bug manifestation (Section VI) and 
fix strategies (Section VII), respectively. 

Specially, we categorize concurrency bugs into different 
categories in three phases. (1) We propose initial categories in 
advance according to the taxonomy in related work [6][7]. (2) 
We carefully study each bug and try to assign it into different 
categories. If a bug does not belong to any known category, we 
create a new category for it. (3) In the last, we review the above 
categorization, and ensure that the categorization demonstrates 
common bug characteristics, does not overlap, and covers most 
bugs. In this phase, we may need to adjust current categories, 
e.g., merge categories, rename category names or remove 
useless categories. In the above process, we make sure that each 
bug is studied at least by two authors. If we have conflicts about 
the bug or categorization, we will reinvestigate the bug further, 
until we form a final decision. 

C. Threats to Validity 

Similar to other bug characteristic studies, our study is 
subject to the validity problem. Potential threats to the validity 
include the representativeness of our studied concurrency bugs 
and our study methodology. 

Representativeness of the studied concurrency bugs. All 
concurrency bugs we studied are collected from open-source 
Node.js projects. The keywords we used to select these bugs are 
a union set of keywords used by related studies [7][19][20]. We 
keep all the bugs that have enough information for 
categorization without bias. Further, our studied 53 projects 
include various types of Node.js applications, e.g., server-side 
applications and libraries. Most of these projects have high 
popularity and are well-maintained. Of course, some 
concurrency bugs may never be reported or fixed by developers. 
However, there is no proper way to study these bugs. We believe 
our studied bugs provide a representative sample of real world 
concurrency bugs in Node.js. 

Study methodology. For each bug, every piece of 
information related to the bug, including developers’ 
explanations, source code, fixing patches, and bug triggering test 
cases, needs to be studied. To minimize subjective errors in our 
study, each bug is studied by at least two authors in this paper. 

IV. BUG PATTERNS AND ROOT CAUSES 

Concurrency bugs in Node.js applications can have complex 
timing, involving multiple events and asynchronous operations. 
First, we study the triggering conditions to categorize the studied 
bugs into different bug patterns (Section A). Second, we study 
the root cause of each bug from two aspects, bug-inducing phase 
and bug-inducing API, to understand why these bugs are 
introduced by developers (Section B). 

A. Bug Patterns 

We study the bug reports of the selected 57 concurrency 
bugs in Node.js, and then assign them into different categories 
according to their triggering conditions. Finally, we categorize 
these 57 bugs into three bug patterns: order violation, atomicity 
violation and starvation. Note that, we do not find deadlock bugs 
in Node.js, which are common in multi-threaded systems [6]. 

Order violation. About one third (17/57=30%) of the 
studied concurrency bugs are caused by violation to developers’ 
order intention between two events or asynchronous operations. 
In this case, two or more events / asynchronous operations, 
which access the same shared resources (e.g., variables, files), 
are expected to be processed in a certain order. However, the 
order is not enforced during execution. 

Order violation can happen in two situations. First, it 
happens between two asynchronous operations. Consider bug 
gp-js-client#41 [21] in Fig. 3. The two asynchronous operations 
create and uploadStr are issued one after another. Developers 
assume that these two operations are executed sequentially. 
Since these two operations are asynchronous, Node.js may 
execute them in any order. In the buggy order, the uploadStr 
operation is first processed by the remote server and returns an 
error “the data to update does not exist”. To avoid this buggy 
order, the uploadStr operation can be moved to the callback of 
the create operation (Line 3). Second, order violation can also 
happen between two callbacks. In Fig. 1, the callbacks of two 
operations (steps 1.1 and 1.2), i.e., cb1 and cb2, are expected to 
be invoked as cb1→cb2. However, this order is not enforced by 
user code and there is a chance that cb2 is invoked before cb1. 

Atomicity violation. About two thirds (37/57=65%) of the 
studied concurrency bugs are caused by violation to developers’ 
atomic intention among several callbacks or asynchronous 

1.   var bundle = client.bundle('someBundle'); 

2.   bundle.create(…, function(){          // create is async 

3.+    bundle.uploadStr(…); 

4.   }); 

5.-  bundle.uploadStr(…);                    // uploadStr is async 

  

Fig. 3. gp-js-client#4: Order violation caused by non-deterministic execution 

of asynchronous operations [21]. The code snippet aims to create a data in the 

remote server in line 2 and then updates the data in line 5 (create and uploadStr 

are two asynchronous operations). The two asynchronous operations are 

issued almost simultaneously, and may result in a possible buggy order in 

which the uploadStr operation is first processed by the remote server and 

returns an error “the data to update does not exist”. The fix is to move the 

uploadStr operation into the callback of the create operation, so that the two 

asynchronous operations are ordered, and can be executed sequentially. 
 

1gp-js-client#4 denotes the concurrency bug reported by the issue 4 in project 

gp-js-client. Other concurrency bugs have the same representation in this 
paper. 
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operations. In this case, a set of events / asynchronous operations 
are assumed to be processed atomically without interruption, but 
the atomicity is not enforced during execution. 

Consider bug Porybox#157 [22] in Fig. 4. When a user 
requests to add a new id, the function addIdToArray first triggers 
an asynchronous operation findOne (Line 2) to query the user’s 
current ids from the database, and then triggers another 
asynchronous operation save (Line 4) to save the updated ids 
back to the database. Note that, for each user request, the above 
two asynchronous operations are correctly ordered through 
nested callbacks, and thus there is no order violation. For each 
user request, developers assume that this small code region will 
be executed atomically. However, the two operations findOne 
and save are executed in response to two different events, and 
other events may interleave in between. For example, if two user 
requests with the same username (ownerName) arrive 
simultaneously, it may trigger the following interleaving 
findOne1→findOne2→save1→save2. Here, the subscripts denote 
the user request ID. In this case, findOne1 and findOne2 both 
obtain the same ids (e.g., < >). For the first request, it updates 
ids from < > to <1>, and then saves ids to the database (save1). 
For the second request, it updates ids from < > to <2>, and then 
saves ids to the database (save2). Now, ids in the database 
becomes <2>, and the update by the first request is lost. The 
correct interleaving of two user requests should be findOne1 
→save1 →findOne2 →save2, as shown in the right part of Fig. 4. 
In this case, the second request updates ids based on the first 
request’s result. Thus, ids in the database becomes <1, 2>. 

Atomicity violation can also originate from multiple 
processes. Two bugs are in this case. In bug cordova-lib#7 [23], 
the application (a tool for installing/uninstalling plugins) 

extracts each .tgz file into the same directory and then copies the 
extracted files out. When installing two different plugins: (1) the 
first process has extracted a .tgz file into the directory, and then 
is copying the extracted files; (2) the second process is extracting 
another .tgz file into the same directory. Thus, the first process 
can copy some files that belong to the second process. 

Starvation. Few concurrency bugs (3/57=5%) happen when 
some tasks take a long time and prevent other events from 
processing. Usually, callbacks registered by higher priority can 
starve the lower ones. 

Consider bug hapi#3347 [24] in Fig. 5. For each I/O request 
from the client, the internals.emit (Line 1) is called to push the 
notification to the queue _notificationsQueue (Line 3). If no 
notification is in process (Lines 5-7), the first notification is 
obtained from the queue _notificationsQueue (Line 9) and 
scheduled in a deferred task through setImmediate (Line 12). It 
further iteratively emits the internals.emit in another deferred 
task in order to process the remaining notifications in the queue 
_notificationsQueue (Lines 16). As mentioned in Section II.A, 
the I/O events have higher priority than events scheduled by 
setImmediate. So, if the I/O keeps busy, the events scheduled by 
setImmediate will have no chance to be processed. As a result, 
the _notificationsQueue keeps increasing and hits an error 
“allocation failed - process out of memory”. 

 

1.   function addIdToArray (ownerName, id) { 

2. -      return User.findOne({name: ownerName}).then(user => { 

3. -          user._ids.push(id); 

4. -          return user.save(); 

5. -      }); 

6. +    db.user.update({name:ownerName},{$push:{_ids: id}}) 

7.   } 
  

Fig. 4. Porybox#157: Atomicity violation caused by non-deterministic event 

triggering [22]. Each user request (addIdToArray) triggers two asynchronous 

operations (findOne and save) in order. First, it triggers findOne operation 

(Line 2), which queries a list of IDs from the database asynchronously. Second, 

after findOne returns, it modifies the data and triggers save operation (Line 4), 

which saves the data back to the database asynchronously. For each user 

request, the above two steps should be atomic. However, two successive user 

requests with the same ownerName may cause buggy interleaving findOne1 

→findOne2→save1→save2, resulting in the first save to the database getting 

lost (i.e., the IDs should be <1, 2>, not <2>). This bug is fixed by changing 

findOne and save into an atomic API (update) supported by MongoDB. 

 

1. internals.emit = function (emitter, notification) { 

2.     if (notification) { 

3.         emitter._notificationsQueue.push(notification); 

4.     }  

5.     if (emitter.isProcessing || !emitter._notificationsQueue.length) { 

6.         return; 

7.     } 

8.     emitter._isProcessing = true; 

9.     const item = emitter._notificationsQueue.shift(); 

10.     const finalize = () => { 

11.         if (item.callback) { 

12. –          setImmediate(() => item.callback()); 

13. +          process.nextTick(itemCallback, item); 

14.         }   

15.         emitter._isProcessing = false; 

16. –      setImmediate(() => internals.emit(emitter)); 

17. +      process.nextTick(emitEmitter, emitter); 

18.     }; 

19.     //Some code invoking finalize asynchronously. 

20. } 
Fig. 5. hapi#3347: Starvation caused by non-deterministic event handling [24]. 

An I/O request results in the invocation of internals.emit (Line 1) which pushes 

a notification to _notificationsQueue (Line 3). If no notification is in process, 

it then shifts an item from the queue (Line 9), processes it in a deferred 

setImmediate task (Line 12), and invokes internal.emit in another deferred task 

(Line 16) to process the remaining notifications in the queue later. This will 

cause a starvation bug since the event loop keeps processing the I/O event 

queue when the I/O is busy before it proceeds with the event queue that the 

setImmediate event lies in. As a result, the _notificationsQueue increases a lot 

before the notifications are processed and ends up throwing the error 

“allocation failed - process out of memory”. 

 

Finding #1. Concurrency bugs in Node.js can be 

categorized into three simple bug patterns: order violation, 

atomicity violation, and starvation. Two thirds of the 

studied bugs are atomicity violation. 
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B. Root Causes 

It is difficult to know why these concurrency bugs were 
introduced by developers. By analyzing bug patterns and related 
bug descriptions in the bug reports, we try to understand the root 
causes from the following two aspects. (1) Bug-inducing phase: 
in which phase non-determinism is introduced? (2) Bug-
inducing API: what asynchronous APIs are responsible for the 
racing events? Further, we try to postulate some possible and 
common misunderstanding behind these concurrency bugs. 

Bug-inducing phase. As discussed in Section II.B, 
concurrency bugs can be introduced in three different phases: 
execution of asynchronous operations, event triggering and 
event handling. As shown in Table 1, concurrency bugs mostly 
happen due to non-determinism in event triggering (40/57=70%) 
and execution of asynchronous operations (20/57=35%). Only 3 
bugs happen due to non-deterministic event handling. Note that 
9 bugs are introduced by both non-deterministic execution of 
asynchronous operations and event triggering, so the 
accumulated percentages exceed 100%. Additionally, 3 bugs 
happen among multiple Node.js processes. 

Bug gp-js-client#4 in Fig. 3 is caused by non-deterministic 
execution of asynchronous operations. In this example, the two 
asynchronous I/O operations (i.e., create and uploadStr) may be 
reordered by the underlying worker pool. Fig. 4 shows an 
example of concurrency bug due to non-deterministic execution 
of asynchronous operations and event triggering. For the buggy 
interleaving, the Node.js framework determines the two 
asynchronous I/O operations (i.e., findOne and save) in one 
request happen in order. However, the event order between two 
requests is non-deterministic. While, Fig. 5 shows an example 
of concurrency bugs due to non-deterministic event handling. 
This kind of bugs are rare since they only relate to non-
deterministic event schedule for the looper thread. 

Bug-inducing API. Understanding which asynchronous 
APIs are responsible for the racing events (i.e., events involved 
in a concurrency bug) is important for understanding the root 
cause of a concurrency bug. We categorize related APIs into two 
categories: Schedule API and high-level API protocol. Schedule 
APIs refers to native APIs provided by Node.js, e.g., setTimeout, 
process.nextTick and Promise [25], which are used to schedule 
deferred tasks. The APIs in Node.js are usually developed in the 
asynchronous and event-drive style. High-level API protocol 
refers to the asynchronous and event-driven specification that 
developers should follow when they use those APIs. The code 
snippet in Fig. 3 shows a typical example for high-level API 
protocol: for a bundle, before it is created by the create 
asynchronous operation, no further actions on the bundle (e.g., 
uploadStr) should be performed. For another example, a xlsx file 
extraction API provides two types of events: row event issued 

when a row in the xlsx file is parsed, and end event issued when 
the whole file is parsed. The end event should be processed only 
after all row events have been processed. Bug xlsx-extract#7 [26] 
does not respect this protocol, and causes an exception. 

Table 2 shows the statistics about bug-inducing APIs. Note 
that, the remaining bugs are not related to schedule APIs or 
wrong assumptions about high-level API protocols. For example, 
two user requests trigger two events that modify the same 
variables non-deterministically. We exclude them in Table 2. 

 Schedule API in Node.js. Asynchronous operations can 
be scheduled by the commonly used schedule APIs. 11 
(19%) concurrency bugs schedule their events with 
schedule APIs in Node.js, including setTimeout (7), 
process.nextTick (2), setInterval (1), setImmediate (1), 
and Promise (0). Thus, these schedule APIs can 
introduce non-determinism to Node.js applications. 

 High-level API protocol. 28 (49%) concurrency bugs are 
caused by improper high-level API usage, e.g., bugs gp-
js-client#4 and xlsx-extract#7 [26]. The asynchronous or 
event-driven-style protocols are usually not clearly 
described or understood by developers. Thus, developers 
may have wrong assumptions of the event order and/or 
atomicity. For example, in bug sequelize#1599 [27], a 
developer commented: “I would expect findOrCreate() 
method to be atomic. However, it just calls find() and if 
unsuccessful, it will call create().” In bug kue#154 [28], 
a developer commented: “The redis client.subscribe is 
asynchronous but that is completely ignored”. 

 

V. BUG IMPACTS 

We study the failure symptom of each bug to better 
understand how severe a concurrency bug is. Our studied 
concurrency bugs can cause fatal failures including crashes / 
exceptions, incorrect states, wrong outputs, hangs / no response, 
and other operation failures. Note that, incorrect states and 
wrong outputs can also cause some operation failures. To avoid 
double counting, we consider a bug as causing operation failures 
only when it does not cause incorrect states and wrong outputs. 

Crashes / Exceptions. 19 (33%) of the studied bugs can 
cause crashes or uncaught exceptions, e.g., null pointer 
exception. For example, in bug hapi#3347 (Fig. 5), Node.js 
crashes due to out of memory. 

Finding #2. Non-deterministic event triggering (70%) and 
execution of asynchronous operations (35%) are two main 
sources of concurrency bugs, while existing work only 
focuses on non-deterministic event triggering. 28 (49%) 
bugs are caused by using high-level API protocols in an 
improper way. 

TABLE 2. BUG-INDUCING API 

 Cases Order Atomicity Starvation Total 

Schedule API 

setTimeout 
process.nextTick 
setInterval 
setImmediate 
Promise 

2 
0 
1 
0 
0 

5 
0 
0 
0 
0 

0 
2 
0 
1 
0 

7  
2 
1  
1  
0 

API protocol  11 17 0 28 
 

TABLE 1. BUG-INDUCING PHASE 

 Order Atomicity Starvation Total 

Asynchronous operation 4 16 (9)* 0 20 (9)* 

Event triggering 12 28 (9)* 0 40 (9)* 

Event handling 0 0 3 3 

Multi processes 1 2 0 3 
*9 atomicity violation bugs, shown in ( ), can be introduced by both non-

deterministic execution of asynchronous operations and event triggering. 

 



Incorrect states. 18 (32%) of the studied bugs can cause 
incorrect states, e.g., incorrect persistence data in database. For 
example, in bug Porybox#157 (Fig. 4), the first update is lost in 
the database. 

Wrong outputs. 6 (11%) bugs can generate wrong results 
and present them to users. 

Hangs / no response. 4 (7%) bugs can cause hangs or no 
response. For example, in bug fiware-pep-steelskin#269 [29], 
the application registers a listener for an event. However, an 
unexpected event may happen and remove the listener before it 
is triggered. As a result, the event cannot be processed correctly. 

Operation failures. The other 10 (17%) bugs cause 
unexpected behaviors: jobs getting processed incompletely (2), 
jobs getting rejected (2), jobs getting processed twice (2), I/O 
starvation issues under heavy load (2), and others (2), e.g., a 
server cannot be shut down normally. 

 

VI. BUG MANIFESTATION 

Understanding how concurrency bugs manifest themselves 
in Node.js applications can provide useful implications on how 
to effectively detect and test concurrency bugs. 

A. Input Preconditions 

While Section IV.A presents the timing conditions of 
concurrency bugs, this section focuses on input preconditions. 
In practice, many input conditions should be satisfied in order to 
trigger the concurrency bugs, such as external requests, 
application configuration, and deploy environment. For example, 
in bug Porybox#157, two external requests with the same 
ownerName are required. Otherwise, this concurrency bug 
cannot be triggered. Table 3 shows the input preconditions for 
our studied bugs. 

External requests. Node.js is usually used to process user 
requests in server-side applications. These user requests are 
external to Node.js applications, and can happen anytime. As 
Table 3 shows, 23 (40%) bugs do not need any external request. 
These bugs usually occur in desktop applications and libraries, 
and they do not receive any external request. 2 bugs only need 1 
external request. 28 (49%) bugs need only 2 concurrent requests, 
and interestingly, 18 of them only require 2 same requests with 
the same inputs (e.g., Porybox#157). For the remaining 10 bugs, 
they require 2 different external requests. Only 4 concurrency 
bugs require more than 2 external requests. 

We observe that about three quarters (43/57=75%) of the 
studied bugs can manifest themselves with no more than one 

external request or two same requests. This indicates that input 
preconditions are usually simple, and developers can test their 
applications with simple input preconditions first. The other 14 
bugs need relatively complicated conditions and are not easy to 
trigger. They require at least two different external requests and 
may also require a specific order among them. For example, bug 
browser-laptop#3273 [30] is triggered only when three external 
requests are ordered as on → off → on. 

Configuration and deploy environment. We observe that 
6 (11%) bugs require special configuration (4 cases) or deploy 
environment (2 cases). For example, it requires specific database 
for bug five-bells-shared#64 [31] and certain Node.js version for 
bug asset-smasher#8 [32] to be manifested. 

 

B. Racing Resources 

Racing resources usually denote the states of an application 
and a concurrency bug is introduced when these states hold 
unexpected or inconsistent values. We categorize racing 
resources as shared variable, database, file, and others. 

Shared variable. 31 (54%) bugs contend against shared 
variables. Shared variables are commonly used to store shared 
data in memory, or as condition variables used for 
synchronization between callbacks. 

Database. 15 (26%) bugs contend against the data in 
database. This usually happens when several database 
operations (e.g., query and update) are not ordered or executed 
in an atomic region, and cause inconsistency in the database. For 
example, bug Porybox#157 in Fig. 4 contends against database. 

File. 8 (14%) bugs contend against files, e.g., bug cordova-
lib#7 [23]. This usually happens when several file operations 
(e.g., read and write) to the same file are not ordered. 

Other. 3 bugs do not have racing resources, such as a 
starvation bug that is only sensitive to event schedule. 

 

C. Triggering Scope 

We analyze the triggering scope to provide a complexity 
measure of the triggering of a concurrency bug in Node.js. We 
use the following metrics to measure the triggering scope: events 
/ asynchronous operations count, Node.js process count, and 
racing resource count, as shown in Table 4. 

Events / asynchronous operations. For each concurrency 
bug, we identify the smallest set of events / asynchronous 
operations E, so that a specific order of E can guarantee that the 
bug manifests. As Table 4 shows, most (93%) bugs only involve 
no more than 4 events / asynchronous operations. This indicates 
that testing Node.js applications and detecting concurrency bugs 
in Node.js can be simplified to check no more 4 events / 
asynchronous operations without losing bug detection capability 
much. 

Finding #3. All the studied concurrency bugs in Node.js can 

cause severe consequences, e.g., crashes, incorrect states, 

hangs, and operation failures. 

Finding #4. Three quarters of the studied concurrency bugs 
only require simple input preconditions. 11% of the studied 
bugs require special configuration or deploy environment. 

Finding #5. A significant number (23 out of 57) of 
concurrency bugs contend against databases or files, rather 
than variables. 

TABLE 3. PRECONDITIONS 

 Cases Order Atomicity Starvation Total 

External request 

0 
1 
2 
>=3 

13 
1 
2 (1)* 
1 

8 
1 
26 (17)* 
2 

2 
0 
0 
1 

23 
2 
28 (18)* 
4 

Configuration  1 2 1 4 

Deploy environment  0 1 1 2 
*The bugs, shown in ( ), only require 2 same external requests with the same inputs. 

 



Involved Node.js processes. 54 (95%) concurrency bugs 
only involve 1 Node.js process. This indicates most concurrency 
bugs happen in one single Node.js process and bug detection 
approaches only focusing on one Node.js process can cover 
most concurrency bugs. 

Racing resources. 49 (86%) bugs race for only 1 resource 
(e.g., a shared variable, a file or an entity in database). Bug 
change-propagation#84 [33] is an example of racing for two 
shared variables: the program makes a commit to database if 
certain conditions about two shared variable are satisfied. 

 

VII. BUG FIXING 

A. Fix Strategies 

Before we investigate how concurrency bugs in Node.js 
were fixed in practice, our intuition is that adding 
synchronization (forcing orders among events / asynchronous 
operations) should be the most common way to fix concurrency 
bugs in Node.js. Surprisingly, it is not the case. In total, we 
summarize 8 fix strategies that can fix 46 out of 57 bugs, as 
shown in Table 5. Only one quarter of the bugs were fixed by 
adding synchronization. There are several potential reasons. 
First, it is difficult to enforce atomic intentions by forcing orders 
among callbacks or asynchronous operations. Second, simply 
using synchronization on all the operations can lower the 
parallelization and thus degrade the performance. Therefore, 
about three quarters of bugs were fixed without synchronization. 
Developers usually need to consider correctness and 
performance to decide the most appropriate fix strategies. In the 
following, we describe these different strategies. 

Adding synchronization. One quarter of concurrency bugs 
were fixed by changing the timing of callbacks or asynchronous 
operations. Node.js can use callbacks or equivalent async 
control flow libraries, e.g., async[34] and syncify[35], to add 
synchronization. For example, bug gp-js-client#4 in Fig. 3 was 
fixed by moving uploadStr into the callback of create (Line 3). 
Thus, the order of these two asynchronous operations is 
enforced. Node.js can also use condition variables to enforce 
orders. For example, in the code snippet in Fig. 5, two callbacks 
(Lines 13 and 17) by process.nextTick() should be invoked as an 
atomic region. It uses a condition variable isProcessing to avoid 
concurrent processing of external requests. If isProcessing is 
true, it just puts the new incoming request in a queue (Line 3) 
and will reschedule it later. An equivalent way to do this is using 

third-party lock [36] or mutex [37]. Only 7 out of 37 atomicity 
violation bugs were fixed by adding synchronization: 3 bugs 
were fixed by using shared variables, and 4 bugs were fixed by 
using third-party lock/mutex. Most atomicity violation bug were 
not fixed by adding synchronization. Developers would try to 
fix these bugs by tolerating wrong event timing instead of 
preventing the buggy timing with synchronization. 

Bypassing. 15 bugs were fixed by bypassing code when 
certain variable conditions are satisfied. 5 order violation bugs 
were fixed this way. For example, bug js-ipfs#318 [38] results 
in calling a callback twice and finally throws an exception. It 
was fixed by introducing a variable denoting whether the 
callback has been called to avoid calling it again. 10 atomicity 
violation bugs were fixed by skipping code to avoid erroneous 
behaviors when its concerned variable is modified by an 
unexpected event (i.e., under buggy interleaving). The fix of bug 
strider#745 [39] just moves on if certain variable is not null. 

Tolerance. 5 bugs were fixed by tolerating the buggy event 
timing. 1 order violation bug was fixed by tolerating buggy 
timing. For example, bug session#340 [40] was fixed by 
correcting the states of shared variables so that the following 
code can also run under buggy event order. 4 atomicity violation 
bugs were fixed by tolerating the incorrectly interleaved events. 
For example, the fix of bug fiware-pep-steelskin#279 [41] 
corrects the value of the concerned variable when it detects the 
variable is modified by an unexpected event’s callback. Note 
that, this kind of fixes are usually semantic-related, developers 
need to confirm how to update the corrupted states. 

Switching to atomic APIs. 4 bugs were fixed by replacing 
current APIs with their atomic versions. For example, bug 
Porybox#157(Fig. 4) was fixed by replacing findOne and save 
with the atomic API update which can do the same task in a 
single query supported by MongoDB. 

Ignoring / retrying. 2 bugs were fixed by catching the 
failure or retrying the failed operation. For example, bug 
browser-laptop#3273 was fixed by catching the error and 
showing it to users. In bug done-ssr#62 [42], the application 
launches the component can-serve and live-reload at the same 
time, the can-serve may get ready first and  tries to send a request 
to the live-reload server which has not started yet. This bug was 
fixed by letting the can-serve retry the request later. 

Moving code. 2 atomicity violation bugs were fixed by 
moving code. Their fixes merge the supposed atomic operations 
but separated in two callbacks together in one callback. Thus, 
they are guaranteed to be executed atomically. 

Finding #6. Most concurrency bugs only involve no more 
than 4 events / asynchronous operations, 1 Node.js process, 
and 1 resource. 

TABLE 5. FIX STRATEGIES 

Fix strategies Order Atomicity Starvation Total 

Adding synchronization 7 6  13 

Bypassing 5 10  15 

Tolerance 1 4  5 

Switching to atomic APIs  4  4 

Ignoring/retrying 1 1  2 

Moving code  2  2 

Data privatization  2  2 

Changing priority   3 3 

Other 3 8  11 

Total 17 37 3 57 
 

TABLE 4. TRIGGERING SCOPE 

 Cases Order Atomicity Starvation Total 

Events /  
asynchronous  
operations 

2 
3 
4 
>4 

15 
0 
2 
0 

6 
14 
16 
1 

0 
0 
0 
3 

21 
14 
18 
4 

Involved processes 
1 
2 

16 
1 

35 
2 

3 
0 

54 
3 

Racing resources 

0 
1 
2 
3 

1 
14 
2 
0 

0 
34 
2 
1 

2 
1 
0 
0 

3 
49 
4 
1 

 



Data privatization. 2 bugs were fixed by making shared 
variables private under the same buggy context. Thus, racing 
events’ callbacks cannot access the shared variables. 2 atomicity 
violation bugs were fixed by data privatization. 

Changing priority. 3 starvation bugs were fixed by 
adjusting the priorities of relevant events. The 7 event queues 
have different strategies, as shown in Section II.A. For example, 
recursively scheduling events by process.nextTick can starve the 
event loop since it has very high priority. This can be fixed by 
using setImmediate that has relatively lower priority. Similarly, 
I/O events can starve callbacks registered by setImmediate. This 
can be fixed by using process.nextTick that has higher priority. 

Other. The remaining 11 bugs were fixed by various ad-hoc 
approaches, such as, changing underlying C/C++ Node.js plugin 
code, updating dependent databases, and redesigning related 
data structure and code logic. 

 

B. Fix Complexity 

To quantify the effort and complexity of fixing the 
concurrency bugs in Node.js, we use five metrics to measure the 
fix complexity: (1) the time to resolve the bug, (2) the number 
of bug comments among developers, (3) the patch size in terms 
of LOC changed, (4) the number of patches submitted, (5) the 
number of shared variables introduced during fixing. 

For the first four metrics, we extract the corresponding 
information from the bug reports in GitHub. Table 6 shows the 
statistics of the first four metrics. On average, our studied bugs 
take 55 days to fix, have 8 comments, submit 2 patches and have 
29 lines of code changed. Due to space constraints, we do not 
provide further cross-cutting analyses, e.g., how many bugs 
have patches with more than 50 LOC. 

Shared variables introduced in bug fixes. Due to lack of 
synchronous primitives, e.g., lock and wait/notify, shared 
variables are prevalently used for fixing concurrency bugs in 
Node.js. Here, we only count the number of shared variables, 
which are used as condition variables for checking program 
states, or to store state information for bypassing or tolerance. 
The use of shared variables can complicate fixes since 
developers need to consider how to form the conditional 
statement and where to place it. 

We analyze how many shared variables are introduced in the 
patches. For 27 concurrency bugs, shared variables are used as 
condition variables or to store state information. For these bugs, 
17 bugs use 1 shared variable, 7 bugs use 2 shared variables, 2 
bugs use 3 shared variables and 1 bug uses 4 shared variables. 
For bug fixing, 17 bugs introduce new shared variables to fix 

bugs. Among these 17 bugs, 8 bugs have used shared variables 
for preventing concurrency bugs, but they were used in the 
wrong way. The final patches fix them. This also indicates fixing 
concurrency bugs with shared variables is difficult. 

 

VIII. LESSONS LEARNED 

We now discuss the lessons learned, implications to existing 
tools and the opportunities for new research in combating 
concurrency bugs in Node.js. 

A. Concurrency Bug Detection in Node.js 

Concurrency bugs in Node.js can cause severe consequences 
(Finding #3), and thus resolving these bugs is of great 
significance for the reliability of Node.js applications. Since 
Node.js is new, concurrency bug detection tools are 
unfortunately rare. Our study provides some patterns and 
guidance that can facilitate future studies on concurrency bug 
detection in Node.js. 

Pattern-based bug detection. Finding #1 implies that 
concurrency bug detection in Node.js can focus on three simple 
bug patterns: order violation, atomicity violation and starvation. 
Although there exists some concurrency bug detection tools in 
other event-based systems, like Android[10][11] and client-side 
JavaScript [8][12], they mainly focus on order violation. 
Atomicity violation bugs are not well addressed in event-based 
systems yet. However, atomicity violation bugs are dominant 
(Finding #1). Thus, new bug detection approaches should be 
developed to address atomicity violation in Node.js. 

Resource-oriented bug detection. Finding #5 shows that a 
significant number (23 out of 57) of concurrency bugs contend 
against databases or files, other than shared variables. While 
existing concurrency bug detection tools mostly focus on shared 
variables (i.e., shared memory). New approaches to detect 
concurrency bugs on these shared resources, e.g., databases and 
files, are needed. Researchers may build the access models on 
these shared resources to facilitate concurrency bug detection. 

API-usage-guided bug detection. The asynchronous or 
event-driven-style protocols in Node.js APIs may not be clearly 
described, and then incorrectly understood by developers. 
Finding #2 provides empirical evidence that automatically 
extracting protocols and checking API uses against the protocols 
can be effective to detect concurrency bugs in Node.js. 

System testing. Testing plays an important role in exposing 
concurrency bugs. However, few testing techniques are 
proposed for Node.js [43]. It is challenging to systematically test 
all possible event interleavings for Node.js applications. Our 
Finding #4 implies that, to reduce the test complexity, 
developers can focus on testing applications with simple input 
preconditions for triggering most concurrency bugs. However, 
testing also needs to take configurations and deploy 
environments into consideration (Finding #4). Furthermore, 
Finding #6 implies that testing can be simplified to check no 

Finding #7. Most (81%) of the studied bugs can be fixed by 
a small set of fix strategies. Three quarters of the studied 
bugs are not fixed by simply adding synchronization. 

Finding #8. Using shared variables to fix bugs are more 
often and error-prone: In a half of the studied bugs, they use 
shared variables, as condition variables or state 
check/recovery, to prevent concurrency bugs. One third of 
the fixes introduce new shared variables. 

TABLE 6. FIX COMPLEXITY 

 25th percentile  Median  75th percentile  Max 

Time (# of days) 2 6 31 832 

# of comments 2 5 10 49 

LOC of final patch 5 13 28 250 

# of patches 1 2 3 6 
 



more than 4 events in 1 Node.js process, without losing bug 
detection capability much. This will be more effective than 
testing all possible interleavings. 

B. Bug Fixing in Node.js 

Recent studies on concurrency bug fixing mostly focus on 
multi-threaded programs, and fix bugs by inserting lock/unlock 
[44][45]. Due to lack of lock mechanism in Node.js, these 
approaches cannot be directly used for concurrency bugs in 
Node.js. ARROW [14] and EventRaceCommander [46] fix 
order violation bugs using ad-hoc synchronization for client-side 
web applications. They need to take advantage of UI features 
(e.g., DOM) to build precise happens-before model that Node.js 
does not have. Further, Finding #7 shows that using 
synchronization is not appropriate for most (77%) bugs in 
Node.js. Future studies should consider other fix strategies (e.g., 
bypassing or tolerance) and try to generate high-quality fixes 
that are similar to human-written ones. 

C. API Design and Comprehension in Node.js 

In Node.js, APIs often are written in asynchronous and 
event-driven style, while developers may consider them as 
synchronous and non-event-driven APIs. Finding #2 indicates 
that developers can easily make wrong assumptions about how 
the APIs are used, and thus introduce concurrency bugs. This 
indicates that good API specifications on their asynchronous 
protocols should be helpful to avoid concurrency bugs. This also 
presents a unique opportunity for developing and inferring good 
API usage patterns in Node.js. 

D. Transaction Support in Node.js 

Finding #1 shows two thirds of our studied bugs are 
atomicity violation bugs. However, no convenient way exists to 
express developers’ atomic intentions in Node.js (i.e., two or 
more events should be processed without interruption). In 
Section VII.A, we can see developers use some strategies to fix 
concurrency bugs, e.g., preventing other events from atomic 
regions, atomic API, consistency check and retry. It is not easy 
to adopt these fix strategies, as they usually introduce condition 
variables, state variables for recovery, and so on. However, these 
strategies are similar to transactional memory (TM) [47]. Based 
on our initial analysis about whether TM can help avoid the 
studied concurrency bugs, we find that 31 (54%) bugs can 
benefit from TM. Thus, TM can be treated as an efficient 
approach to avoid concurrency bugs in Node.js. More studies 
are needed to design a simple and effective TM in Node.js. 

IX. RELATED WORK 

Our study relates to a large body of existing work on 
detecting, debugging, and understanding for concurrency bugs. 
In this section, we discuss some representative work in bug 
studies, concurrency bug analysis, and program analysis. 

Bug studies. There are some representative works on bug 
studies in JavaScript and concurrency bugs. (1) Existing bug 
studies in JavaScript mainly focus on client-side JavaScript 
applications [48][49][50]. Many bugs in these studies relate to 
DOM, whereas Node.js does not have DOM. These studies 
merely mention concurrency bugs. Only the study [50] observes 
that non-deterministic errors are common in web applications. 
Node.fz [43] provides an initial study on a small set of 

concurrency bugs (only 12 bugs) in Node.js, to help design a 
fuzzing tool for Node.js. Whereas, we perform a compressive 
study on 57 concurrency bugs in Node.js, and obtain many new 
findings and implications, e.g., API misuse-related concurrency 
bugs, many new fix strategies, various new statistics and lessons 
learned. (2) Some studies have focused on concurrency bugs in 
multi-threaded systems [6] and distributed systems [7]. These 
studies have promoted a large amount of research on 
concurrency bug detection, testing, automated fixing and so on 
[9][51][52][53]. However, the concurrency bugs in Node.js 
differ from those in traditional systems as they originate from 
different programming paradigms and execution environments. 

Concurrency bug analysis. Amounts of studies focus on 
concurrency bug detection [54][55][56], testing [9][57][58][59], 
reproduction [60] and fixing [46][44] in traditional programs 
(e.g., C and Java). In recent years, much research effort has also 
been devoted to concurrency bugs in event-driven applications, 
e.g., Android [10][11][13][61] and Web applications 
[8][12][14][62]. Our study shows that concurrency bugs in 
Node.js have different characteristics in bug patterns, 
manifestations and fix strategies from theirs. Thus, those 
approaches may be ineffective for Node.js. Our comprehensive 
study on concurrency bugs in Node.js provides further 
motivations and guidance for future studies. 

Program analysis on Node.js applications. Madsen et al. 
[63] build an event-based call graph for a Node.js application, 
and then use it to statically detect bugs related to event handling, 
e.g., dead event listeners. Their tool is not designed for finding 
and resolving concurrency bugs in Node.js. SYNODE [64] 
combines static analysis and runtime enforcement of security 
policies to allow vulnerable modules in Node.js to be used in a 
safe way. SAHAND [65] builds asynchronous interactions for 
full-stack JavaScript applications. It captures the behavioral 
model of a full-stack JavaScript application, and provides 
scheduling lifelines of callbacks. Our study can open up new 
research directions on reliability issues in Node.js applications. 

X. CONCLUSION 

Node.js has become one of most popular platforms for 
building server-side applications. Applications built on Node.js 
face various non-determinism and may contain intricate 
concurrency bugs. This paper presents NodeCB, a 
comprehensive study on real world concurrency bugs in Node.js. 
We collect 57 real world concurrency bugs from various open-
source Node.js applications. We examine their bug patterns, root 
causes, failure symptoms, manifestation, and fix strategies. Our 
study reveals many interesting findings, which can promote 
future concurrency bug detection, testing, and automated fixing 
in Node.js. In the future, we will design approaches and tools for 
detecting, avoiding, and fixing concurrency bugs in Node.js. 
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