

Understanding Spreadsheet Evolution in Practice

Liang Xu

Institute of Software, Chinese Academy of Sciences

University of Chinese Academy of Sciences

Beijing, China

xuliang12@otcaix.iscas.ac.cn

Abstract—As a special kind of software, spreadsheets have

been evolving during their life cycle. Understanding spreadsheet

evolution can help facilitate spreadsheet design, maintenance and

fault detection. However, understanding spreadsheet evolution is

challenging in practice. There are many factors that hinder

spreadsheet evolution comprehension, such as, lack of version

information, complicated structure changes during evolution, etc.

Thus, we propose this work to facilitate the understanding of

spreadsheet evolution, including developing semi-automated

technique to build versioned spreadsheet corpora, characterizing

and understanding how spreadsheet templates are reused,

developing automated tools for spreadsheet comparison, and new

approaches for fault detection during evolution.

Keywords—spreadsheet; evolution; version; empirical study;

template; comparison

I. INTRODUCTION

As one of the most successful end-user programming
platforms, spreadsheets have been widely used in various tasks
in real life, such as data storage and analysis, financial reporting
and so on [1]. In the U.S. alone, it is estimated that, in 2005, the
number of people programming spreadsheets is 11 million,
while there are only 2.75 million other professional
programmers [2].

Spreadsheets usually have long life cycle. For example, the
empirical study by Hermans et al. [3] pointed out that the
average lifetime of spreadsheets is about 5 years, and 13 people
work on a spreadsheet on average. Thus, spreadsheets have been
evolving during their life cycle. In the field of software
engineering, how software evolves has been well studied and
many useful findings have been applied to software maintenance
e.g., change prediction [4][5] and bug detection [6], etc. Inspired
by this, studies on the spreadsheet evolution can benefit
spreadsheet understanding, maintenance and fault detection. For
example, we can compare different spreadsheet versions to find
inconsistencies, and thus improve the quality of spreadsheets.

Existing studies on spreadsheets mostly focus on improving
spreadsheet quality by applying software engineering
approaches and techniques, such as testing [7][8], debugging
[9][10][11], and error detection [12][13][14][15]. However, few
studies were performed on spreadsheet evolution despite its
importance. To the best of our knowledge, the only work [16]
related to spreadsheet evolution is carried out on 54 pairs of
spreadsheets. In each spreadsheet pair, the first spreadsheet is the
original spreadsheet developed by the customer, and the second
one was rebuilt by a company F1F9 [17]. Thus, our study

focuses on spreadsheet evolution, and explores new
opportunities to improve the quality of spreadsheets.

There are two challenges in understanding spreadsheet
evolution. The first challenge is that there is no availability of
industrial-scale spreadsheet corpora with version information.
Because end users of spreadsheets rarely document the version
information by hand or version control tools, such as SpreadGit
[18] and SharePoint [19]. As a result, the version information is
missing and different versions of a spreadsheet coexist as
individual and similar spreadsheets. That is the main reason why
there are so few studies on the spreadsheet evolution. The second
challenge is lack of the detailed information about complicated
structure changes during evolution. These information is the key
to understand how spreadsheets evolve. However, existing
spreadsheet comparison tools (e.g., DiffEngineX [20] and
Synkronizer [21]) fail to identify those complicated structure
changes accurately, such as inserting a cell down or right.

To better understand spreadsheet evolution and handle the
above challenges, we aim to perform the following studies in this
work. (1) To solve the first challenge, we build the first and
public versioned spreadsheet corpus, VEnron [22][23]. We
observe that spreadsheets are usually exchanged among people
by emails. Thus, we extract spreadsheets attached in the emails
from the Enron Email Archive [24], and use various information
(e.g., the email subjects and contents) associated with the
spreadsheets to recover version information among spreadsheets.
(2) In order to understand how spreadsheets are created and
modified, we carry out an empirical study on VEnron to
characterize and understand how spreadsheet templates are used.
We further identify the complicated structure changes during
spreadsheet evolution. (3) To solve the second challenge, we
plan to propose a greedy algorithm to compare two spreadsheets
accurately, which can align two worksheets to minimize the
number of changes in the cell level. We also plan to apply our
comparison algorithm and version information to fault detection
among evolution to improve the quality of spreadsheets.

The remainder of this paper is organized as follows. Section
II describes our research questions. Section III shows our
methodology and preliminary results. We discuss related work
in Section IV. Finally, we summarize this paper in Section V.

II. RESEARCH QUESTIONS

As mentioned earlier in Section I, the unavailability of
industrial-scale spreadsheet corpora with version information is
the key obstacle to study spreadsheet evolution scientifically.

Since the version information is missing and different versions
of a spreadsheet coexist as individual spreadsheets. Thus, to
create a new versioned spreadsheet corpus, we need to identify
whether the spreadsheets are different versions of a spreadsheet,
and further recover the version information between
spreadsheets in the same evolution group. Here, in each
evolution group, all spreadsheets are different versions of the
same spreadsheet and sorted a straight-line historical orders. So
our first research question (RQ1) is that: How can we recover

version information from a set of spreadsheets?

During spreadsheet development, users usually create a new
spreadsheet by copying and modifying an existing one to process
new data. The new created spreadsheet can be considered as an
update version of the old one. Thus, the previous spreadsheet
will be considered as the template of the later one. As the special
spreadsheets or worksheets, those templates predefine the data
layout and computational logic, and thus can save users’ effort.
To study spreadsheet evolution, we focus on the following
question about spreadsheet evolution: how do users adopt
spreadsheet templates to create new spreadsheets? However, it
is challenging to know which spreadsheets can be templates and
which ones can the instances of spreadsheets. Thus, we narrow
down our research to understand the explicitly defined
spreadsheet templates in VEnron [22]. We only focus on the
spreadsheets marked by keyword “template”, because this
keyword indicates these spreadsheets can be used as templates
to create new spreadsheets. So our second research question
(RQ2) is that: How are spreadsheet templates used in the real

world?

The detailed information about complicated structure
changes during evolution is missing and cannot be recovered
accurately by existing comparison tools. This hinders the
spreadsheet evolution related research, because recovering them
manually is time-consuming. So our third research question
(RQ3) is that: How can we compare two spreadsheets

accurately?

We observe that some errors have been introduced during
spreadsheet evolution, and thus reducing the quality of
spreadsheets. We expect to apply our comparison algorithm and
version information to fault detection. So our fourth research
question (RQ4) is that: How can we detect the introduced faults

during spreadsheet evolution?

We have accomplished RQ1 [22][23] and made some
progress towards solving RQ2. We plan to address RQ3 and
RQ4 in the near future. We give more detailed information about
our methodology and preliminary results in next section.

III. METHODOLOGY AND PRELIMINARY RESULT

To answer RQ1, we first build the first versioned spreadsheet
corpus based on the Enron Email Archive [24]. We first propose
a filename-based spreadsheet clustering approach [22], and then
propose a content-based spreadsheet clustering approach [23].
To answer RQ2, we filter out the templates with keywords and
identify instances for each detected template. Then we compare
the templates and corresponding instance to inspect the changes
made during creation of instances. To answer RQ3, we plan to
design a novel greedy algorithm to identify high-level changes
that can be used to align two spreadsheets. To answer RQ4, we

plan to combine our comparison algorithm with version
information to detect inconsistent faults introduced during
spreadsheet evolution.

A. RQ1: How can we recover version information from a set

of spreadsheets?

We use the Enron Email Archive [24] as our research
subject since it is public and contains lots of spreadsheets. The
Enron Email Archive [24] contains 752,605 emails. These
emails attach 16,189 unique spreadsheets according to MD5 file
hashes. We manually inspect those spreadsheets and observe
that users usually email their latest spreadsheets to others.
Intuitively, the spreadsheet sent latter can be considered as an
updated version of that was sent earlier. Thus, we can recover
the relationship between spreadsheets according to the
information hidden in the emails. Further, we observe that,
without version control tools, users usually add the number or
date string into the filenames (e.g., May00_FOM_Req2.xls and
Jun00_FOM_Req.xls) to distinguish different versions of the
same spreadsheet. This makes it possible to recover the version
information based on the similarity of spreadsheet filenames.

Based on this observation, we propose the filename-based
approach to recover the version information between
spreadsheets. It works in four steps:

1) We extract the spreadsheets from Enron Email Archive,
and keep the original filenames.

2) We calculate the shortened filename for each
spreadsheet by removing version-related information,
such as, numbers, date and special characters (e.g., “#”,
“-”, and “*”, etc.). Then we cluster spreadsheets into
different groups according to whether they share the
same shortened filenames. The spreadsheets in the same
groups may be different versions of the same
spreadsheet. For example, the spreadsheets
May00_FOM_Req2.xls and Jun00_FOM_Req.xls share
the same shortened name “FOMReq”, they are clustered
into the same group.

3) We manually validate whether the spreadsheets in the
same group are different versions of a spreadsheet by
checking whether they share similar worksheet names,
table structures (including table titles, row / column
labels and cell formulas) and email contents.

4) We recover the version order of the spreadsheets in each
evolution group according to the version information
extracted from filenames, worksheet names, spreadsheet
contents and related emails (e.g., the sending time).

Result: we build the first versioned spreadsheet corpus,
VEnron [22], which contains 360 evolution groups and 7,294
spreadsheets.

However, the applicability and accuracy of the filename-
based approach is limited, because it relies on the assumption
that all spreadsheets are well-named, which is not always true.
This motivates us to propose a content-based algorithm, called
SpreadCluster [23], to identify different versions of the same
spreadsheet. Figure 1 gives the overview of SpreadCluster, we
can see that it contains two phases: a training phase and a
working phase. In the training phase, SpreadCluster extracts

features (e.g., table headers and worksheet names) from each
spreadsheet. Then, SpreadCluster calculates the similarity
between spreadsheets based on the extracted features. Finally,
SpreadCluster trains a clustering model using the training
dataset created based on VEnron [22]. In the working phase,
SpreadCluster extracts the same features from spreadsheets and
calculates the similarity between them. Then, SpreadCluster
uses the trained model to cluster spreadsheets into different
evolution groups.

Result: we compare SpreadCluster with the filename-based
approach on the spreadsheets extracted from the Enron email
archive [24]. The experimental result indicates that
SpreadCluster can identify evolution groups with high precision
(78.5%) and recall (70.7%), while the filename-based approach
[23] only achieves 59.8% precision and 48.7% recall.

To validate the applicability of SpreadCluster, we apply
SpreadCluster on the other two spreadsheet corpora EUSES [25]
and FUSE [26]. EUSES is the most frequently used spreadsheet
corpus, and contains 4,037 spreadsheets extracted from World
Wide Web. FUSE is a reproducible, internet-scale corpus, and
contains 249,376 unique spreadsheets that were extracted from
over 26.83 billion webpages. The spreadsheets in both two
corpora are used in different domains. The experimental result
shows SpreadCluster performs well on both two corpora with
high precision (91.0% and 79.8%, respectively).

B. RQ2: How are the spreadsheet templates used in the real

world?

We carry out this empirical study on the usage of templates
in three steps:

1) We filter out the templates from VEnron [22] by
checking whether filenames or worksheet names contain
the keyword “template”. Note that, not all spreadsheets
and worksheets whose name contains the keyword
“template” are templates, because users may keep the
word “template” in the names of instances. We manually
validate whether each detected spreadsheet or worksheet
is a template or an instance.

2) We identify the instances for each validated template. For
each worksheet template, we try to find its instances in
the same spreadsheets. For each spreadsheet template, we
try to find its instance in the same evolution group.

3) We manually compare the templates with the
corresponding instances in detail. We predefine twelve
most frequently used types of high-level changes in
practice (e.g., insert or delete rows / columns, move rows
down or up, move columns left or right, insert a cell
down or right, delete a cell up or left) and seven types of
cell-level changes (header addition / refinement /
modification / deletion, formula addition / deletion /
modification) to measure the differences between the
templates and corresponding instances.

Note that the accuracy of detection of changes between
templates and instances in the step 3 will directly affect the
correctness of the results of our study. However, we cannot find
an available comparison tool that can identify the high-level
changes accurately. Thus we have to align two spreadsheets
manually and record the used high-level changes. After two
worksheets are aligned, we get the changes in the cell-level by
comparing them cell by cell.

Preliminary result: Table 1 shows our result, we in total
identify 100 templates, including 70 worksheet templates
(Worksheet Template) with 452 instances, and 30 spreadsheet
templates (Spreadsheet Template) with 220 instances,
involving 1,508 worksheets.

According to the content and purpose of these templates, we
classify them into four categories:

 Type-1: Fixed Data Layout. The templates of this type
only define the data layout and contain no formulas.
When creating a new instance, users are forbidden to
insert or delete rows (columns).

 Type-2: Variable Data Layout. The templates of this
type only define the data layout and contain no formulas.
But users are allowed to insert or delete rows (columns).

 Type-3: Fixed Data Layout with Logic. The templates
of this type not only define the data layout and contain
some computational logic. But users are forbidden to
insert or delete rows (columns).

 Type-4: Variable Data Layout with Logic. The
templates of this type not only define the data layout and
contain some computational logic. But users are allowed
to insert or delete rows (columns).

From Table 1, we can see that most worksheet templates
(58/70) belong to the Type-4. That indicates the worksheet
templates are usually to create complex worksheets.

We are ongoing comparing the templates with instances to
collect the changes made during reusing. We want to answer
more interesting questions, as follow:

1) What are the characteristics of spreadsheet templates? E.g.,
do the templates differ from instances with respect to the
widely used metrics, such as size, level of coupling, and the
use of functions?

 Type-1 Type-2 Type-3 Type-4 Total

Worksheet Template 0 1 10 58 70

Spreadsheet Template 9 5 8 8 30

Table 1. The distribution of different types of templates.

Figure 1. The overview of SpreadCluster, adopted from [23].

2) What types of changes are made during creation of new
worksheets or spreadsheets by templates?

3) What and how smells are introduced during creation of new
worksheets or spreadsheets based on templates?

4) Are the templates well-designed? E.g., are new headers or
formulas introduced into templates when creating new
instances?

Furthermore, we observe that spreadsheet or worksheet
templates are usually missing or not explicitly marked.
Recovering the templates for a set of instances is helpful for
users to understand and maintain their spreadsheets. We also
plan to design a template recovery algorithm to recover the
missing templates from a set of spreadsheet instances. We will
evaluate this recovery algorithm by comparing its result with
the real templates in our empirical study.

C. RQ3: How can we compare two spreadsheets accurately?

We plan to design an algorithm to accurately compare two
spreadsheets. For a pair of worksheets, we try to mutate a
worksheet based on a set of predefined high-level operations,
and further align two worksheets and compare them cell by cell.
We expect to find a set of high-level operations to minimize the
differences between two aligned worksheets.

We in total predefine twelve most frequently used high-
level operations in practice, which can change the data layout
of a worksheet:

 Insert or delete rows (columns): users may insert or
delete one or more rows (columns), especially in usage
of template Type-2 and Type-4.

 Move rows down or up and move columns right or
left: users may reorder some rows or columns.
Especially, users may swap two rows or columns.

 Insert cells down or right: when users insert one or
more cells, the cells located below the insertion point
(including the cells on the insertion point) are moved
down, or the cells located on the right of the insertion
point (including the cells on the insertion point) are
moved right.

 Delete cells up or left: when users delete one or more
cells, the cells below the deleted cells in the same
columns are moved up or the cells on the right of the
deleted cells in the same rows are moved left.

After applying a set of the above high-level operations, we
try to find an optimal solution which can align two worksheets,
and further compare worksheets and their related spreadsheets.
However, enumerating all possible worksheet mutation
solutions is very time-consuming. Thus, we plan to find out
some heuristic rules to reduce the number of potential
worksheet mutation solutions and find an optimal solution
quickly.

D. RQ4: How can we detect the introduced faults during

spreadsheet evolution?

During spreadsheet evolution, various changes may be
introduced into spreadsheets. Improper changes may introduce
faults in spreadsheets. Usually, the inconsistencies among

different versions of a spreadsheet may indicate faults. However,
not all inconsistences indicated faults. For example, a cell with a
formula SUM(A1:A10) can be changed into SUM(A1:A11),
when a new row is inserted before row 5. Although the cell’s
formula changes, it is correct. Thus, we plan to figure out a set
of rules about which inconsistencies are wrong or correct. We
further plan to figure out possible fixing suggestions from
multiple other versions.

IV. RELATED WORK

Spreadsheet corpora: The most widely used spreadsheet
corpus is EUSES [25], containing 4,037 spreadsheets extracted
from Internet. Enron [27], the first industrial spreadsheet corpus,
contains more than 15,000 spreadsheet extracted from the Enron
email archive [24]. FUSE [26] is the biggest spreadsheet corpus,
containing 249,376 spreadsheets extracted from over 26 billion
pages [28]. None of three spreadsheet corpora contains version
information. In other words, their spreadsheets are independent
and the relationships between them are missing. VEnron [22] is
the first versioned spreadsheet corpus we built manually,
containing 360 evolution groups and 7,294 spreadsheets. We
proposed a content-based algorithm to automate it and built a
much greater spreadsheet corpus than VEnron.

Spreadsheet evolution: Since the spreadsheet version
information is missing, few work focus on spreadsheet evolution.
The only one work we can find is carried out an evolution study
on 54 pairs of spreadsheets [16]. However, the used corpus is not
publicly available. The versioned spreadsheet corpus we built is
publicly available. Based on this corpus, we carry out an
empirical study on the usage of templates. We believe this
corpus can be used to do more interesting research work.

Spreadsheet comparison: Some spreadsheet comparison
techniques and tools have been proposed. SheetDiff [29] first
detects the cell changes, and then optimizes cell changes into
higher-level changes. DiffEngineX [20] and Synkronizer [21]
are two commercial tools that can be used to compare and
highlight the differences between two spreadsheets. However,
the precision of those existing tools and techniques is not
satisfying, especially in detecting high-level changes. In this
proposal, we plan to propose a greedy algorithm to identify the
high-level changes, then identify the changes in cell level by
cell-by-cell comparison.

V. CONCLUSION

This paper is motivated by understanding the spreadsheet
evolution in practice. We firstly propose two approaches to build
the first versioned spreadsheet corpus, VEnron [22][23]. Based
on this built corpus, we carry out an empirical study on the usage
of templates to investigate how spreadsheets evolve. To make it
easy to carry out further spreadsheet evolution related research,
we plan to propose an algorithm to compare two spreadsheets
accurately. We also plan to develop approaches to detect faults
during evolution, and thus improve the quality of spreadsheets.

ACKNOWLEDGMENT

This work was supported in part by National Key Research
and Development Plan (2016YFB1000803), Beijing Natural
Science Foundation (4164104), and National Natural Science
Foundation of China (61672506).

REFERENCES

[1] L. a. Kappelman, J. P. Thompson, and E. R. McLean, “Converging end-

user and corporate computing,” Commun. ACM, vol. 36, pp. 79–92, 1993.

[2] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers of end

users and end user programmers,” in Proceedings of IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), 2005,

pp. 207–214.

[3] F. Hermans, M. Pinzger, and A. van Deursen, “Supporting professional

spreadsheet users by generating leveled dataflow diagrams,” in

Proceeding of the 33rd international conference on Software

engineering (ICSE), 2011, pp. 451–460.

[4] S. Kim, Z. Thomas, E. J. Whitehead Jr, and A. Zeller, “Predicting faults

from cached history,” in Proceedings of the 29th international

conference on Software Engineering (ICSE), 2007, pp. 489–498.

[5] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A systematic

literature review on fault prediction performance in software

engineering,” Trans. Softw. Eng., vol. 38, pp. 1276–1304, 2012.

[6] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation

learned from human-written patches,” in Proceedings of the

International Conference on Software Engineering (ICSE), 2113, pp.

802–811.

[7] R. Abraham and M. Erwig, “AutoTest: a tool for automatic test case

generation in spreadsheets,” in Proceedings of the IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC), 2006, pp.

43–50.

[8] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What you see is what

you test: a methodology for testing form-based visual programs,” in

Proceedings of the 20th International Conference on Software

Engineering (ICSE), 1998, pp. 198–207.

[9] R. Abraham and M. Erwig, “GoalDebug: a spreadsheet debugger for end

users,” in Proceedings of the 29th International Conference on Software

Engineering (ICSE), 2007, pp. 251–260.

[10] J. Reichwein, G. Rothermel, and M. Burnett, “Slicing spreadsheets: an

integrated methodology for spreadsheet testing and debugging,” ACM

SIGPLAN Not., vol. 35, pp. 25–38, 1999.

[11] D. W. Barowy, D. Gochev, and E. D. Berger, “CheckCell: data

debugging for spreadsheets,” in Proceedings of the ACM International

Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA), 2014, pp. 507–523.

[12] W. Dou, C. Xu, S. C. Cheung, and J. Wei, “CACheck: detecting and

repairing cell arrays in spreadsheets,” Trans. Softw. Eng., vol. 43, pp.

226–251, 2017.

[13] W. Dou, S.-C. Cheung, and J. Wei, “Is spreadsheet ambiguity harmful?

detecting and repairing spreadsheet smells due to ambiguous

computation,” in Proceedings of the 36th International Conference on

Software Engineering (ICSE), 2014, pp. 848–858.

[14] W. Dou, S.-C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei, “Detecting

table clones and smells in spreadsheets,” in Proceedings of the 24th ACM

SIGSOFT International Symposium on the Foundations of Software

Engineering (FSE), 2016, pp. 787–798.

[15] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu, “CUSTODES: automatic

spreadsheet cell clustering and smell detection using strong and weak

features,” in Proceedings of the 38th International Conference on

Software Engineering (ICSE), 2016, pp. 464–475.

[16] B. Jansen and F. Hermans, “Code smells in spreadsheet formulas

revisited on an industrial dataset,” in Proceedings of IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2015, pp.

372–380.

[17] “F1F9.” [Online]. Available: www.f1f9.com/.

[18] “SpreadGit.” [Online]. Available:

https://www.crunchbase.com/organization/spreadgit.

[19] “SharePoint.” [Online]. Available: https://products.office.com/zh-

cn/sharepoint/collaboration.

[20] “Florencesoft DiffEngineX - compare Excel workbooks xlsx.” [Online].

Available: https://www.florencesoft.com/.

[21] “Synkronizer Excel compare: compare, update and merge Excel files.”

[Online]. Available: http://www.synkronizer.com/.

[22] W. Dou, L. Xu, S.-C. Cheung, C. Gao, J. Wei, and T. Huang, “VEnron:

a versioned spreadsheet corpus and related evolution analysis,” in

Proceedings of the 38th International Conference on Software

Engineering Companion (ICSE), 2016, pp. 162–171.

[23] L. Xu, et al., “SpreadCluster: recovering versioned spreadsheets through

similarity-based clustering,” in Proceedings of the 14th International

Conference on Mining Software Repositories (MSR), 2017, pp. 158–169.

[24] “The Enron PST data set cleansed of PII by Nuix and EDRM.” [Online].

Available: http://info.nuix.com/Enron.html.

[25] M. Fisher and G. Rothermel, “The EUSES spreadsheet corpus: a shared

resource for supporting experimentation with spreadsheet dependability

mechanisms,” ACM SIGSOFT Softw. Eng. Notes, pp. 1–5, 2005.

[26] T. Barik, K. Lubick, J. Smith, J. Slankas, and E. Murphy-Hill, “FUSE: a

reproducible, extendable, Internet-scale corpus of spreadsheets,” in

Proceedings of the 12th Working Conference on Mining Software

Repositories (MSR), 2015, pp. 486–489.

[27] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and related

Emails: a dataset and analysis,” in Proceedings of the 37th IEEE

International Conference on Software Engineering (ICSE), 2015, pp. 7–

16.

[28] “Common crawl data on AWS.” [Online]. Available:

http://aws.amazon.com/datasets/41740.

[29] C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: a tool for

identifying changes in spreadsheets,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2010, pp. 85–92.

