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Abstract—As a special kind of software, spreadsheets have 

been evolving during their life cycle. Understanding spreadsheet 

evolution can help facilitate spreadsheet design, maintenance and 

fault detection. However, understanding spreadsheet evolution is 

challenging in practice. There are many factors that hinder 

spreadsheet evolution comprehension, such as, lack of version 

information, complicated structure changes during evolution, etc. 

Thus, we propose this work to facilitate the understanding of 

spreadsheet evolution, including developing semi-automated 

technique to build versioned spreadsheet corpora, characterizing 

and understanding how spreadsheet templates are reused, 

developing automated tools for spreadsheet comparison, and new 

approaches for fault detection during evolution. 
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I. INTRODUCTION 

As one of the most successful end-user programming 
platforms, spreadsheets have been widely used in various tasks 
in real life, such as data storage and analysis, financial reporting 
and so on [1]. In the U.S. alone, it is estimated that, in 2005, the 
number of people programming spreadsheets is 11 million, 
while there are only 2.75 million other professional 
programmers [2]. 

Spreadsheets usually have long life cycle. For example, the 
empirical study by Hermans et al. [3] pointed out that the 
average lifetime of spreadsheets is about 5 years, and 13 people 
work on a spreadsheet on average. Thus, spreadsheets have been 
evolving during their life cycle. In the field of software 
engineering, how software evolves has been well studied and 
many useful findings have been applied to software maintenance 
e.g., change prediction [4][5] and bug detection [6], etc. Inspired 
by this, studies on the spreadsheet evolution can benefit 
spreadsheet understanding, maintenance and fault detection. For 
example, we can compare different spreadsheet versions to find 
inconsistencies, and thus improve the quality of spreadsheets. 

Existing studies on spreadsheets mostly focus on improving 
spreadsheet quality by applying software engineering 
approaches and techniques, such as testing [7][8], debugging 
[9][10][11], and error detection [12][13][14][15]. However, few 
studies were performed on spreadsheet evolution despite its 
importance. To the best of our knowledge, the only work [16] 
related to spreadsheet evolution is carried out on 54 pairs of 
spreadsheets. In each spreadsheet pair, the first spreadsheet is the 
original spreadsheet developed by the customer, and the second 
one was rebuilt by a company F1F9 [17]. Thus, our study 

focuses on spreadsheet evolution, and explores new 
opportunities to improve the quality of spreadsheets. 

There are two challenges in understanding spreadsheet 
evolution. The first challenge is that there is no availability of 
industrial-scale spreadsheet corpora with version information. 
Because end users of spreadsheets rarely document the version 
information by hand or version control tools, such as SpreadGit 
[18] and SharePoint [19]. As a result, the version information is 
missing and different versions of a spreadsheet coexist as 
individual and similar spreadsheets. That is the main reason why 
there are so few studies on the spreadsheet evolution. The second 
challenge is lack of the detailed information about complicated 
structure changes during evolution. These information is the key 
to understand how spreadsheets evolve. However, existing 
spreadsheet comparison tools (e.g., DiffEngineX [20] and 
Synkronizer [21]) fail to identify those complicated structure 
changes accurately, such as inserting a cell down or right. 

To better understand spreadsheet evolution and handle the 
above challenges, we aim to perform the following studies in this 
work. (1) To solve the first challenge, we build the first and 
public versioned spreadsheet corpus, VEnron [22][23]. We 
observe that spreadsheets are usually exchanged among people 
by emails. Thus, we extract spreadsheets attached in the emails 
from the Enron Email Archive [24], and use various information 
(e.g., the email subjects and contents) associated with the 
spreadsheets to recover version information among spreadsheets. 
(2) In order to understand how spreadsheets are created and 
modified, we carry out an empirical study on VEnron to 
characterize and understand how spreadsheet templates are used. 
We further identify the complicated structure changes during 
spreadsheet evolution. (3) To solve the second challenge, we 
plan to propose a greedy algorithm to compare two spreadsheets 
accurately, which can align two worksheets to minimize the 
number of changes in the cell level. We also plan to apply our 
comparison algorithm and version information to fault detection 
among evolution to improve the quality of spreadsheets. 

The remainder of this paper is organized as follows. Section 
II describes our research questions. Section III shows our 
methodology and preliminary results. We discuss related work 
in Section IV. Finally, we summarize this paper in Section V. 

II. RESEARCH QUESTIONS 

As mentioned earlier in Section I, the unavailability of 
industrial-scale spreadsheet corpora with version information is 
the key obstacle to study spreadsheet evolution scientifically. 



 

Since the version information is missing and different versions 
of a spreadsheet coexist as individual spreadsheets. Thus, to 
create a new versioned spreadsheet corpus, we need to identify 
whether the spreadsheets are different versions of a spreadsheet, 
and further recover the version information between 
spreadsheets in the same evolution group. Here, in each 
evolution group, all spreadsheets are different versions of the 
same spreadsheet and sorted a straight-line historical orders. So 
our first research question (RQ1) is that: How can we recover 

version information from a set of spreadsheets? 

During spreadsheet development, users usually create a new 
spreadsheet by copying and modifying an existing one to process 
new data. The new created spreadsheet can be considered as an 
update version of the old one. Thus, the previous spreadsheet 
will be considered as the template of the later one. As the special 
spreadsheets or worksheets, those templates predefine the data 
layout and computational logic, and thus can save users’ effort. 
To study spreadsheet evolution, we focus on the following 
question about spreadsheet evolution: how do users adopt 
spreadsheet templates to create new spreadsheets? However, it 
is challenging to know which spreadsheets can be templates and 
which ones can the instances of spreadsheets. Thus, we narrow 
down our research to understand the explicitly defined 
spreadsheet templates in VEnron [22]. We only focus on the 
spreadsheets marked by keyword “template”, because this 
keyword indicates these spreadsheets can be used as templates 
to create new spreadsheets. So our second research question 
(RQ2) is that: How are spreadsheet templates used in the real 

world? 

The detailed information about complicated structure 
changes during evolution is missing and cannot be recovered 
accurately by existing comparison tools. This hinders the 
spreadsheet evolution related research, because recovering them 
manually is time-consuming. So our third research question 
(RQ3) is that: How can we compare two spreadsheets 

accurately? 

We observe that some errors have been introduced during 
spreadsheet evolution, and thus reducing the quality of 
spreadsheets. We expect to apply our comparison algorithm and 
version information to fault detection. So our fourth research 
question (RQ4) is that: How can we detect the introduced faults 

during spreadsheet evolution? 

We have accomplished RQ1 [22][23] and made some 
progress towards solving RQ2. We plan to address RQ3 and 
RQ4 in the near future. We give more detailed information about 
our methodology and preliminary results in next section. 

III. METHODOLOGY AND PRELIMINARY RESULT 

To answer RQ1, we first build the first versioned spreadsheet 
corpus based on the Enron Email Archive [24]. We first propose 
a filename-based spreadsheet clustering approach [22], and then 
propose a content-based spreadsheet clustering approach [23]. 
To answer RQ2, we filter out the templates with keywords and 
identify instances for each detected template. Then we compare 
the templates and corresponding instance to inspect the changes 
made during creation of instances. To answer RQ3, we plan to 
design a novel greedy algorithm to identify high-level changes 
that can be used to align two spreadsheets. To answer RQ4, we 

plan to combine our comparison algorithm with version 
information to detect inconsistent faults introduced during 
spreadsheet evolution. 

A. RQ1: How can we recover version information from a set 

of spreadsheets? 

We use the Enron Email Archive [24] as our research 
subject since it is public and contains lots of spreadsheets. The 
Enron Email Archive [24] contains 752,605 emails. These 
emails attach 16,189 unique spreadsheets according to MD5 file 
hashes. We manually inspect those spreadsheets and observe 
that users usually email their latest spreadsheets to others. 
Intuitively, the spreadsheet sent latter can be considered as an 
updated version of that was sent earlier. Thus, we can recover 
the relationship between spreadsheets according to the 
information hidden in the emails. Further, we observe that, 
without version control tools, users usually add the number or 
date string into the filenames (e.g., May00_FOM_Req2.xls and 
Jun00_FOM_Req.xls) to distinguish different versions of the 
same spreadsheet. This makes it possible to recover the version 
information based on the similarity of spreadsheet filenames. 

Based on this observation, we propose the filename-based 
approach to recover the version information between 
spreadsheets. It works in four steps: 

1) We extract the spreadsheets from Enron Email Archive, 
and keep the original filenames. 

2) We calculate the shortened filename for each 
spreadsheet by removing version-related information, 
such as, numbers, date and special characters (e.g., “#”, 
“-”, and “*”, etc.). Then we cluster spreadsheets into 
different groups according to whether they share the 
same shortened filenames. The spreadsheets in the same 
groups may be different versions of the same 
spreadsheet. For example, the spreadsheets 
May00_FOM_Req2.xls and Jun00_FOM_Req.xls share 
the same shortened name “FOMReq”, they are clustered 
into the same group. 

3) We manually validate whether the spreadsheets in the 
same group are different versions of a spreadsheet by 
checking whether they share similar worksheet names, 
table structures (including table titles, row / column 
labels and cell formulas) and email contents. 

4) We recover the version order of the spreadsheets in each 
evolution group according to the version information 
extracted from filenames, worksheet names, spreadsheet 
contents and related emails (e.g., the sending time). 

Result: we build the first versioned spreadsheet corpus, 
VEnron [22], which contains 360 evolution groups and 7,294 
spreadsheets. 

However, the applicability and accuracy of the filename-
based approach is limited, because it relies on the assumption 
that all spreadsheets are well-named, which is not always true. 
This motivates us to propose a content-based algorithm, called 
SpreadCluster [23], to identify different versions of the same 
spreadsheet. Figure 1 gives the overview of SpreadCluster, we 
can see that it contains two phases: a training phase and a 
working phase. In the training phase, SpreadCluster extracts 



 

features (e.g., table headers and worksheet names) from each 
spreadsheet. Then, SpreadCluster calculates the similarity 
between spreadsheets based on the extracted features. Finally, 
SpreadCluster trains a clustering model using the training 
dataset created based on VEnron [22]. In the working phase, 
SpreadCluster extracts the same features from spreadsheets and 
calculates the similarity between them. Then, SpreadCluster 
uses the trained model to cluster spreadsheets into different 
evolution groups. 

Result: we compare SpreadCluster with the filename-based 
approach on the spreadsheets extracted from the Enron email 
archive [24]. The experimental result indicates that 
SpreadCluster can identify evolution groups with high precision 
(78.5%) and recall (70.7%), while the filename-based approach 
[23] only achieves 59.8% precision and 48.7% recall. 

To validate the applicability of SpreadCluster, we apply 
SpreadCluster on the other two spreadsheet corpora EUSES [25] 
and FUSE [26]. EUSES is the most frequently used spreadsheet 
corpus, and contains 4,037 spreadsheets extracted from World 
Wide Web. FUSE is a reproducible, internet-scale corpus, and 
contains 249,376 unique spreadsheets that were extracted from 
over 26.83 billion webpages. The spreadsheets in both two 
corpora are used in different domains. The experimental result 
shows SpreadCluster performs well on both two corpora with 
high precision (91.0% and 79.8%, respectively). 

B. RQ2: How are the spreadsheet templates used in the real 

world? 

We carry out this empirical study on the usage of templates 
in three steps: 

1) We filter out the templates from VEnron [22] by 
checking whether filenames or worksheet names contain 
the keyword “template”. Note that, not all spreadsheets 
and worksheets whose name contains the keyword 
“template” are templates, because users may keep the 
word “template” in the names of instances. We manually 
validate whether each detected spreadsheet or worksheet 
is a template or an instance. 

2) We identify the instances for each validated template. For 
each worksheet template, we try to find its instances in 
the same spreadsheets. For each spreadsheet template, we 
try to find its instance in the same evolution group. 

3) We manually compare the templates with the 
corresponding instances in detail. We predefine twelve 
most frequently used types of high-level changes in 
practice (e.g., insert or delete rows / columns, move rows 
down or up, move columns left or right, insert a cell 
down or right, delete a cell up or left) and seven types of 
cell-level changes (header addition / refinement / 
modification / deletion, formula addition / deletion / 
modification) to measure the differences between the 
templates and corresponding instances. 

Note that the accuracy of detection of changes between 
templates and instances in the step 3 will directly affect the 
correctness of the results of our study. However, we cannot find 
an available comparison tool that can identify the high-level 
changes accurately. Thus we have to align two spreadsheets 
manually and record the used high-level changes. After two 
worksheets are aligned, we get the changes in the cell-level by 
comparing them cell by cell. 

Preliminary result: Table 1 shows our result, we in total 
identify 100 templates, including 70 worksheet templates 
(Worksheet Template) with 452 instances, and 30 spreadsheet 
templates (Spreadsheet Template) with 220 instances, 
involving 1,508 worksheets. 

According to the content and purpose of these templates, we 
classify them into four categories: 

 Type-1: Fixed Data Layout. The templates of this type 
only define the data layout and contain no formulas. 
When creating a new instance, users are forbidden to 
insert or delete rows (columns). 

 Type-2: Variable Data Layout. The templates of this 
type only define the data layout and contain no formulas. 
But users are allowed to insert or delete rows (columns). 

 Type-3: Fixed Data Layout with Logic. The templates 
of this type not only define the data layout and contain 
some computational logic. But users are forbidden to 
insert or delete rows (columns). 

 Type-4: Variable Data Layout with Logic. The 
templates of this type not only define the data layout and 
contain some computational logic. But users are allowed 
to insert or delete rows (columns). 

From Table 1, we can see that most worksheet templates 
(58/70) belong to the Type-4. That indicates the worksheet 
templates are usually to create complex worksheets. 

We are ongoing comparing the templates with instances to 
collect the changes made during reusing. We want to answer 
more interesting questions, as follow: 

1) What are the characteristics of spreadsheet templates? E.g., 
do the templates differ from instances with respect to the 
widely used metrics, such as size, level of coupling, and the 
use of functions? 

 Type-1 Type-2 Type-3 Type-4 Total 

Worksheet Template 0 1 10 58 70 

Spreadsheet Template 9 5 8 8 30 

Table 1. The distribution of different types of templates. 

 

 

Figure 1. The overview of SpreadCluster, adopted from [23]. 



 

2) What types of changes are made during creation of new 
worksheets or spreadsheets by templates? 

3) What and how smells are introduced during creation of new 
worksheets or spreadsheets based on templates? 

4) Are the templates well-designed? E.g., are new headers or 
formulas introduced into templates when creating new 
instances? 

Furthermore, we observe that spreadsheet or worksheet 
templates are usually missing or not explicitly marked. 
Recovering the templates for a set of instances is helpful for 
users to understand and maintain their spreadsheets. We also 
plan to design a template recovery algorithm to recover the 
missing templates from a set of spreadsheet instances. We will 
evaluate this recovery algorithm by comparing its result with 
the real templates in our empirical study. 

C. RQ3: How can we compare two spreadsheets accurately? 

We plan to design an algorithm to accurately compare two 
spreadsheets. For a pair of worksheets, we try to mutate a 
worksheet based on a set of predefined high-level operations, 
and further align two worksheets and compare them cell by cell. 
We expect to find a set of high-level operations to minimize the 
differences between two aligned worksheets. 

We in total predefine twelve most frequently used high-
level operations in practice, which can change the data layout 
of a worksheet: 

 Insert or delete rows (columns): users may insert or 
delete one or more rows (columns), especially in usage 
of template Type-2 and Type-4. 

 Move rows down or up and move columns right or 
left: users may reorder some rows or columns. 
Especially, users may swap two rows or columns. 

 Insert cells down or right: when users insert one or 
more cells, the cells located below the insertion point 
(including the cells on the insertion point) are moved 
down, or the cells located on the right of the insertion 
point (including the cells on the insertion point) are 
moved right. 

 Delete cells up or left: when users delete one or more 
cells, the cells below the deleted cells in the same 
columns are moved up or the cells on the right of the 
deleted cells in the same rows are moved left. 

After applying a set of the above high-level operations, we 
try to find an optimal solution which can align two worksheets, 
and further compare worksheets and their related spreadsheets. 
However, enumerating all possible worksheet mutation 
solutions is very time-consuming. Thus, we plan to find out 
some heuristic rules to reduce the number of potential 
worksheet mutation solutions and find an optimal solution 
quickly. 

D. RQ4: How can we detect the introduced faults during 

spreadsheet evolution? 

During spreadsheet evolution, various changes may be 
introduced into spreadsheets. Improper changes may introduce 
faults in spreadsheets. Usually, the inconsistencies among 

different versions of a spreadsheet may indicate faults. However, 
not all inconsistences indicated faults. For example, a cell with a 
formula SUM(A1:A10) can be changed into SUM(A1:A11), 
when a new row is inserted before row 5. Although the cell’s 
formula changes, it is correct. Thus, we plan to figure out a set 
of rules about which inconsistencies are wrong or correct. We 
further plan to figure out possible fixing suggestions from 
multiple other versions. 

IV. RELATED WORK 

Spreadsheet corpora: The most widely used spreadsheet 
corpus is EUSES [25], containing 4,037 spreadsheets extracted 
from Internet. Enron [27], the first industrial spreadsheet corpus, 
contains more than 15,000 spreadsheet extracted from the Enron 
email archive [24]. FUSE [26] is the biggest spreadsheet corpus, 
containing 249,376 spreadsheets extracted from over 26 billion 
pages [28]. None of three spreadsheet corpora contains version 
information. In other words, their spreadsheets are independent 
and the relationships between them are missing. VEnron [22] is 
the first versioned spreadsheet corpus we built manually, 
containing 360 evolution groups and 7,294 spreadsheets. We 
proposed a content-based algorithm to automate it and built a 
much greater spreadsheet corpus than VEnron. 

Spreadsheet evolution: Since the spreadsheet version 
information is missing, few work focus on spreadsheet evolution. 
The only one work we can find is carried out an evolution study 
on 54 pairs of spreadsheets [16]. However, the used corpus is not 
publicly available. The versioned spreadsheet corpus we built is 
publicly available. Based on this corpus, we carry out an 
empirical study on the usage of templates. We believe this 
corpus can be used to do more interesting research work. 

Spreadsheet comparison: Some spreadsheet comparison 
techniques and tools have been proposed. SheetDiff [29] first 
detects the cell changes, and then optimizes cell changes into 
higher-level changes. DiffEngineX [20] and Synkronizer [21] 
are two commercial tools that can be used to compare and 
highlight the differences between two spreadsheets. However, 
the precision of those existing tools and techniques is not 
satisfying, especially in detecting high-level changes. In this 
proposal, we plan to propose a greedy algorithm to identify the 
high-level changes, then identify the changes in cell level by 
cell-by-cell comparison. 

V. CONCLUSION  

This paper is motivated by understanding the spreadsheet 
evolution in practice. We firstly propose two approaches to build 
the first versioned spreadsheet corpus, VEnron [22][23]. Based 
on this built corpus, we carry out an empirical study on the usage 
of templates to investigate how spreadsheets evolve. To make it 
easy to carry out further spreadsheet evolution related research, 
we plan to propose an algorithm to compare two spreadsheets 
accurately. We also plan to develop approaches to detect faults 
during evolution, and thus improve the quality of spreadsheets. 
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