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ABSTRACT 
Spreadsheets are widely used in various business tasks. Spread-
sheet users may put similar data and computations by repeating a 
block of cells (a unit) in their spreadsheets. We name the unit and 
all its expanding ones as an expandable group. All units in an ex-
pandable group share the same or similar formats and semantics. 
As a data storage and management tool, expandable groups repre-
sent the fundamental structure in spreadsheets. However, existing 
spreadsheet systems do not recognize any expandable groups. 
Therefore, other spreadsheet analysis tools, e.g., data integration 
and fault detection, cannot utilize this structure of expandable 
groups to perform precise analysis. 

In this paper, we propose ExpCheck to automatically extract ex-
pandable groups in spreadsheets. We observe that continuous 
units that share the similar formats and semantics are likely to be 
an expandable group. Inspired by this, we inspect the format of 
each cell and its corresponding semantics, and further classify 
them into expandable groups according to their similarity. We 
evaluate ExpCheck on 120 spreadsheets randomly sampled from 
the EUSES and VEnron corpora. The experimental results show 
that ExpCheck is effective. ExpCheck successfully detect expanda-
ble groups with F1-measure of 73.1%, significantly outperforming 
the state-of-the-art techniques (F1-measure of 13.3%). 
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• Applied computing → Spreadsheets • Software and its engi-
neering → Software testing and debugging 
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1 INTRODUCTION 
Spreadsheets have been widely used for various business tasks, in-
cluding data management, decision support, financial reporting, 
and so on. It was estimated that there were over 55 million users 
in the United State working with spreadsheets in 2012 [28] and 50-
80% of businesses use spreadsheets [30]. 

In spreadsheet systems, data and computations are organized 
into a two-dimensional structure. Spreadsheet systems usually 
provide great flexibility in editing spreadsheets, and various 
spreadsheet structures may be created by spreadsheet users. Fur-
thermore, many spreadsheets are designed to be interpreted by hu-
man, and have flexible structures. Thus, these spreadsheets often 
cannot be consumed by other spreadsheet analysis tools, e.g., com-
plex data analysis, visualization, and fault detection [27]. For ex-
ample, Power BI [31] mainly works on data with clearly defined 
schemas, such as database tables. However, spreadsheet data are 
often in more flexible forms without a schema specified. Figure 1 
shows a typical spreadsheet excerpt extracted from the VEnron 
corpus [13]. This spreadsheet cannot be simply treated as relational 
data. Thus, it cannot be directly consumed by relational-data-based 
analysis tools, unless we identify its structure, such as the title hi-
erarchy (rows 1-3) and repeating structure (e.g., cells [A2:D31] and 
[E2:H31], cells [A4:L4] and [A5:L5]), and then transform the data 
into the canonical form of relational data. Therefore, it is important 
to understand the structure of spreadsheets. 

In spreadsheets, users usually put similar data and computa-
tions by repeating a block of cells (a unit). For example, in Figure 1, 
each of rows 4-27 represents the data for an hour. So, each of these 
rows forms a unit, while the units in rows 5-27 repeat the same 
structure of the unit in row 4. On the other hand, cells [A2:D31] 
form a unit and represent the data for New York. Similarly, cells 
[E2:H31] form another unit and represent the data for Chicago. 
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These two units are repeated. We name a unit and all its repeating 
units as an expandable group. Expandable groups are the key and 
fundamental structure to organize and manage data and computa-
tions in spreadsheets. The structure of expandable groups can help 
transform non-relational data in spreadsheets into relational data, 
as well as detect spreadsheet faults in expandable groups (more de-
tails in Section 2). However, once a spreadsheet is created by users, 
there is not any clue stored in the spreadsheet to indicate which 
cells can form an expandable group. 

In an expandable group, e.g., [A4:L4]-[A27:L27] in Figure 1, all 
units, share the same / similar formats and semantics at their cor-
responding cells. For example, the corresponding cells in units 
[A4:L4] and [A5:L5] share the similar formats and semantics, alt-
hough their contents look different. (1) Some corresponding cells 
(e.g., A4 and A5) are both index numbers; some corresponding cells 
(e.g., B4 and B5) are both input cells; and some corresponding cells 
(e.g., L4 and L5) prescribe the same formula pattern (as shown in 
Figure 2). (2) All corresponding cells have the same or similar head-
ers. For example, cell A4 has the first-level header “Hour” and the 
second-level header “New York”, and cell E4 has the first-level 
header “Hour” and the second-level header “Chicago”. Although 
the second-level headers of cells A4 and E4 are different, they have 
the similar semantics, since “New York” and “Chicago” are two cit-
ies in US and belong to the same category. (3) All corresponding 
cells share the similar formats. For example, cells G4 and G5 have 
the “$” symbol that represents US dollar. 

In this paper, we focus on automatically identifying expandable 
groups in spreadsheets. The key challenge is about how to deter-
mine which cells can form expandable groups. Our tool, ExpCheck, 
works based on two observations: (1) The corresponding cells in 
each unit of an expandable group usually share common features, 
e.g., cell type, data format, and formula pattern. (2) For the corre-
sponding rows / columns in each unit of an expandable group, their 
headers share the same or similar semantics. For the first observa-
tion, we extract various format features, and compare them. For 
the second observation, we extract headers of a table, and compare 
their semantic similarity based on Word2Vec [26]. 

We implement ExpCheck as a prototype tool and evaluate its 
performance using the EUSES [16] and VEnron [13] corpora, 

which are two of the most widely-used corpora for spreadsheet re-
search. The experimental results show that ExpCheck can detect 
expandable groups effectively, with a precision of 69.3%, recall of 
77.3%, and F1-measure of 73.1%. As a comparison, Abraham’s 
spreadsheet template inference approach [2], which also infers ex-
pandable groups, can only detect expandable groups with a preci-
sion of 25.7%, recall of 8.9%, and F1-measure of 13.3%. This result 
shows that ExpCheck significantly outperforms existing ap-
proaches by 59.8% in F1-measure. Such a big improvement is criti-
cal to effectively analyze spreadsheet structure. 

ExpCheck substantially differs from expandable group analysis 
in Abraham’s spreadsheet template inference approach [2]. Their 
work considers two units as expandable only when their corre-
sponding cells share the same formula patterns and types. Thus, it 
may miss some expandable groups when they do not have formu-
las or detect incomplete expandable groups when some formulas 
are missing. For example, their work considers that units [A4:L4]-
[A24:L24] form an expandable group due to cells L4:L24 share the 
same formula pattern in the R1C1 style (shown in Figure 2). Thus, 
three units [A25:L25]-[A27:L27] are not considered as parts of an 
expandable group. Instead, ExpCheck detects expandable groups 
by inspecting the format and semantic similarity among units. As 
such, ExpCheck can detect the expandable group [A4:L4]-
[A27:L27]. ExpCheck also differs from other spreadsheet structure 
analysis tools [8][10][11][12] in the types of detected structures. 
Unlike ExpCheck, AmCheck/CACheck [11][12] and CUSTODES [8] 
aggregate cells into clusters based on their formula similarity in a 
row or column. For example, AmCheck/CACheck aggregate cells 
[L4:L27] into a cluster, and CUSTODES can further aggregates cells 
B31, D31, F31, H31, J31, L31 into a cluster. TableCheck [10] lever-
ages the header information to detect table clones, in which corre-
sponding cells are labelled by the same headers. However, all these 
approaches cannot present the repeating structure of expandable 
groups. Thus, they cannot work on expandable group detection. 

In summary, this paper makes the following contributions. 
• We propose a novel approach, ExpCheck, to detect 

expandable groups by inspecting the format and semantic 
similarity among a block of cells. 

• We implement and evaluate ExpCheck on 120 real-life 
spreadsheets, randomly sampled from the EUSES and VEnron 
corpora. The experimental results show that ExpCheck can 
detect expandable groups effectively, and significantly out-
performs the state-of-the-art techniques. 

2 MOTIVATION AND OVERVIEW 
In this section, we explain the key concept of expandable groups, 
and discuss the importance of expandable group identification. Fi-
nally, we briefly introduce how to detect expandable groups. 

2.1 Expandable Groups 
The concept of expandable groups was first introduced as the core 
component in ViSTL [15], which is a formal language to model 
spreadsheet tables. To ease presentation, we use the spreadsheet 
excerpt in Figure 1 as an illustrative example, which is extracted 
from the VEnron corpus [13] and performs the balancing analysis 

 

Figure 1: A motivating spreadsheet excerpt extracted from 
VEnron [13]. In this excerpt, three units [A2:D31], [E2:H31] 
and [I2:L31] form an expandable group, and 24 units 
[A4:L4]-[A27:L27] form an expandable group. Note that, 
rows 9-22 are hidden due to space limitation. 
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for three cities, i.e., New York, Chicago and Atlanta. Formally, we 
describe expandable groups as follows. 

Definition 1: An expandable group is a triple {orient, unit, end}, 
where, orient is the direction in which the group expands, unit is a 
rectangular area of cells and represents the first block of the group, 
and end is the boundary of the group. It means that, unit is ex-
panded along the orient to the end. In an expandable group, the 
corresponding cells among all its units prescribe common formats 
and semantics. 

Consider the spreadsheet excerpt in Figure 1. Cells [A2:D31] as 
the first unit, horizontally expand to column L, and form an ex-
pandable group {hex, [A2:D31], L}, in which hex represents that this 
group is horizontally expandable, and the second element [A2:D31] 
is the first unit of the expandable group, and L is the last column 
of the expandable group. Note that, although unit [A2:D31] repre-
sents the data for New York and unit [E2:H31] represents the data 
for Chicago, they only differ in the city names, and their corre-
sponding cells share the same / similar format and semantics: (1) 
Formula cells in the corresponding cells among units often have 
the same formula pattern in the R1C1 style1, e.g., cells B29:B31 and 
F29:F31 in Figure 2. (2) The corresponding cells among units often 
have the same format, e.g., cells C6:C8 and G6:G8 in Figure 1 use 
the same data format, which starts with a symbol “$”. 

Based on the expanding direction, expandable groups can be 
further classified into two categories: vex group and hex group. 

vex group (Vertically expandable group): A vex group ex-
pands its unit in the vertical direction. We represent it as {vex, unit, 
end}. In Figure 1, cells [A4:L4], as the first unit, expand to row 27, 
and form a vertically expandable group {vex, [A4:L4], 27}. 

hex group (Horizontally expandable group): A hex group 
expands its unit in the horizontal direction. We represent it as {hex, 
unit, end}. In Figure 1, cells [A2:D31] as the first unit, expand to 
column L, and form a horizontally expandable group {hex, 
[A2:D31], L}. 

Expandable groups represent the basic and common structure 
of a spreadsheet table. To better understand the table structure, we 

need to minimize it. Thus, for an expandable group, it should sat-
isfy the following conditions. (1) Its basic unit does not contain any 
expandable groups. (2) All its units cannot be included by other 
expandable groups. For example, {vex, [A4:L4], 26} satisfies Defini-
tion 1, but we do not consider it as an expandable group, since it 
should contain row 27. {vex, [A4:L5], 27} satisfies Definition 1, but 
we do not consider it as an expandable group, since its basic unit 
[A4:L5] contains a vex group {vex, [A4:L4], 5}. We require that all 
expandable groups satisfy the above conditions. Note that, a cell 
can belong to a vex group and a hex group in the same time. E.g., 
cell A4 belongs to {vex, [A4:L4], 27} and {hex, [A2:D31], L}. 

2.2 Potential Applications of Expandable Groups 
The structure of expandable groups can be further applied on im-
portant spreadsheet analysis scenarios, e.g., fault detection, and 
spreadsheet data transformation. This motivates us to effectively 
detect expandable groups in spreadsheets. We explain these poten-
tial application scenarios in the following. 

Faults related to expandable groups. In an expandable 
group, the corresponding cells among units usually share the same 
formats and semantics. The inconsistencies among the correspond-
ing cells usually indicate faults. The above example contains two 
different types of faults. (1) Missing formulas. The missing for-
mula occurs when a cell is supposed to contain a formula, but it 
does not. For the expandable group {vex, [A4:L4], 27}, cells [L4:L27] 
should follow the same computational semantics, i.e., they have the 
same formula pattern as shown in Figure 2. However, cells 
[L25:L27] do not have formulas. In the preparation of this spread-
sheet, users may fill the data directly other than their formulas. We 
can see that cells [L25:L27] should have formulas. According to the 
expandable group {hex, [A2:D31], L}, we can see that cells [D4:D27] 

 
Figure 2: The spreadsheet excerpt in Figure 1 is now given in the R1C1 style1. In the R1C1 style, the corresponding cells in 
an expandable group usually share the same formula pattern, e.g., L4 vs. L5, and B31 vs. F31. 

 

Figure 3: The ideal relational table for the spreadsheet ex-
cerpt shown in Figure 1. Note that, only the data in rows 4-6 
of Figure 1 are shown due to space limitation. 

1In spreadsheets, a cell reference can be represented in two built-in styles: 
A1 and R1C1. In the A1 style, a cell at the r-th row and c-th column is de-
noted as cr in the relative reference (e.g., A4), and $c$r in the absolute ref-
erence (e.g., $A$4). In the R1C1 style, a cell at x rows below and y columns 
right to the current cell is denoted as R[x]C[y] in the relative reference, and 
a cell at the x-th row and y-th column is notated as RxCy in the absolute 
reference. 

A B C HFED G I J K L
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and [H4:H27] also suffer from missing formulas. (2) Wrong data 
formats. The wrong data format occurs when a cell is supposed to 
have certain format, but it does not. For example, according to the 
expandable group {hex, [A2:D31], L} in Figure 1, we can see that 
cells [C4:C5] should have the same format with cells [G4:G5] and 
[K4:K5], which starts with a symbol “$”. 

Data transformation between spreadsheets and relational 
data. Spreadsheet data are usually not organized in a relational 
way. The spreadsheet excerpt in Figure 1 shows a representative 
non-relational spreadsheet. This kind of non-relational data cannot 
be easily consumed by other data analysis tools, e.g., Power BI [31] 
and Insights in Excel [32]. However, once we can understand these 
expandable groups, we can easily transform the spreadsheet into 
relational data, as shown in Figure 3. This new relational data has 
the same semantics with the original data in Figure 1. However, it 
can be easily consumed by other data analysis tools. This also high-
lights the importance of expandable group detection. 

2.3 ExpCheck Overview 
Detecting expandable groups needs to address three main chal-
lenges. The first challenge is how to judge the boundary of the first 
unit of an expandable group, e.g., cells [A2:D31] in Figure 1. Second, 
how can we determine the set of features for automated expanda-
ble group detection? Different users may have their own styles to 
tabulate their spreadsheets. Third, in which situation can two con-
tinuous units be expanded? Some corresponding cells may have 
different formats, e.g., cells C5 and C6 in Figure 1. Note that all 
corresponding cells with the same formats do not necessarily sug-
gest that they are expandable. Even we assume that cells [C3:C27] 
and [D3:D27] had the same format (i.e., if cells [C6:C8] do not start 
with a symbol “$”), they do not form an expandable group, since 
they have different semantics. 

For the first challenge, we observe that in an expandable group, 
its units usually occupy a whole row / column of a table. For ex-
ample, in Figure 1 we consider cells [A4:L4] as a potential unit. We 
can further generate larger unit by considering multiple rows / col-
umns into a unit. For the second challenge, although different users 
may use different styles, units in an expandable group usually 
share the same formats. In this case, we define a set of features for 
each cell, and then validate whether two units share the same fea-
tures. For the third challenge, we do not require that all corre-
sponding cells must share the same formats and semantics. Our 
feature model in Section 3.3 can tolerate some differences. Further, 
we need to check the semantics of cell headers, and check whether 
corresponding headers share the similar semantics and belong to 
the same category. For example, in Figure 1, the headers “New 
York”, “Chicago” and “Atlanta” are all US cities and belong to the 
same category. We adopt Word2Vec [26] to calculate the semantic 
similarity among headers. High similarity of two headers indicates 
that they should belong to the same category. 

3 EXPANDABLE GROUP IDENTIFICATION 
Given a spreadsheet, ExpCheck analyzes it and reports all detected 
expandable groups. ExpCheck works in three steps First, it classi-
fies cells into four types, i.e., data, formula, label and empty. Based 

on cell types, it further identifies tables in the spreadsheet, which 
contain semantically related data and computations (Section 3.1). 
Second, for each table, it extracts the first few rows / columns, 
which can be used as headers to describe the data in the table (Sec-
tion 3.2). Third, it extracts expandable groups based on format and 
semantic features (Section 3.3). 

3.1 Table Identification 
We observe that spreadsheet users may put some unrelated tables 
into a worksheet (a spreadsheet may contain multiple worksheets). 
An expandable group usually lies into one table, and tables can be 
used as the boundary of expandable groups. Therefore, we need to 
identify tables first. In spreadsheets, different tables are usually cir-
cumscribed by empty cells. Thus, we first determine each cell’s 
type. Then, we identify tables based on cell types. 

3.1.1 Cell Classification. We follow the approaches described by 
Hermans et al. [19] and Abraham et al. [1] to classify cells into four 
types: (1) data cells: numerical cells with plain values; (2) formula 
cells: cells that contain formulas; (3) label cells: cells that contain 
strings; and (4) empty cells. 

Our cell classification algorithm works as follows. First, all nu-
merical cells with formulas are marked as formula cells. Second, all 
numerical cells without formulas are marked as data cells. Third, 
all non-formula cells referenced by formula cells are marked as 
data cells, no matter whether they are empty or not. Fourth, for all 
remaining cells, they are classified as label cells when not empty, 
and empty cells, otherwise. 

Take the spreadsheet excerpt in Figure 1 as an example. Our cell 
classification marks cells [A4:K27] and [L25:L27] as data cells, cells 
[L4:L24] and other cells with formulas as formula cells. Cells 
[A28:L28], [C29:C31], [G29:G31] and [K29:K31] are marked as 
empty cells. All cells with strings are marked as label cells, e.g., A3. 

3.1.2 Extracting Tables. In spreadsheets, a table represent a cell 
area, in which related information is put together. Tables are 
usually connected cell areas divided by empty cells. A connected 
cell area is defined as a rectangle containing data, label and formula 
cells [1][19]. In a connected cell area, two cells are connected if 
they can touch horizontally, vertically or diagonally. The basic 
algorithm to find connected areas is as follows. (1) It finds the left-
most upper-most non-empty cell that is not contained by any cell 
area yet. The cell is considered as the initial cell of a new cell area. 
(2) This cell area is expanded by checking all cells that are 
connected to it in all directions. If one of the cells are not empty, 
the cell area is expanded to include this cell. (3) When all cells 
connected to the cell area are empty, we get a new cell area. Simply, 
existing work [1][19] consider these connected cell area as tables. 

However, the above algorithm usually obtains only part of a 
table, rather than a complete table. Take the spreadsheet excerpt in 
Figure 1 as an example. This spreadsheet excerpt only includes one 
table [A1:L31]. Due to empty cells in this table, e.g., empty cells 
[A28:L28], the above algorithm divides it into 5 connected cell ar-
eas, i.e., [A1:L27], [A29:B31], [D29:F31], [H29:J31] and [L29:L31]. 
We can see that the table [A1:L31] is divided into 5 pieces. Thus, 
the above table identification approach cannot obtain complete ta-
bles. In our investigation on the spreadsheets from the EUSES and 
Enron corpora, such case is very common. It is because a table 
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usually has several pieces, and spreadsheet users are used to put-
ting empty cells to separate them. 

To tackle the issues caused by empty cells, we further design 
two new strategies as follows to identify tables. 

a) The borders of two cells are indicators about whether the two 
cells are connected. Consider the spreadsheet excerpt in Figure 1. 
The table [A1:L31] is surrounded by the bold border, which is dif-
ferent from the default border in the table. Thus, when we check 
whether cells L27 and L28 are connected, we check whether these 
two cells have the same bold border in the right. If they do, we 
consider them as connected. 

b) Although some tables are separated into pieces by empty 
cells, they may share the same headers, and thus they should be 
put into one table. For example, two pieces [A1:L27] and [A29:L31] 
are separated by row 28. The second piece [A29:L31] shares the 
same column headers as [A1:L27], i.e., rows 1-3. Thus, these two 
pieces should be combined into one. If cells [A29:L31] have their 
own column headers, we will not combine them into one. 

We use the example in Figure 1 to show how to design the sec-
ond strategy. After we obtain the connected cell area [A1:L27] 
based on the basic table identification algorithm, we skip row 28 in 
which all cells are empty and obtain a new cell area initialized as 
[A29:L29]. This initialized cell area has the same start and end col-
umns with [A1:A27]. We then use the basic table identification al-
gorithm to expand this cell area, and obtain a new cell area 
[A29:L31]. We further check whether this cell area [A29:L31] has 
column headers based on the header inference in Section 3.2. In 
this example, cell area [A29:L31] does not have column headers 
and has the same width as [A1:L27]. Therefore, we combine it into 
the cell area [A1:A27]. Otherwise, we do not combine these two 
cell areas. We can also check neighboring cells in the right, which 
is similar to checking neighboring cells in the bottom. 

3.2 Header Identification 
Although spreadsheet systems allow users to put table headers in 
any place, by investigating amounts of spreadsheets in the EUSES 
and Enron corpora, we observe that, in most cases, spreadsheet us-
ers put the headers in the first few rows / columns of a table. Figure 
4 shows a typical example in which the first two rows are used as 
column headers of the table. Note that, although cells [A3:A8] are 
label ones, they are not considered as row headers of the table. 

The headers of a table are usually used to describe the data in 
the table. We have two observations that can help locate headers 
for a table. (1) The headers of a table can usually be found on the 
left or top of a table as illustrated in Figure 4. Especially, we assume 
the headers are usually located in the first few (e.g., 4) rows / col-
umns in a table. (2) Spreadsheet users usually use different formats 
for headers and data region. For example, the first row has grey 
background, and the first two rows have bold fonts in Figure 4. 
They are different from the data region, i.e., cells [A3:G8]. 

Based on the above observations, we design a novel approach 
to detect headers in a table. We assume that, for a table, at most 
max_header rows and columns can be used as headers. Based on 
our inspection on the EUSES and Enron corpora, we set 
max_header to 4. This can cover almost all cases. Our header infer-
ence approach works as follows. 

a) Type-based header inference. To infer the column headers 
of a table, we start from the first row of the table, and check 
whether the checked row can be used as column headers, until we 
have checked max_header rows, or the checked row is not consid-
ered as column headers. If the checked row contains at least one 
label cell, and all other cells in it are empty, we consider it as col-
umn headers of the table. It is similar for row header inference. 
Based on this rule, we obtain that the first 2 columns (A & B) in 
Figure 4 are row headers. There is no column header, since the date 
in the first row is consider as data, not a label. 

b) Format-based header inference. As discussed earlier, 
headers usually have different format from the data region, and the 
data region usually have the same format. Based on this observa-
tion, we use the following rule to detect headers: For any given 
three continuous rows or columns (x1, x2 and x3), if x1 has differ-
ent format from x2, and x2 has the same format with x3, we con-
sider x1 and rows / columns before x1 as headers, x2 and x3 as data 
region. We check this rule from the first row / column of the table, 
until we find three rows / columns that satisfy the above rule, or 
max_header rows / columns are reached. For example, in Figure 4, 
row 2 has different format from row 3, and row 3 & row 4 have the 
same format. Thus, rows 1 and 2 are considered as column headers. 
Here, we use the format features discussed in Section 3.3.2 to cal-
culate whether 2 rows / columns have the same format. 

Note that, any of the above two strategies may fail in some cases. 
For the first strategy, it does not work when there are data cells in 
the headers, e.g., the date in row 1 in Figure 4. For the second strat-
egy, if the first two data rows (e.g., rows 3 and 4) have slightly dif-
ferent format, it may fail. Thus, we combine the results from above 
strategies, and consider all detected headers from these two strat-
egies as headers. For the table in Figure 4, we get the first two rows 
as column headers, and first two columns as row headers. 

c) Mixed header inference. The above process may wrongly 
judge situations. For example, in Figure 4, cells [A3:B8] are consid-
ered as row headers. In fact, they are data. In this case, we use the 
third strategy to further refine headers. As discussed earlier, 
header cells usually have different format from data cells. If we ob-
serve that the cells in headers have the same format as data cells, 
it should be considered as data, rather than headers. For example, 
in Figure 4, cells [B3:B8] have the same format with the data cells 
[C3:C8]. Thus, we consider [B3:B8] as data, rather than headers. 
Through this strategy, we finally obtain that, in Figure 4, the first 
two rows are used as column headers, and there are no row headers. 

  

Figure 4: A spreadsheet excerpt that computes the working 
hours in April 2018. In this excerpt, row 2 is the first-level 
column headers, and row 1 is the second-level column head-
ers. Cells [A3:A8] are data, and not considered as headers. 
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After the above three strategies, we may obtain multiple rows 
that are used as column headers. We consider the row nearest to 
data area as the first-level column headers, and the row next to the 
first-level column headers as the second-level column headers, and 
so on. It is similar for row headers. Take the spreadsheet in Figure 
4 as an example, row 2 is considered as the first-level column head-
ers, and row 1 is considered as the second-level column headers. 

Note that our above header identification algorithm differs 
from previous approaches [1][19]. First, previous approaches 
mainly use the idea in the first strategy. Thus, they suffer from the 
issues we discuss earlier. For example, they consider cell A3 as the 
row header of cell C3. Worse, they consider cell B3 as the header 
of cell C3, too. Second, they try to find the headers for each indi-
vidual cell, and do not consider all data cells as a whole. Thus, the 
inferred headers may locate in different rows / columns. Our ap-
proach avoids these issues. 

3.3 Expandable Group Detection Algorithm 
Our expandable group detection algorithm is inspired by two key 
observations: (1) For each unit in an expandable group, their cor-
responding cells share the same or similar formats. (2) For each 
unit in an expandable group, their corresponding header cells 
share the same or similar semantics. Thus, in the following, we first 
explain how to compare two corresponding columns among two 
units in a hex group, and then explain our expandable group de-
tection algorithm in detail. Note that, for hex and vex groups, they 
have the similar detection algorithm. The only difference between 
hex and vex group detection is their directions. Thus, for clarity, 
we only use hex group detection to explain our algorithm. 

3.3.1 Expandable Group Detection. ExpCheck’s expandable 
group detection algorithm takes a table as input and returns all 
expandable groups in the table. Algorithm 1 shows how to detect 
hex groups in a table. The algorithm works as follows. (1) It first 
detects hex groups in which its unit only have one column (Lines 
2-3). (2) For the table, it starts to check possible unit from its first 
column and generates a unit for the first column (Lines 4-6). (3) It 
tries to horizontally expand the unit to the right. Each time, it 
generates a candidate unit2 that has the same size as unit, and 
checks whether two units (unit and unit2) have similar formats and 
semantics. If yes, unit can be horizontally expanded to the right. 
Otherwise, unit cannot be further expanded to the right (Lines 7-
16). (4) Once we find a unit can be horizontally expanded at least 
once, we find a hex group, and add it into groups (Lines 17-23). (5) 
The algorithm continues to find hex group with a unit of width 
columns (Lines 5-24). (6) Once all potential units with width 
columns have been checked, we check whether all detected hex 
groups have covered most columns. If yes, we do not search for 
hex groups with larger width. Otherwise, we increase width, and 
try to find new hex groups (Lines 25-27). 

Note that, when there are multiple-level column headers, we 
generate the unit from the first-level column headers first, and then 
try to include the higher-level column headers (Line 33). We take 
the spreadsheet excerpt in Figure 1 as an example to further ex-
plain the above algorithm. For this example, the input table is 
[A1:L31]. Since there are three levels of column headers (rows 1-
3), we first consider the first-level column headers (row 3) to be 

included in unit. (1) When width is 1, it starts to check whether 
units [A3:A31] and [B3:B31] are similar. For this case, they are not 
similar (we will explain why in Section 3.3.2). Thus, we start to 
check units [B3:B31] and [C3:C31], and so on. Finally, we cannot 
detect any hex group when width is 1. Thus, we gradually increase 
width to 2, 3, and 4. Finally, when width is 4, we find units [A3:D31], 
[E3:H31] and [I3:L31] are similar. Thus, we get a hex group {hex, 
[A3:D31], L}. For now, we find this hex group have covered all col-
umns in table [A1:A31], thus, we do not further increase width to 
5. After this, we further check whether the second-level column 
headers (row 2) can be included into hex groups. Since cells [A2:D2] 
is a merged cell, we directly set width to 4, and check whether 
[A2:D31] can be expandable. In this case, we obtain a new hex 
group {hex, [A2:D31], L}. Since this new hex group covers {hex, 
[A3:D31], L}, we only keep this new hex group. Next, we try to 
include the third-level column headers (row 1). But we cannot find 
any hex group in this case. Finally, our algorithm returns {hex, 
[A2:D31], L}. 

3.3.2 Similarity among Two Units. The key part of our 
expandable group detection is how to inspect whether two units 
share the similar formats and semantics. Algorithm 2 shows how 
to judge whether two units have similar semantics and formats in 
a hex group. The algorithm takes two units that potentially belong 
to a hex group as input. For each pair of corresponding columns of 

_____________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 1. hex group detection algorithm. 
______________________________________________________________________________________________________________________________________________________________________________________________________ 
Input: table (spreadsheet table), startRow (the first row that 

can be included in a hex group) 

Output: groups (all detected hex groups). 

 1:  groups = EMPTY; 

 2:  width = 1; // Number of columns in the unit 

 3:  while width < table.colNum / 2 do 

 4:    startCol = table.firstCol; // Start from first column 

 5:    while startCol < table.lastCol do 

 6:      unit = generateUnit(startCol, witdth, 0); 

 7:      repeat = 1; // Number of expanding units 

 8:      while TRUE do 

 9:        // Generate the potential expanding unit 

10:        unit2 = generateUnit(startCol, width, repeat); 

11:        if (unit2 == NULL || !isSimilar(unit, unit2)) then 

12:          break; 

13:        else 

14:          repeat++; 

15:        end if 

16:      end while 

17:      if (repeat > 1) then  // Find a hex group 

18:        end = startCol + repeat * width - 1; 

19:        groups.add({hex, unit, end}); 

20:        startCol += repeat * width; 

21:      else 

22:        startCol ++ 

23:      end if 

24:    end while 

25:    if terminate(groups) then 

26:      break; 

27     else 

28:      width++; 

29:    end if 

30:  end while 

31:  return groups; 

32:     

33:  // Generate a potential expanding unit 

34:  method generateUnit(startCol, width, repeat) 

35:    unit.firstRow = startRow; 

36:    unit.lastRow = table.lastRow; 

37:    unit.firstCol = startCol + repeat * width; 

38:    unit.lastCol = startCol + (repeat + 1) * width; 

39:    if (unit.lastCol > table.lastCol) then 

40:      return NULL;    // No unit generated 

41:    end if 

42:    return unit; 

43:  end method 
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the two units, it compares each pair of cells in them (Lines 3-14). If 
the cells belong to the column headers, we need to compare 
whether they have the similar semantics (Lines 6-10). If their 
semantics are different, they cannot be considered as similar (Lines 
7-9). For all the cells, we compare whether they have the same 
formats (Lines 11-13). To tolerance the possible difference in an 
expandable group, we require that a fixed percent 
(min_similar_cells) of cells have the same formats. In our 
experiment, we set min_similar_cells as 60%, which indicates that 
most cells have the same formats. 

The features used in ExpCheck are collected from existing lit-
eratures [6][7][25]. If two cells do not have the same value for a 
feature, we consider them as dissimilar. Note that, if a cell is empty, 
we cannot obtain its features. In this case, we assume that the 
empty cell can have any kind of features and is similar to other 
non-empty cells. Thus, we can ignore the noise caused by empty 
cells. We divide all features into 4 categories as follows. 

a) Header: A header presents the semantic information of a 
groups of cells. For example, in Figure 1, “New York” shows the 
property of cells [A3:D31], and “Hour” in cell A3 shows cells 
[A4:A27] are 24 hours. For any corresponding headers in an ex-
pandable group, they should have similar semantics and can be cat-
egorized into the same category. By calculating the semantic simi-
larity of two headers based on Word2Vec [26], we judge whether 
two headers can belong to the same category. 

Generally, a header is a word or a short string. We use h1 and 
h2 to denote two headers, and function word_similarity to denote 
the cosine similarity among two words in Word2Vec. Thus, the 
similarity of two headers can be calculated as follows: 

ℎ1 =< 𝑤1𝑖 , 𝑤12, … 𝑤1𝑚 >, ℎ2 =< 𝑤2𝑖 , 𝑤22, … 𝑤2𝑛 > 

𝑠𝑖𝑚1 =  ∑ max
1≤𝑗≤𝑛

(𝑤𝑜𝑟𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤1𝑖 , 𝑤2𝑗))

𝑖=𝑚

𝑖=1

 

𝑠𝑖𝑚2 =  ∑ max
1≤𝑗≤𝑚

(𝑤𝑜𝑟𝑑_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑤2𝑖 , 𝑤1𝑗)

𝑖=𝑛

𝑖=1

 

𝑠𝑖𝑚(ℎ1, ℎ2) =
𝑠𝑖𝑚1 + 𝑠𝑖𝑚2

𝑚 + 𝑛
 

When the similarity of two headers sim(h1, h2) exceeds a 
threshold (min_header_similarity), we consider that they are simi-
lar. To guarantee high accuracy in our approach, the threshold is 
set to strong similarity. In our experiment, we set min_header_sim-
ilarity as 0.3. 

b) Cell type: As discussed earlier, cells can be divided into four 
types: data, label, formula, and empty. For two cells, if one is label 
cell, and another is data or formula cell, we consider them as dis-
similar. For other cases, we consider them as similar. Thus, we can 
tolerate some inconsistent cases. For example, in Figure 1, we con-
sider cells D4 and L4 as similar, even though cell D4 does not have 
a formula. 

c) Cell formula: Formulas are a common feature to explain a 
cell’s computational semantics. For two formula cells, if they have 
the same formula pattern, i.e., they have the same formula in the 
R1C1 style, they are considered as similar, otherwise not. 

d) Format: The formats of a cell present how a cell is shown in 
a table. Ideally, the corresponding cells in an expandable group 

should have consistent formats. The format features we use are as 
follows. 

• Merge. We record if a cell is merged, and its merged region, 
if any. For two cells, if they are both merged, and their merged 
regions have the same size, they are considered as similar. If 
they are not merged either, they are considered as similar, too. 
Otherwise, they are considered as dissimilar. 

• Fill color. We check whether two cells are filled by the same 
color or not. 

• Font. The font features describe whether two cells have the 
same font name, size, color, weight of bold, etc. It also records 
italic, underlines. If there is any difference among these fea-
tures, two cells are considered as dissimilar. 

• Data format. Data format presents how a data is shown. E.g., 
cells C6 and D6 are shown in different format in Figure 1. 

• Alignment. The type of horizontal and vertical alignment, 
and the number of indentations. 

4 IMPLEMENTATION 
This section briefly explains some necessary implementation de-
tails. Our ExpCheck uses the Apache POI library [33] to read Excel 
files. ExpCheck loads an Excel file, reads features in each cell, and 
analyzes all expandable groups in it. 

In order to calculate the similarity among words, we use pre-
trained Word2Vec model [34] published by Google [35]. This pre-
trained model contains 300-dimensional vectors for 3 million 
words and phrases, trained on Google News dataset (about 100 bil-
lion words). Since the words in the model are case-sensitive, we 
first retrieve a word from the model in a case-insensitive way, and 
then use the word to get the word’s vector. For phases, each word 
in a phase are connected by “_”. In this case, we first try to connect 
words in a header using “_”, and check whether the combination 
word exists in the pre-trained model. If yes, we consider the header 
as a phase, otherwise, we consider it as a sentence. For example, 
we first transform “New York” into “New_York”, and then check 
whether the model contain “New_York”. Since we find this new 
combined word, we consider it as a phase. 

_____________________________________________________________________________________________________________________________________________________________________________________________________ 

Algorithm 2. Similarity analysis among two units in hex groups. 
______________________________________________________________________________________________________________________________________________________________________________________________________ 
Input: unit1 and unit2 (two units have the same size and poten-

tially belong to the same expandable group). 

Output: TRUE or FALSE (whether two units are similar). 

 1:  for (col = 1; col <= unit1.colNum; col++) do 

 2:    simCell = 0; // Number of similar cells in column col 

 3:    for (row = 1; row <= unit1.rowNum; row++) do 

 4:      cell1 = unit1.getCell(row, col); 

 5:      cell2 = unit2.getCell(row, col); 

 6:      if (cell1 is a header) then 

 7:        if (!similarSemantic(cell1, cell2)) then 

 8:          return FALSE; 

 9:        end if 

10:      end if 

11:      if (sameFormat(cell1, cell2)) then 

12:        simCell++ 

13:      end if 

14:    end for 

15:    pert = simCell / unit1.rowNum; 

16:    if (pert < threshold) 

17:      return FALSE; 

18:    end if 

19:  end for 

20:  return TRUE; 



ASE’18, September 3-7, 2018, Montpellier, France Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei 
 

To transform a sentence into words, we use the special charac-
ters (e.g., white space, -, comma, colon, semicolon, and so on) to 
separate a sentence. Note that, all numbers in the sentence are con-
sidered as a unique word, and do not distinct their concrete values. 
Since, headers are usually words and short phrases, there are very 
few stop words (e.g., a, the) in them. Thus, we do not handle stop 
words in our tool. 

5 EVALUATION 
Our evaluation studies the following two research questions: 

RQ1: Can ExpCheck detect expandable groups precisely? Spe-
cifically, what are the precision, recall and F1-measure? 

RQ2: How is ExpCheck compared with existing techniques? 
To answer RQ1, we ran ExpCheck on 120 spreadsheets ran-

domly sampled from the EUSES [16] and VEnron [13] corpora, and 
checked their performance. To answer RQ2, we compared 
ExpCheck with the expandable group analysis approach proposed 
by Abraham et al. [2] in the detection of expandable groups. 

5.1 Experimental Subjects and Methodology 
We used spreadsheets from the EUSES and VEnron corpora to con-
duct our experiments. First, EUSES was created in 2005, and has 
been widely used by spreadsheet research [8][12][22]. Second, 
VEnron was created from Enron [17], and contains many versioned 
spreadsheets used in the Enron company. We used VEnron other 
than Enron as our subject, since Enron contains too many spread-
sheets with the same or similar structures. This may weaken the 
effectiveness of our evaluation. These two spreadsheets corpora 
have been the most widely used for spreadsheet research so far. 

Manually building ground truth for all expandable groups in the 
EUSES and VEnron spreadsheets is extremely difficult, as we are 
not the authors of these spreadsheets and we cannot find their cor-
responding authors, either. Thus, we randomly sampled 70 spread-
sheets from EUSES and 50 spreadsheets from VEnron. To make our 
experimental subjects accurate and representative for expandable 
group analysis, we built our ground truth by the following steps. 
(1) For each randomly sampled spreadsheet, we inspected each of 
its contained worksheets for expandable groups. (2) A spreadsheet 
may contain multiple worksheets that have the same or very simi-
lar structure. To guarantee the structure diversity of our experi-
mental subjects, for the worksheets with the same or very similar 
structure, we only randomly kept one of them. (3) For each remain-
ing worksheet that does not contain any expandable group or can-
not be fully understood by any one of us (two authors in this paper), 
we removed it from consideration. If no worksheet in a spreadsheet 
was left after the previous steps, we removed it from consideration. 
(4) We repeated the above sampling process until a fixed number 
of spreadsheets were sampled. 

Note that, sampling spreadsheets from VEnron is slightly dif-
ferent from that of EUSES. Since each evolution group in VEnron 
contains multiple versions of a spreadsheet, we only kept the first 
spreadsheet in each group before performing the above sampling 
steps. 

In our sampling process, we manually inspected the sampled 
spreadsheets, and tried our best to understand the semantics of the 

spreadsheets, and finally labelled all expandable groups in them. 
The ground truth was built carefully by cross-validating all ex-
pandable groups by two authors of this paper. Finally, we obtained 
313 expandable groups from 120 spreadsheets. Table 1 gives the 
statistics of our experimental subjects. As shown in the table, the 
experimental subjects are diverse: 70 EUSES spreadsheets cover 8 
categories and 50 spreadsheets come from VEnron. Among these 
313 expandable groups, 221 groups are vertically expandable ones 
(i.e., vex groups), and 92 groups are horizontal expandable ones (i.e., 
hex groups). We have made our experimental subjects available 
online for future research: http://www.tcse.cn/~wsdou/pro-
ject/ExpCheck. 

5.2 Evaluation Metrics 
We ran ExpCheck on these spreadsheets and checked its perfor-
mance. Expandable group detection can have three outcomes: (1) 
A detected expandable group is the same as one of expandable 
groups in the ground truth (TP). (2) A detected expandable group 
is not found in the ground truth (FP). (3) An expandable group in 
the ground truth is not detected (FN). To study the effectiveness of 
our expandable group detection approach and compare it with ex-
isting approaches, we use the following three metrics: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

5.3 Expandable Group Detection Results 
We ran ExpCheck on 120 spreadsheets sampled from the EUSES 
and VEnron corpora. Table 2 lists our expandable group detection 
results. It gives the numbers of detected expandable group in each 
category in EUSES and VEnron. For each kind of expandable 
groups, Table 2 lists the numbers of detected expandable groups 
(Detected) and the numbers of true expandable groups (True). 

In total, ExpCheck detects 349 expandable groups 
(ExpCheck/Total/Detected) and 242 (69.3%) expandable groups are 
true. We further evaluated the performance on vex groups 
(ExpCheck/vex) and hex groups (ExpCheck/hex), respectively. 
From Table 2, the precision for vex group detection is 80.1%, 
whereas the precision for hex group detection is 49.6%. We can see 

Table 1: Statistics of Our Experimental Subjects 

Corpus Category Spreadsheet Worksheet 
Expandable groups 
vex hex Total 

EUSES 

cs101 1 1 2 1 3 
database 11 12 19 8 27 
financial 10 10 12 5 17 
forms3 1 1 1 0 1 
grades 5 5 7 3 10 
homework 13 15 23 13 36 
inventory 17 17 36 5 41 
modeling 12 12 12 1 13 

VEnron  50 66 109 56 165 
Total  120 139 221 92 313 
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the precision for vex group detection is much better than that of 
hex group detection. 

ExpCheck misses 71 (313-242) expandable groups, and thus the 
recall for expandable group detection is 77.3%. We further analyzed 
the recalls for vex group detection and hex group detection, and 
they are 81.9% and 66.3%, respectively. Similarly, ExpCheck’s F1-
measure for expandable group detection, vex group detection and 
hex group detection is 73.1%, 81.0%, and 56.7%, respectively. We 
can see that vex group detection performs better than hex group 
detection. 

False positives of expandable group detection. ExpCheck 
wrongly detected 107 (349 － 242) expandable groups. We further 
investigated the causes for these 107 false positives. There are 3 
main reasons. (1) We use Word2Vec to compute the semantic sim-
ilarity between two headers. Although some headers with the sim-
ilar semantics (e.g., buy and sell), they are not expandable. In some 
other cases, spreadsheet users use some domain-specific words. 
Word2Vec cannot work in this situation. 54 false positives belong 
to the above case. (2) In an expandable group, some rows / columns 
use different styles, e.g., a row in vex group use different colors 
with others. In this case, ExpCheck divides it into multiple vex 
groups. 20 false positives belong to this case. (3) Our header infer-
ence is rule-based, and it cannot be applied on some specific styles 
of spreadsheets. Thus, we can obtain wrong headers. 26 false posi-
tives belong to this case. The remaining false positives are caused 
by various cases, e.g., wrongly identified table range. This indicates 
further study can improve expandable group detection from the 
above aspects. 

False negatives of expandable group detection. ExpCheck 
misses 71 (out of 313) expandable groups. The reasons for missed 
expandable group detection are the same with false positives of ex-
pandable group detection. 36 missed expandable groups belong to 
the semantic similarity issues among headers. 13 missed expanda-
ble groups belong to different formats in an expandable group. 12 
missed expandable groups belong to wrong header inference. The 
remaining groups are caused by various cases. 

Note that vex group detection performs much better than hex 
group detection. This is because vex groups usually do not have 
row headers (e.g., {vex, [A4:L4], 27} in Figure 1), whereas hex 
groups usually have column headers (e.g., {hex, [A2:D31], L} in Fig-
ure 1). The issues in semantic similarity of headers are the key 
cause to introduce false positives and false negatives. 

Based on the above results and analysis, we draw the following 
conclusion to RQ1: Our expandable group detection approach is ef-
fective. It can detect expandable group in a high precision and recall. 

5.4 Comparison with Existing Techniques 
To better evaluate the effectiveness of our ExpCheck in expandable 
group detection, we compared ExpCheck with the template infer-
ence approach for ViSTL (ViSTL for short) [2]. 

ViSTL mainly focuses on formula cells and cells’ types. First, 
ViSTL finds the repeating patterns of formula cells based on 
whether they have the same formula in the R1C1 style. Then, 
ViSTL checks if other corresponding cells follow the same types. 
However, ViSTL has a few drawbacks. (1) There must be formulas 
for expandable groups. However, this is not true. In our ground 
truth, many expandable groups do not have any formula. (2) All 
related cells should have formulas. Once some formulas are miss-
ing, the obtained expandable group will be incomplete. As dis-
cussed earlier, ViSTL will get a vex group {vex, [A4:L4], 24}. This 
group is incomplete. (3) ViSTL does not try to understand the real 
semantics, and thus can extract groups with unrelated semantics. 
(4) ViSTL does not check formats at all. Therefore, it may miss 
some expandable groups, and detects wrong expandable groups. 

We ran ViSTL on 120 spreadsheets and evaluated its perfor-
mance. The last columns in Table 2 shows the detected result for 
ViSTL. ViSTL detected 108 expandable groups, and only 28 are true. 
Thus, ViSTL achieved a precision of 25.7%, recall of 8.9%, and F1-
measure of 13.3%. Figure 5 shows the performance comparison be-
tween ExpCheck and ViSTL. We can see that ExpCheck performs 

Table 2: Expandable Detection Results of ExpCheck and ViSTL 

Corpus Category Ground truth 
ExpCheck 

ViSTL 
vex hex Total 

Detected True Detected True Detected True Detected True 

EUSES 

cs101 3 2 2 2 1 4 3 3 2 
database 27 21 17 8 6 29 23 6 1 
financial 17 10 3 8 3 18 6 6 1 
forms3 1 1 1 0 0 1 1 0 0 
grades 10 8 7 2 2 10 9 10 2 
homework 36 23 23 15 6 38 29 12 5 
inventory 41 37 33 7 2 44 35 4 2 
modeling 13 13 6 5 0 18 6 0 0 

VEnron  165 111 89 76 41 187 130 68 15 

Total  313 226 181 
(80.1%) 123 61 

(49.6%) 349 242 
(69.3%) 109 28 

(25.7%) 
 

 

Figure 5: Performance comparison of ExpCheck and ViSTL. 
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much better than ViSTL. We improve precision of 43.7%, recall of 
68.4% and F1-measure of 59.8%. 

Based on these results, we draw the following conclusion for 
RQ2: ExpCheck significantly outperforms existing expandable group 
detection approaches. 

6 DISCUSSION 
While our evaluation shows that ExpCheck is promising for de-
tecting expandable groups, we discuss potential threats and limita-
tions in our approach. 

6.1 Threats to Validity 
Representativeness of experimental subjects. In our experi-
ments, we selected the EUSES and VEnron corpora as our study 
objects. First, the spreadsheets in these two corpora have been 
widely used for spreadsheet research [8][10][22]. Second, the 
spreadsheets in VEnron came from the Enron company. Thus, we 
believe our studied subjects represent real-world spreadsheets. 

Expandable group validation. There is not any clue about 
expandable groups in the EUSES and VEnron corpora. It is also im-
possible to inspect expandable groups with the help of their origi-
nal users. Thus, we manually inspected our studied subjects, and 
built ground truth for expandable groups. To alleviate possible mis-
takes, two authors of this paper cross-validated all ground truth. 

Parameter setting in our approach. In our approach, several 
parameters are preset according to our experience, e.g., the thresh-
old for semantic similarity of headers, the percentage of cells that 
should have consistent formats. This may affect our evaluation re-
sults. We do not know whether the current parameter setting can 
obtain optimal results. We will study how to obtain better param-
eter setting in the future, e.g., conducting empirical studies on 
large-scale spreadsheets to choose better parameters. 

6.2 Limitations 
Domain-specific vocabularies in spreadsheets. During our in-
spection of the spreadsheets in VEnron, we find that there are some 
domain-specific vocabularies in the Enron company, which cannot 
be handled properly by Word2Vec. For now, we cannot handle 
these domain-specific vocabularies yet, and thus introduce false 
positives and false negatives. A new approach that can analyze the 
semantic similarity among these domain-specific vocabularies is 
required. 

Different language support. For different languages, we 
need different word segmentation models and different Word2Vec 
models. For now, ExpCheck only supports English. Other lan-
guages can be integrated into ExpCheck. 

7 RELATED WORK 
In the section, we discuss related work on spreadsheet research, 
e.g., modeling, structure analysis and fault detection. 

Spreadsheet modeling. Spreadsheet systems provide high 
flexibility for users in building spreadsheets. However, this flexi-
bility can easily induce faults into spreadsheets. Spreadsheet re-
searchers proposed several rigorous models for spreadsheets, e.g., 
ViSTL [4][5] and ClassSheet [14], to help users reduce the chance 

of introducing faults. However, it is challenging to construct such 
models. Thus, some approaches [2][9][18] try to build models from 
existing spreadsheets. They mainly depend on the formulas in the 
existing spreadsheets, and do not try to understand the spreadsheet 
structure, e.g., expandable groups. Our expandable group detection 
can be used to improve spreadsheet model reversing engineering. 

Spreadsheet structure analysis. Unlike relational data, 
spreadsheets have very flexible structures. Understanding spread-
sheet structures is the key to other spreadsheet analysis ap-
proaches, e.g., spreadsheet data integration. For example, Chen et. 
al. adopted conditional random fields (CRF) to infer hierarchical 
relationship among spreadsheet cells [6]. They further proposed an 
active learning framework to detect the structure property in a 
spreadsheet. Koci et al. [25] proposed a classification approach to 
discover the layout of tables in spreadsheets on the cell level. How-
ever, these approaches cannot detect expandable groups. 

Spreadsheet fault detection. Since spreadsheets are created 
and maintained by non-expert end users, faults can be easily in-
duced into spreadsheets [23][24][27]. Many techniques have been 
proposed to detect faults in spreadsheets. UCheck [3] uses type 
system to check type inconsistency in formulas. Hermans et al. 
proposed to detect inter-worksheet smells [20], data clone and re-
lated inconsistencies [22], and formula smells [21]. TableCheck [10] 
detects inconsistency among table clones. Some fault detection 
tools utilize certain structure information to detect errors, e.g., Am-
Check/CACheck/EmptyCheck [11][12][29] and CUSTODES [8] 
detect errors in a group of similar cells (i.e., cell array). However, 
they do not try to understand expandable groups in a table. While, 
ExpCheck focuses on understanding the key structure in a table. 

8 CONCLUSIONS 
In this paper, we study expandable groups in spreadsheets, in 
which their units share the similar formats and semantics. We have 
proposed an automated approach, ExpCheck, to extract expanda-
ble groups by inspecting related cells’ format and semantic infor-
mation. Our experimental study on the spreadsheets from the 
EUSES and VEnron corpora shows that our proposed approach is 
effective and precise, and significantly outperforms existing ap-
proaches. 

We plan to pursue our future work in four ways. First, 
ExpCheck can be improved by more precise spreadsheet header 
analysis and header semantic analysis. Second, ExpCheck can also 
be extended to extract other spreadsheet structures and build the 
whole structure for a spreadsheet. Third, we plan to use the ex-
tracted expandable groups to detect issues in spreadsheets, e.g., 
formula errors and format errors. Fourth, we plan to use ExpCheck 
to understand spreadsheet structures, and transform spreadsheets 
data into relational data for easy data integration. 
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