
Characterizing and Diagnosing Out of Memory Errors in MapReduce Applications

Lijie Xua, Wensheng Dou*a, Feng Zhuc, Chushu Gaoa, Jie Liua, Jun Weia,b

aState Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences
bUniversity of Chinese Academy of Sciences

cTencent Inc.
{xulijie, wsdou, zhufeng10, gaochushu, ljie, wj}@otcaix.iscas.ac.cn

Abstract

Out of memory (OOM) errors are common and serious in MapReduce applications. Since MapReduce framework hides the details
of distributed execution, it is challenging for users to pinpoint the OOM root causes. Current memory analyzers and memory leak
detectors can only figure out what objects are (unnecessarily) persisted in memory but cannot figure out where the objects come
from and why the objects become so large. Thus, they cannot identify the OOM root causes.

Our empirical study on 56 OOM errors in real-world MapReduce applications found that the OOM root causes are improper
job configurations, data skew, and memory-consuming user code. To identify the root causes of OOM errors in MapReduce
applications, we design a memory profiling tool Mprof. Mprof can automatically profile and quantify the correlation between a
MapReduce application’s runtime memory usage and its static information (input data, configurations, user code). Mprof achieves
this through modeling and profiling the application’s dataflow, the memory usage of user code, and performing correlation analysis
on them. Based on this correlation, Mprof uses quantitative rules to trace OOM errors back to the problematic user code, data, and
configurations.

We evaluated Mprof through diagnosing 28 real-world OOM errors in diverse MapReduce applications. Our evaluation shows
that Mprof can accurately identify the root causes of 23 OOM errors, and partly identify the root causes of the other 5 OOM errors.

Keywords:
MapReduce; out of memory; memory profiler; error diagnosis

1. Introduction

As a representative big data framework, MapReduce [1] pro-
vides users with a simple programming model and hides the
parallel/distributed execution. This design helps users focus
on the data processing logic, but burdens them when the ap-
plications running atop this framework generate runtime errors.
Since MapReduce applications process large data in memory,
out of memory (OOM) errors are common. For example, in
StackOverflow.com, users complained why their MapReduce
applications run out of memory [2, 3, 4]. OOM errors are
also serious, since they can directly lead to the application fail-
ures and cannot be tolerated by MapReduce framework’s fault-
tolerant mechanisms (i.e., OOM errors will occur again if re-
executing the failed map/reduce tasks).

In general, a MapReduce application (job) can be represented
as 〈input data, configurations, user code〉. The input data is
usually stored as data blocks on the distributed file system. Be-
fore submitting an application to MapReduce framework, users
need to specify the application’s configurations and user code.
(1) Memory-related configurations, such as buffer size, define
the size of framework buffers, which temporarily store inter-
mediate data in memory. (2) Dataflow-related configurations,
such as partition function/number, affect the volume of data
that flows in mappers or reducers. Partition function defines
how to partition the output key/value records of mappers, while

partition number defines how many partitions will be gener-
ated. (3) User code, which refers to the user-defined functions,
such as map(), reduce(), and optional combine(). These user-
defined functions generate in-memory computing results while
processing the key/value records.

While running, a MapReduce application goes through a map
stage and a reduce stage (shown in Figure 1). Each stage con-
tains multiple map/reduce tasks (i.e., mappers and reducers),
and each task runs as a process on a node. While running
a MapReduce application, the framework buffers intermedi-
ate data in memory for better performance, and user code also
stores intermediate computing results in memory. Once the re-
quired memory exceeds the memory limit of a map/reduce task,
an OOM error will occur in the task. Figure 1 shows two OOM
errors that occur in a map task and a reduce task. When an
OOM error occurs, users can only figure out what function-
s/methods are running from the OOM stack trace. However,
this error message cannot directly reflect the OOM root causes.

To understand the common root causes of OOM errors, we
conducted a characteristic study on 56 real-world OOM errors
in MapReduce applications collected from open forums, such
as StackOverflow.com and Hadoop mailing list [5]. Our study
found 3 types of common root causes with 7 cause patterns. (1)
15% errors are caused by improper job configurations, which
can lead to large buffered data or improper data partition. (2)

*Corresponding author. The Journal of Systems and Software March 27, 2017

38% errors are caused by data skew, which can lead to unex-
pected large runtime data, including large 〈k, list(v)〉 group and
large single 〈k,v〉 record. (3) 75% errors are caused by memory-
consuming user code, which loads large external data in mem-
ory or generates large intermediate/accumulated results (28%
errors are also caused by data skew).

Even with the summarized OOM common causes, it is still
challenging to automatically identify the root causes of OOM
errors in a running MapReduce application. (1) The applica-
tion’s configurations do not directly affect the memory usage of
distributed map/reduce tasks. (2) User code can be written arbi-
trarily or automatically generated by high-level languages (e.g.,
SQL-like Pig script [6]), which makes us treat the user code
as a black box. With memory analysis tools, such as Eclipse
MAT [7], users can figure out what objects exist in memory but
do not know where the objects come from and why they be-
come so large. The static and dynamic memory leak detectors
[8, 9, 10, 11] can identify memory leak (i.e., which objects are
unnecessarily persisted in memory). However, OOM errors in
big data applications are commonly caused by excessive mem-
ory usage, not memory leak.

In this paper, we propose a memory profiling tool Mprof.
Mprof can automatically profile and quantify the correlation be-
tween a MapReduce application’s runtime memory usage and
its static information (input data, configurations, user code).
Based on the correlation, Mprof uses quantitative rules to trace
OOM errors back to the problematic user code, data, and con-
figurations. Some but limited manual efforts are required in the
cause identification such as linking the identified cause patterns
with the code semantics.

Mprof mainly solves three problems: (1) How to figure out
the correlation between an application’s runtime memory usage
and its static information? Mprof solves this problem through
modeling and profiling the application’s dataflow, memory us-
age of user code, and performing correlation analysis on them.
(2) How to figure out the correlation between memory usage of
black-box user code and its input data? We find that user objects
(generated by user code) have different but fixed lifecycles, and
objects with different lifecycles are related to different parts of
the input data. Based on this observation, we design a lifecycle-
aware memory monitoring strategy that can profile and quantify
the correlation between different user objects and their related
input data. (3) How to identify the root causes based on the cor-
relation? Two types of quantitative rules are designed: Rules
for user code can identify the problematic user code and the
error-related runtime data. Rules for dataflow can identify the
skewed data and improper configurations.

We implemented Mprof in the latest Hadoop-1.2, and evalu-
ated it on 28 real-world OOM errors in diverse Hadoop MapRe-
duce applications, including raw MapReduce code, Apache Pig
[6], Apache Hive [12], Apache Mahout [13], and Cloud9 [14].
Twenty of them are reproducible OOM errors from our empiri-
cal study. Since only these 20 errors have detailed data charac-
teristics, user code, and OOM stack trace, we reproduced them.
Eight of them are new reproducible OOM errors collected from
the Mahout/Hive/Pig JIRAs and open forums, which are not
used in our empirical study. The results show that Mprof can

memory usage @ OOM

buffer size

map()

partition
number

input
split size

User objects
of map()/reduce()

reduce()

partition
function

map()

map()
reduce()

OOM

map tasks reduce tasks

Memory space of map/reduce task

FATAL java.lang.OutOfMemoryError
at java.util.Arrays.copy(Arrays.java:2882)
…
at MyReducer.reduce(MatrixStripes.java:136)
at mapred.Child.main(Child.java:404)

OOM Stack Trace
OOM

buffered
data

map shuffle reduce

Figure 1: Two examples of OOM errors in a MapReduce application

precisely identify the root causes of 23 OOM errors, and partly
identify the root causes of the other 5 OOM errors (in which the
first OOM root cause is identified, but the second root cause is
missed). Mprof is available at github [15].

The main contributions of this paper are as follows:
• An empirical study on 56 real-world OOM errors narrowed

the root causes of OOM errors in MapReduce applications
down to 3 kinds of common causes and 7 cause patterns.
• A memory profiling tool is designed to profile and quantify

the correlation between a MapReduce application’s runtime
memory usage and its static information.
• Two types of quantitative rules (11 rules in total) are de-

signed to diagnose OOM errors in MapReduce applications.
• An evaluation on 28 real-world OOM errors shows that

Mprof can accurately identify the OOM root causes.

An earlier version of this work appeared at ISSRE 2015 [16].
In this paper, we significantly extend the earlier version in three
aspects. (1) We designed and implemented a memory profiler
that can automatically profile the memory usage of MapReduce
applications. (2) We designed two types of quantitative rules
in the profiler to identify the root causes of OOM errors. (3)
We evaluated our profiler on 28 real-world MapReduce appli-
cations.

The rest of the paper is organized as follows. Section 2 in-
troduces the background of MapReduce applications. Section 3
presents our empirical study results on the common root causes
of OOM errors. Section 4 describes the design and implemen-
tation of Mprof. Section 5 describes the diagnosing procedure
and diagnostic rules in Mprof. Section 6 presents the evalua-
tion results. Section 7 discusses the limitation and generality of
Mprof. Section 8 lists the related work and Section 9 concludes
this paper.

2. Background

A MapReduce application can be generally represented as
〈input dataset, configurations, user code〉. Input dataset is split
into data blocks (e.g., 3 input blocks in Figure 1) and stored on

2

the distributed file system (e.g., HDFS [17]). Before submitting
an application to MapReduce framework, users need to write
user code (e.g., map()) according to the programming model
and specify the application’s configurations. While running,
a MapReduce application (job) is split into multiple map/re-
duce tasks, and each task runs as a separate process (a JVM
instance). So, the memory usage of a MapReduce application
denotes the usage of its map/reduce tasks. MapReduce’s pro-
gramming model, dataflow, and configurations are detailed be-
low.

2.1. Programming model and user code

MapReduce programming model can be denoted as

Map stage : map(k1,v1)⇒ list(k2,v2)

Reduce stage : reduce(k2, list(v2))⇒ list(k3,v3)

In the map stage, map(k,v) reads 〈k1,v1〉 records one by one
from an input block, processes each record, and outputs 〈k2,v2〉
records. In the reduce stage, the framework groups the 〈k2,v2〉
records into 〈k2, list(v2)〉 by the key k2, and then launches
reduce(k, list(v)) to process each 〈k2, list(v2)〉 group. For op-
timization, users can define a mini reduce() named combine(),
which performs partial aggregation on map output records be-
fore reduce(). We regard combine() as reduce() since they usu-
ally share the same user code.

2.2. Dataflow

As shown in Figure 1, a typical MapReduce application con-
tains multiple map/reduce tasks (i.e., mappers/reducers). Map
tasks go through a map phase, while reduce tasks go through a
shuffle and reduce phase. For parallelism, the mappers’ outputs
are partitioned and each partition is shuffled to a corresponding
reducer by the framework. Dataflow refers to the data that flows
among mappers and reducers.

In the map phase, each mapper reads sequential 〈k1,v1〉
records from an input split, performs map() on each record,
and outputs 〈k2,v2〉 record with a partition id into a fixed buffer.
Once the buffer is full, the buffered records will be sorted and
merged onto the local disk. Records with the same partition id
are stored in the same partition.

In the shuffle phase, each reducer fetches the correspond-
ing partitions from the finished mappers, and temporarily stores
them into a virtual buffer (x% of reducer’s memory space where
x is specified by users). Once the buffer is full, the buffered
records are sorted and merged onto disk.

In the reduce phase, each reducer reads 〈k2, list(v2)〉 records
from the merged records, performs reduce() on each record,
and outputs 〈k3,v3〉 records onto the distributed file system.

2.3. Configurations

A MapReduce application’s configurations consist of two
parts: (1) Memory-related configurations affect the memory us-
age directly. For example, memory limit defines the memory
space (heap size) of map/reduce tasks and buffer size defines

the size of framework buffers. (2) Dataflow-related configura-
tions affect the volume of data that flow among mappers and
reducers. For instance, partition function defines how to parti-
tion the 〈k,v〉 records outputted by map(), while the partition
number defines how many partitions will be generated and how
many reducers will be launched.

3. Empirical Study on OOM Errors

To understand and summarize the common causes of OOM
errors in MapReduce applications, we perform an empirical
study on 56 real-world OOM errors1.

We took real-world MapReduce applications that run atop
Apache Hadoop as our study subjects. Since there are not any
special bug repositories for OOM errors (JIRA mainly covers
Hadoop framework bugs), users usually post their OOM er-
rors on the open forums (e.g., StackOverflow.com and Hadoop
mailing list). We in total found 632 issues by searching key-
words such as “Hadoop out of memory” in StackOverflow.com,
Hadoop mailing list [5], developers’ blogs, and two MapRe-
duce books [18, 19]. We manually reviewed each issue and only
selected the issues that satisfy: (1) The issue is an OOM error.
We excluded 459 issues that are not OOM errors (e.g., only con-
tain partial keywords “Hadoop Memory”). (2) The OOM error
occurs in a Hadoop application, not the framework’s service
components (e.g., the scheduler and resource manager). In to-
tal, 151 OOM errors are selected. These errors occur in diverse
Hadoop applications, such as raw MapReduce code, Apache
Pig [6], Apache Hive [12], Apache Mahout [13], Cloud9 [14]
(a Hadoop toolkit for text processing).

For each OOM error, we manually reviewed the user’s er-
ror description and the answers given by experts (e.g., Hadoop
committers from cloudera.com and experienced developers
from ebay.com). Out of the 151 OOM errors, the root causes of
56 errors (listed in Table 2) have been identified in the follow-
ing three scenarios: (1) The experts identified the root causes
and users have accepted the experts’ professional answers. (2)
Users identified the root causes themselves. They have ex-
plained the causes (e.g., abnormal data, abnormal configura-
tions, and abnormal code logic) in their error descriptions and
just asked how to fix the errors. (3) We identified the causes
by reproducing the errors in our cluster and manually analyzing
the root causes.

Table 2: Distribution of our studied OOM errors

Sources Raw code Pig Hive Mahout Cloud9 Total
StackOverflow.com 20 4 2 4 0 30
Hadoop mailing list 5 5 1 0 1 12
Developers’ blogs 2 1 0 0 0 3
MapReduce books 8 3 0 0 0 11
Total 35 13 3 4 1 56

Although the root causes of the 56 OOM errors are diverse,
we can classify them into 3 categories and 7 cause patterns ac-

1The concrete OOM cases and the empirical study results are available at
https://github.com/JerryLead/TR/blob/master/Hadoop-OOM-Study.pdf

3

Table 1: Cause patterns of OOM errors

Category Cause patterns Pattern description Total Ratio

Improper job
configurations

Large framework buffer Large intermediate data are temporarily stored in the framework buffer 6 10%

Improper data partition
Some partitions are extremely large (small partition number, or unbal-
anced partition function)

3 5%

Subtotal 9 15%

Data skew
Hotspot key Large 〈k, list(v)〉 group 15 28%
Large single key/value record Large single 〈k,v〉 record 6 10%
Subtotal 21 38%

Memory-
consuming
user code

Large external data User code loads large external data 8 15%

Large intermediate results
User code generates large intermediate computing results while pro-
cessing a single 〈k,v〉 record

4(3) 7%

Large accumulated results User code accumulates large intermediate computing results in memory 30[13] 53%
Subtotal 42 75%

Total 56+16 128%

Notations: 4(3) means that 3 out of the 4 OOM errors are also caused by large single key/value record. 30[13] means that 13 out of the
30 OOM errors are also caused by hotspot key. 128% means that 28% errors have two OOM cause patterns. Different with the original table in
[16], this table is categorized according to the cause’s relationship with configurations, runtime data, and user code.

cording to their relationship with the application’s configura-
tions, runtime data, and user code. Table 1 illustrates the con-
crete cause patterns and the corresponding number of errors in
Hadoop applications. Most OOM errors (75%) are caused by
memory-consuming user code. The second largest cause is data
skew (38% errors). Note that 28% errors are caused by both
memory-consuming user code and data skew. The left 15% er-
rors are caused by improper job configurations. We next go
through each OOM cause pattern and interpret how they lead to
OOM errors.

3.1. Cause category: Improper job configurations
Users can adjust memory/dataflow-related configurations to

optimize jobs’ execution time and disk I/O. However, two types
of improper configurations can lead to OOM errors.

3.1.1. Pattern 1: Large framework buffer
To lower disk I/O, data-parallel frameworks usually allocate

in-memory buffers to temporarily store the intermediate data
(output data of map() or input data of reduce()). There are
two types of buffers: (1) fixed buffer. The buffer itself occu-
pies a large memory space, such as Hadoop’s map buffer (a
large byte[]). (2) virtual buffer. This is a threshold that limits
how much memory space can be used to buffer the intermediate
data. For example in shuffle phase, Hadoop allocates a virtual
buffer named shuffle buffer to buffer the shuffled data. When
users configure large buffer size, large intermediate data will be
buffered in memory and OOM errors may occur.

This pattern has 6 OOM errors (10%). Four errors are caused
by large map buffer (i.e., io.sort.mb). For example, a user con-
figures a 300MB map buffer, but the mapper’s memory space
is only 200MB (e01)2. Two errors are caused by large shuffle
buffer. For example, a user sets the shuffle buffer to be 70% of
the reducer’s memory space, which is too large (should be 30%
in this case) and leads to the OOM error (e02).

2(eXX) denotes the OOM error with ID=eXX in Table 10 in the Appendix.

3.1.2. Pattern 2: Improper data partition

Partition is a common technique used in data-parallel frame-
works to achieve parallelism. In MapReduce applications,
map() outputs its 〈k,v〉 records into different data partitions
according to the k’s partition id. For example in Figure 2,
k1, k3, and k5 exist in the same partition because they have
the same partition id (suppose id = hash(key) % partitionNum-
ber). Records in the same partition will be further processed
by the same user code (reduce() or combine()). Two cases can
cause improper data partition: (1) When the partition number is
small, all the partitions would be large. (2) An unbalanced par-
tition function makes some partitions become extremely larger
than the others. Commonly used partition functions, such as
hash and range partition, cannot avoid generating unbalanced
partitions. Improper data partition can lead to large in-memory
intermediate data. For example in Figure 2, if the aggregated
partition AP1 is much larger than AP2, the reducer that pro-
cesses AP1 will need to shuffle and buffer more data in mem-
ory. Improper data partition can also lead to large input data for
the following user code to process. Since the memory usage of
user code is usually related to the volume of input data, large
input data can lead to OOM errors in user code. For example in
Figure 2, if AP1 is much larger than AP2, reduce() may run out
of memory while processing the large partition AP1.

This pattern has 3 OOM errors (5%). Two errors are caused
by small partition number. For example, a user reports that an
OOM error constantly occurs in the reduce phase and his solu-
tion has been to increase the partition number (e03). The left
one error is caused by the unbalanced partitions, where a very
large number of items (key/value records) are sent to a single
reducer (e04).

4

Finding 1: Fifteen percent of the OOM errors are caused
by improper memory/dataflow-related configurations, such
as large framework buffers and improper data partition,
which can lead to large in-memory intermediate data.
Implication: Before running a MapReduce application, it
is hard for users to set the right configurations to limit the
application’s runtime memory usage.

3.2. Cause category: Data skew

Since MapReduce framework processes the 〈k,v〉 records in
a distributed fashion and the records may have a non-uniform
distribution, the application may generate runtime skewed data
such as large 〈k, list(v)〉 group (a result of hotspot key) and large
single 〈k,v〉 record.

3.2.1. Pattern 3: Hotspot key
Although the 〈k,v〉 records in the same data partition will

be processed by the same user code, they are first merged
into different 〈k, list(v)〉 groups according to their keys. Then,
user code (reduce() or combine()) will process the 〈k, list(v)〉
groups one by one. Hotspot key means that some 〈k, list(v)〉
groups are much larger (contain much more records) than the
others. The partition number can affect the size of each par-
tition, but it cannot affect the size of each group because the
group size depends on how many records have the same key
at runtime. For example in aggregated partition AP1 in Figure
2, if 〈k5, list(v)〉 is much larger than 〈k1, list(v)〉, the framework
may run out of memory while aggregating the 〈k5, list(v)〉. Fur-
thermore, the following reduce() may run out of memory while
processing the large 〈k5, list(v)〉 group.

This pattern has 15 OOM errors (28%), all of which are
caused by the huge values associated with one key. For ex-
ample, a user reports that some keys only return 1 or 2 items
but some other keys return 100,000 items (e05). Another user
reports the key 〈custid, domain, level, device〉 is significantly
skewed, and about 42% of the records have the same key (e06).

3.2.2. Pattern 4: Large single key/value record
Large key/value record means that a single 〈k,v〉 record is

too large. Since user code needs to read the whole record into
memory to process, the large record itself can cause the OOM
error. Large record can also cause user code to generate large
intermediate results, which will be detailed in Section 3.3.2.
Since the record size is determined at runtime, dataflow-related
configurations cannot control its size.

This pattern has 6 OOM errors (10%), all of which have the
information that a single record is too large. For example, a user
reports that the memory is 200MB, but the application gener-
ates a 350MB record (a single line full of character a) (e07).
Another user reports that some records are 1MB but some are
100MB non-splittable blob (e08). More surprisingly, a user re-
ports that the application is trying to send all 100GB data into
memory for one key because the changed data format makes
the terminating tokens/strings do not work (e09).

reduce(k,list(v))map(k,v)

reduce(k,list(v))map(k,v)K3
…

V

VK1
K2 V

…
K5 V

VK4 V
V

Input
split

combine(k,list(v)) combine(k,list(v))

K3
…

V

VK1
K2 V

…
K5 V

VKaPi Kb V

Partition Aggregated Partition

V
K2 V

V
V

V

AP2

VKa
Pi V

Kb V
V

Ka

Kb

VKa
APi V

Kb V
V

Ka

Kb
VKaAPi Kb V

K’
…

V

VK’
K’ V

…
K’ V

K’
…

V

VK’
K’ V

…
K’ V

V
K1 V

V
V
VK3
V
V
VK5 V
V
V

AP1

VK1

P1
VK3
V

VK2
P2

K4
V
V
V

V
VK5

VK2
P2 K4

VK1

P1 VK3

V
V

V
V

V
K5

V Output

Figure 2: MapReduce dataflow

Finding 2: Data skew is another common cause of OOM
errors (38%), which can lead to unexpected large runtime
data, such as hotspot key and large single key/value record.
Implication: Framework’s current data-parallel mecha-
nisms do not properly consider the runtime data property
(e.g., key distribution) and cannot limit the input data of
user code.

3.3. Cause category: Memory-consuming user code

Different from traditional programs, user code in data-
parallel applications has an important streaming-style feature.
In the streaming style, the 〈k,v〉 records are read, processed and
outputted one by one. So, once an input record is processed, this
record and its associated computing results will become use-
less and reclaimed, unless they are purposely cached in mem-
ory for future use. Based on this feature, we summarized two
cause patterns: large intermediate results (generated for a sin-
gle record) and large accumulated results. Another pattern is
that user code loads large external data in memory.

3.3.1. Pattern 5: Large external data
Different from the buffered data managed by the framework,

external data refers to the data that is directly loaded in user
code. In some applications, user code needs to load external
data from local file system, distributed file system, database,
etc. For example, in order to look up whether the key of each
input record exists in a dictionary, user code will load the whole
dictionary into a HashMap before processing the records. Large
external data can directly cause OOM errors.

This pattern has 8 OOM errors (15%). Three errors occur in
Mahout applications, where mappers try to load large trained
models for classification (e10) and for clustering (e11). One er-
ror occurs in a Hive application that tries to load a large external
table (e12). One error occurs in a Pig script, in which the UDF
(User Defined Function) tries to load a big file (e13).

3.3.2. Pattern 6: Large intermediate results
The intermediate results refer to the in-memory computing

results that are generated while user code is processing a 〈k,v〉
5

record. This pattern has two sub-patterns: (1) the input record
itself is very large, so the intermediate results may become large
too. For example, if a record contains a 64MB sentence, its split
words are also about 64MB. (2) Even a small input record may
generate large intermediate results. For example, if the value
of a record has two Sets, Cartesian product of them is orders of
magnitude larger than this input record.

This pattern has 4 OOM errors (7%). In 2 errors, user code
generates large intermediate results due to the extremely large
input record. In 1 error, reduce() generates very long output
record in memory (e14). The last error occurs in a text pro-
cessing application (e15), which allocates large dynamic data
structures during processing the input text.

3.3.3. Pattern 7: Large accumulated results
If the intermediate results generated at current input record

are cached in memory for future use, they become accumulated
results. So, more records are processed, more intermediate re-
sults may accumulate in memory. For example, to deduplicate
the input records, map() may allocate a Set to keep each unique
input record. If there are many distinct input records, the Set
will become large too. For reduce(), it can generate large ac-
cumulated results during processing a large 〈k, list(v)〉 group,
which could be a result of hotspot key.

This pattern has 30 OOM errors (53%). In 11 errors, users
allocate in-memory data structures to accumulate the input
records. For example, a user allocates an ArrayList to keep
all the values for a key, which might contain 100 million values
(e16). In other errors, users try to accumulate the intermediate
results, such as the word’s frequency of occurrence (e17) and
the training weights (e18). User code accumulates the interme-
diate results to find distinct tuples (e19), perform in-memory
sort, compute median value, or take a cross product (e20). The
last error occurs in a reducer, which tries to keep the word co-
occurrence matrix of a large document in memory (e21).

Finding 3: Most OOM errors (75%) are caused by
memory-consuming user code, which carelessly processes
unexpected large data or generates large in-memory results.
Implication: It is hard for users to design memory-efficient
code and predict the memory usage of user code, without
knowing the runtime data volume.

4. Memory Profiler Design and Implementation

Our empirical study has narrowed the root causes of OOM
errors down to 7 cause patterns. However, it is still hard to di-
agnose the root causes of OOM errors in a running MapReduce
application. To diagnose the OOM errors, we design a mem-
ory profiling tool named Mprof as shown in Figure 3. Mprof
can automatically profile and quantify the correlation between
a MapReduce application’s runtime memory usage and its static
information (input data, configurations, and user code). Mprof
achieves this through modeling and profiling the application’s
dataflow, memory usage of user code, and performing correla-
tion analysis on them. Mprof only relies on tasks’ enhanced

Reproduce the error
(rerun the application with Mprof)

Memory profiler

memory usage = g (input data)

Dataflow profiler

f ff f

Configurations

1: Profile the dataflow
(dataflow profiler)

2: Profile the memory usage
(memory profiler)

3: Perform correlation
analysis

�correlation analyzer)

4: Use quantitative rules to
identify the root causes

OOM errors occur in a running MapReduce application

Figure 3: Mprof Overview

logs (with statistics of processed 〈k,v〉 records), dataflow coun-
ters, and heap dumps, without any modifications to the user
code. Based on the correlation, Mprof uses quantitative rules to
trace OOM errors back to the problematic user code, data, and
configurations.

Mprof mainly contains four parts: (1) a dataflow profiler that
models and profiles the application’s dataflow; (2) a user code
memory profiler that profiles the memory usage of user code;
(3) a correlation analyzer that performs correlation analysis on
the applicaiton’s configurations, dataflow, and memory usage;
(4) two types of quantitative rules (i.e., rules for user code and
rules for dataflow) that identify the root causes of OOM errors,
which will be detailed in Section 5.

4.1. Dataflow profiler

Dataflow profiler aims to profile the application’s dataflow
through building a dataflow model and fitting the model with
runtime dataflow counters (extracted from tasks’ enhanced logs
and runtime dataflow monitors). The dataflow model quanti-
fies the runtime data in each processing step, and also performs
skew analysis (Section 5.3) for diagnosing OOM errors.

Dataflow model is built according to the fixed data de-
pendencies in MapReduce dataflow. Although MapReduce
dataflow contains many data processing steps, it is composed
of three primitive steps: map(), key aggregation, and reduce().
According to the data dependencies in Figure 2, the three
steps can be formulated by the functions shown in Table 3.
mapInputRecordsi represents the number of input records of
mapper i, while Pi j(k,v) represents the number of records in
j-th partition outputted by mapper i. Np is the partition num-
ber. The number of records in an aggregated partition AP j

is equal to ∑
Nm
i=1 Pi j(k,v), where Nm is the number of mappers.

After key aggregation, the number of 〈k, list(v)〉 groups in ag-
gregated partition AP j is Nk, and the records in g-th 〈k, list(v)〉
group in AP j is Gg j(k, list(v)). The final reduceOutputRecord j
represents the number of records outputted by reducer j.

Dataflow-related configurations are involved in the model.
For example, the total size of mapInputRecordsi equals input
split size. Np equals partition number. Partition function is

6

Table 3: Dataflow model

Primitive steps Input records Output records

mapi() mapInputRecordsi Pi j(k,v),1≤ j ≤ Np

AggrPartition j Pi j(k,v),1≤ i≤ Nm Gg j(k, list(v)),1≤ g≤ Nk

reduce j() Gg j(k, list(v)),1≤ g≤ Nk reduceOutputRecord j

* combine() has the similar data dependency and functions with reduce()

Table 4: An example of map/reduce tasks’ enhanced logs

M1 [map() starts]
[map() ends] InputRecords = 17,535, OutputRecords = 17,525
[map output][Partition 1] Records = 8,653, Keys = 3,943
[map output][Partition 2] Records = 8,559, Keys = 3,715

R1 [shuffling] Partition (Records = 8,653, Keys = 3,943) from mapper1
[shuffling] Partition (Records = 8,882, Keys = 4,036) from mapper2
[shuffling] Partition (Records = 9,016, Keys = 4,087) from mapper3
[combine() starts] to merge the buffered partitions from mapper (1, 2)
[combine() ends] OutputRecords = 7,979, Keys = 7,979
[reduce() starts] InputRecords = 16,995, Keys = 12,066

* The above counters are not available in current Hadoop tasks’ logs.

modeled by computing the ratio of the records in each aggre-
gated partition (AP).

To fit the dataflow model, dataflow profiler automatically ex-
tracts dataflow counters from tasks’ enhanced logs (as shown
in Table 4) and runtime dataflow monitors. Our enhanced logs
can output (1) the processing steps, such as map(), shuffling,
and reduce(); (2) the data source, such as “partition shuffled
from mapper1”; (3) the statistics of Records and Keys in each
Partition and in each user code. For example in Table 4, our
profiler can compute the number of records in the aggregated
partition AP1 by adding the records in the three shuffled parti-
tions (i.e., 8,653 + 8,882 + 9,016 = 26,551). Moreover, from the
runtime dataflow monitor provided by Hadoop, our profiler can
obtain real-time number of processed records/groups of user
code, which is used to compute the records in each group (i.e.,
Gg j(k, list(v))).

4.2. User code memory profiler

User code memory profiler aims to figure out the correlation
between memory usage of user code and its input data. A sim-
ple strategy is to continuously monitor the size of user objects
(i.e., trying to obtain the gray curve in Figure 4)). However,
this strategy is impractical. If we want to obtain the size of user
objects in a task at time t, we need to dump the task’s heap
at that time, analyze which objects in the heap are user objects
(i.e., referenced by user code), and then compute their total size.
Since user code usually processes thousands and millions of in-
put records, it is too time-consuming to dump the heaps and
analyze them.

We observe that user objects defined in different locations
in user code have different but fixed lifecycles. User objects
with different lifecycles are related to different parts of the in-
put data, and can be classified into record-level intermediate re-
sults or accumulated results. Based on this feature, we design
a lifecycle-aware memory monitoring strategy that can use lim-

ited heap dumps to figure out the correlation between interme-
diate/accumulated results and their related input 〈k,v〉 records.

4.2.1. User code templates and object lifecycles
User code processes the input records in a streaming style.

This feature results in the fixed lifecycles of user objects. We
summarize these code templates from the real-world Hadoop
MapReduce examples, and examples in MapReduce Design
Patterns [18].

Object lifecycles in map(): The programming model of
map(k,v) is shown below. map(K,V) is invoked for each
input 〈k,v〉 record, so objects generated in mapper have two
lifecycles: (1) map-level (labeled 1©): objects defined outside
the method map(K,V) can exist in memory until all the input
records are processed. So, map-level buffers such as ArrayList
can be used to store the intermediate results. (2) record-level
(labeled 2©): objects generated in the method map(K,V) are re-
garded as record-level intermediate results (i.e., iResults), and
will be cleared from memory when the next record comes in.
Once these record-level intermediate results are cached in the
map-level buffer, they become accumulated results.

public class Mapper {
private Object mapLevelBuffer; // 1

public void map(K key, V value) { // map(K,V)
Object iResults = process(key, value); // 2

emit(newKey, newValue); // using iResults
}

} Object lifecylces in map()

Object lifecycles in reduce(): The programming model of
reduce() is a bit complex. The method reduce(K, list(V)) is
invoked for each 〈k, list(v)〉 group and each 〈k,v〉 record in the
group is processed one by one. Objects in reducer have three
lifecycles: (1) reduce-level (labeled 3©): objects defined outside
the method reduce(K, list(V)) can exist in memory until all the
groups are processed. So, accumulated results in reduce-level
buffer are related to all the groups. (2) group-level (labeled 1©):
objects allocated in the method reduce(K, list(V)) but outside
while() can exist in memory until all the records in a group are
processed. So, accumulated results in group-level buffer are re-
lated to all the records in the group. (3) record-level (labeled
2©): objects generated in the while() statement are record-level

intermediate results and will be reclaimed when the next record
in the 〈k, list(v)〉 group comes in. Similar to map(), if the inter-
mediate results are cached by high-level (reduce/group-level)
buffers, they become accumulated results. The programming
model of combine() is the same as that of reduce().

public class Reducer {
private Object reduceLevelbuffer; // 3

public void reduce(K key, Iterable<V> values) {
Object groupLevelBuffer; // 1

// foreach <k,v> record in the group, like map(K,V)
while (values.hasNext()) {

V value = values.next();
Object iResults = process(key, value); // 2

emit(newKey, newValue); // may be here
}
emit(newKey, newValue); // may be here too

}
} Object lifecylces in reduce()

7

4.2.2. Lifecycle-aware memory monitoring strategy
At time t, user objects consist of accumulated results and

record-level intermediate results. So, we can divide the prob-
lem (i.e., figure out the correlation between user objects and the
input records) into two small problems as follows.

Profile the accumulated results: To profile the accumulated
results, we choose to capture user objects at some specific time
points. For map-level accumulated results, the candidate time
points are when user code just finishes processing a record (Ri)
and is going to process the next record (Ri+1). At that time,
record-level intermediate results have been reclaimed, so the
size of accumulated results is exactly the size of user objects.
For reduce-level accumulated results, the candidate time points
are when user code just finishes processing a group (Gi) and
is going to process the next group (Gi+1). For efficiency, our
strategy dumps the task’s heap at intervals of records/groups (as
shown in Figure 4, vertical dotted lines denote heap dumps).
For map-level accumulated results, the record interval is (n−
1)/h, where n is the number of processed records at time t,
and h is the desired number of heap dumps specified by users.
For group-level accumulated results (we only care about their
sizes in the last group such as Gm in Figure 4), the monitoring
strategy is as same as that in the map(). Finally, our profiler
calculates the sizes of user objects from these heap dumps and
draws the trend line of accumulated results.

Profile the record-level intermediate results: We only care
about the intermediate results generated at current record Rn, so
the time points to dump the heap are: when Rn is going to be
processed and at the time of OOM. The size difference between
the two heaps (i.e., 2 in Figure 4) can be regarded as the size of
record-level intermediate results. However, our strategy needs
to further verify if this size is only related to Rn. The checking
process is simple: our profiler reruns the user code, lets it only
process Rn, and then calculates the size difference of user ob-
jects before and after Rn is processed. If this size difference is
as same as 2 (as shown in Figure 4), our profiler concludes that
the intermediate results are only related to Rn.

We have implemented the above monitoring strategies in
Hadoop through inserting the heap dump code into the
framework’s APIs, such as RecordReader.nextKeyValue() and
ValueIterator.next(), which prepare the next input record/group
for user code. Users do not need to modify their user code but
to configure the number of desired heap dumps (7 is default).
To perform the strategy, we need to rerun the job at the time of
OOM. So, the heap dumps can be automatically generated.

4.3. Correlation analysis

After profiling the dataflow and memory usage of user code,
Mprof performs correlation analysis on the application’s con-
figurations, dataflow, and memory usage. Dataflow model has
quantified the correlation between configurations and dataflow.
So, the next step is to quantify the correlation between dataflow
and memory usage. The memory usage of buffered data is equal
to min(buffer size, intermediate data), while the correlation be-
tween accumulated/intermediate results and their related input
records are calculated by statistical methods (using linear/non-

OOM

OOM

②

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 Kn
V V V V V V V V V V V V V V V V

①

memory	usage	of	map()

K1 K2 K1 K2 K3 K1 K2 K3 K1 K2 K3 K4 K5 K1 K2 K3 K4 Kn
V V V V V V V V V V V V V V V V V V
G1 G2 G4 Gm

②

①

③

memory	usage	of	reduce()

①

③

①

G3

S1 S2 S3
S4

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 Rn

M1
M2

M3
M4

M5
Mo

M1

M2
M3

M4
Mo

Mi: the accumulation rate in the i-th record interval

Si: the accumulation rate in the i-th group interval

Mo: the accumulation rate in the last record interval

Figure 4: Lifecycle-aware memory monitoring. Slope Mi denotes the
accumulation rate in the i-th record interval, while slope S j denotes the
accumulation rate in the j-th group interval. In addition, if user code
loads external data, the user objects generated from external data are
the objects at R1 (for map()) or the objects at R1 in G1 (for reduce()).

linear regression to fit the memory usage curve of intermediate
and accumulated results separately).

Based on the correlation, Mprof can further identify the
memory usage patterns of user code. The memory growth pat-
tern of accumulated results can reflect the space complexity of
user code. For example in map() in Figure 4, linear growth in
[R1, R15] indicates that the space complexity of map() is O(n).
So, users can easily figure out why their code is so memory-
consuming and which ranges of input records are related to the
OOM errors. Our profiler also performs outlier detection to fig-
ure out if the memory growths in some records are extremely
large. For example in reduce() in Figure 4, if the slope of mem-
ory growth in Gm is much sharper than that in other groups, the
corresponding input records (records in Gm) may be abnormal
(e.g., a result of hotspot key).

5. OOM Cause Identification

After figuring out the correlation among the application’s
configurations, dataflow, and memory usage, Mprof can further
identify the root causes of OOM errors. Mprof first extracts
large objects from heap dumps, and then uses quantitative rules
to trace the large objects back to the problematic user code,
data, and configurations. Figure 5 illustrates the procedure of
OOM cause identification when an OOM error occurs in a re-
ducer. The concrete steps are as follows.

5.1. Identify memory-consuming code snippets
This step first extracts large user objects from the OOM

heap dump, and then identifies the objects’ referenced code
snippets. A heap dump is actually an object graph, in which
each vertex represents an object and each edge denotes the ob-
ject reference. To extract the large objects, the object graph
is first transformed into a dominator tree [20]. Then, large
(e.g., 3MB+) user objects (U) are extracted by identifying
the objects’ referenced methods. For example in Figure 5, if

8

Identify memory-consuming code
snippets

Extract user objects from the
OOM heap dump

F UU

Identify root causes in user code
and error-related data

Identify skewed data and
improper configurations

map() reduce()

Object graph Dominator tree

at method3()
at method2()
at method1()
at reduce()

at methodN() reduce(k, list(v)) {
 while(values.next) {
 method1();
 method2();
 method3();
 }
}

OOM stack trace Code snippets
OOM

K1 K2 K1 K2 K3 K1 K2 K3 K4
V V V V V V V V V
G1 G2 G3

User code memory profiler Dataflow profiler

configurations

80%
50%

Check skewness/
unbalancedness

f ff f

Detect memory
usage patterns,
Identify error-

related data (G3)referenced by
accumulation

usage
history

error-
related
data

Figure 5: The procedure of cause identification when an OOM error occurs in reduce()

Table 5: Rules to identify the root causes in user code and the error-related data

ID Symptoms Root causes in user code Error-related data Next action
1 Continuous growth in [R1,Rn) Large map-level accumulated results All the input records Check input split size
2 Continuous growth in [G1,Gm) Large reduce-level accumulated results All the input records Check data partition (Rule 6)
3 Continuous growth in group Gm Large group-level accumulated results Records in group Gm Check hotspot key (Rule 7)
4 Sharp growth at Rn Large record-level intermediate results Current record Rn Check large single record (Rule 8)
5 Objects at R1 are huge Large external data The external data Output Size(Objects at R1/G1)

* Sharp growth: The slope of memory growth at Rn (i.e., Mo in Figure 4) is an outlier compared to the slopes of memory growth in the other records (e.g.,
M1,M2, . . . ,M5 in Figure 4).
* Objects at R1 are huge: The size of user objects at R1 is huge (e.g., occupies 30% of the memory space).

an ArrayList is referenced by method2() and indirectly refer-
enced by reduce(), it is a user object generated in reduce().
Memory-consuming code snippets (methods) are identified by
calculating the total size of user objects referenced by each
method in the OOM stack. For example in Figure 5, 80%
(e.g., 80MB) user objects are referenced by method1() and
50% user objects are referenced by method2(). Listing 1
shows that a 411MB user object wcMap:HashMap is now ref-
erenced by map(), so the memory-consuming method is Map-
per.map(InMemWordCount.java:49).

at java.util.HashMap.put(HashMap.java:372)
at mapper.InMemWordCount$Mapper.map(InMemWordCount.java:49)

=> wcMap:java.util.HashMap @ 0xdbc5e0c0 (430,875,440 B)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:203)
...
at org.apache.hadoop.mapred.Child.main(Child.java:404)

Listing 1: Memory-consuming user object and its referenced methods

The buffered data can also be extracted from the heap dump
by identifying the objects’ names. In Hadoop applications,
org.apache.hadoop.mapred.Merger.Segment denotes a buffered
partition and kvbuffer denotes the map buffer.

5.2. Identify root causes in user code and error-related data

To figure out why user objects become so large and which
records are error-related, Mprof detects the memory usage pat-
terns from the memory usage curve of accumulated and inter-
mediate results. Suppose that an OOM error occurs at Rn in
map() or at Rn in Gm in reduce(). If map/reduce/group-level
objects demonstrate continuous memory growth, Mprof con-
cludes that user code accumulates large intermediate results in
memory and the error-related data are the objects’ correspond-
ing input records/groups (i.e., [R1,Rn), [G1,Gm), or [R1,Rn)
in Gm). If the memory growth at Rn is a sharp growth (i.e.,
the slope of memory growth is an outlier compared to that in

the other records), Mprof concludes that the user code gen-
erates large record-level intermediate results and the error-
related data is current record Rn. Continuous growth includes
linear growth and non-linear growth (detected by performing
linear/non-linear regression). Outlier has a statistical definition
in [21], where a value xi larger than the UpperInnerFence of
all the values (x1,x2, . . . ,xn) is regarded as an outlier. For ex-
ample in Figure 6, x15 and x16 are detected as outliers, because
their corresponding values (150 and 140) are larger than the
UpperInnerFence (135) of all the values.

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

Q3
(75th percentile)

Q1
(25th percentile)

Q2

Outlier

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x11

x12
x13

x14
x15

x16
x15

x16

UpperInnerFence
= Q3+1.5*(Q3-Q1)

Data distribution
(e.g., #records in each <k, list(v)> group)

Outlier detection
(e.g., detect abnormal large group Gi)

sort

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
G11

G12
G13

G14
G15

G16
e.g.

G15
G16

Figure 6: Outlier detection

Based on the detected memory usage patterns, we designed
5 statistical rules in Table 5 to identify the root causes in user
code and the error-related data. Rule 1, 4, and 5 are applied in
map(), while rule 2, 3, 4, and 5 are applied in reduce(). Once
the symptoms of rule r are matched, rule r will be performed.
For example in rule 3, the continuous growth of user objects in
[R1,Rn) in Gm denotes large group-level accumulated results,
which indicates that (1) the objects generated in the while()

9

Table 6: Skew measurement

Skew type Description Metrics
Partition skew Partitions are unbalanced Gini(records in AP1, records in AP2, . . . , records in APr)> 0.4*
Group skew Gm is an outlier group in APi Records in Gm ≥ UpperInnerFence(records in G1, records in G2, . . . , records in Gm)�
Record skew Rn is an outlier record in Gm Rn ≥ UpperInnerFence(R1, R2, . . . , Rn)

* APi represents the number of records in aggregated partition i, while r denotes the reduce number.
� UpperInnerFence(x1,x2, . . . ,xn) = Q3[x1,x2, . . . ,xn] + 1.5 ∗ IQ[x1,x2, . . . ,xn], where Q3 is the third quartile of [x1,x2, . . . ,xn], and IQ is the interquartile of
[x1,x2, . . . ,xn]. G j represents the j-th group in APi. R j denotes the size of j-th record in group Gm.

Table 7: Rules to identify the skewed data and improper configurations

ID Symptoms Root causes Improper configurations
6-1 Rule 2 is matched & partition skew is not matched Improper data partition Small reduce number
6-2 Rule 2 is matched & partition skew is matched Improper data partition Unbalanced partition function
7 Sharp growth in Gm & group skew is matched Hotspot key The Key design is bad
8 Rule 4 is matched & record skew is matched Large single record None
9-1 Fixed buffer exists & map() is nearly finished Large framework buffer Large fixed buffer
9-2 Virtual buffer is full & combine()/reduce() is nearly finished Large framework buffer Large virtual buffer

* Sharp growth: The slope of memory growth in Gm (i.e., Sm) is an outlier compared to the slopes of memory growth in the other groups (i.e., S1, . . . ,Sm−1).
* Nearly finished: x% (e.g., 80%) of the input records have been processed. If we lower the buffer size, user code may finish successfully.

statement (as shown in Figure 5) are accumulated in group-level
buffer; (2) the error-related data is the records in Gm (e.g., G3
in Figure 5). The next action of rule 3 is to invoke rule 7 to
check whether Gm is a result of hotspot key. For another ex-
ample in rule 4, the sharp growth at current Rn indicates that
user code generates large intermediate results during process-
ing Rn. So, the next action is to invoke rule 8 to check whether
Rn is a large single record. If the memory usage curve cannot
be matched by any rules, our profiler will figure out the highest
slope of memory growth (i.e., the largest Si and Mi), and regard
the corresponding input records as the error-related data.

5.3. Identify the skewed data and improper configurations

To identify whether the error-related data is a result of data
skew and which configurations are problematic, Mprof per-
forms skew measurement (listed in Table 6) on the dataflow, in-
cluding partition skew, group skew (extremely large 〈k, list(v)〉
group), and record skew (extremely large record). Gini in-
dex is commonly used to measure the inequality among val-
ues of a frequency distribution (e.g., the income inequality).
Here, it is used to measure the partition skew (i.e., the in-
equality of record distribution in all the partitions). To com-
pute gini index, Mprof first sorts the partitions by their record
numbers (#records). Then, Mprof plots the proportion of the to-
tal #records (y-axis) that is cumulatively earned by the bottom
(smallest) x% of the partitions. For example in Figure 7, the
left figure represents the sorted number of records in ten parti-
tions, while the right figure demonstrates how to compute gini
index. For each partition APi, its x-value represents the parti-
tion proportion (i/#partition), while its y-value represents the
record proportion (i.e., the ratio of cumulative records in AP1→i
to total records). Gini index is equal to A divided by (A+B),
which measures how far the record distribution is from uni-
form distribution. A gini index of zero denotes perfect equal-
ity. Gini index > 0.4 is well-recognized as inequality, so Mprof

uses this inequation to determine partition skew. Outlier al-
gorithm [21] is used to measure group skew (whether current
Gm has much more records than the other groups) and record
skew (whether current Rn is much larger than the other records
in Gm). For example in Figure 6, if x-axis represents group Gi
and y-axis represents the number of records in Gi, the detected
outlier groups are G15 and G16.

20

40

60

80

100

120

140

160

AP1

#records

180

AP2
AP3

AP4
AP5

AP6
AP7

AP8
AP9

AP10
(i/#partitions) ⇤ 100%

Pi
j=1 records in AP j

records in all AP i

AP i

A
B

Record proportion (%)

Partition
proportion (%)

Partition distribution
#records in each aggregated partition APi

Partition skew measurement
Gini index of partition distribution

Gini index =
A

A + B
= 0.41

Line o
f e

quali
ty

Figure 7: Partition skew measurement

Based on the skew analysis, we designed 4 statistical rules
(6-1, 6-2, 7, and 8) in Table 7 to identify the skewed data and
improper configurations. For example in rule 6-2, if the error-
related data is the whole aggregated partition and partition skew
is identified, the root cause is unbalanced partition function. In
rule 7, if the memory growth in Gm is much steeper than that
in the other groups (i.e., sharp growth) and Gm is an outlier
(extremely large) group, hotspot key is identified. In addition,
Rule 9-1 and 9-2 are designed to figure out whether the root
causes are large framework buffers.

10

6. Evaluation

Our evaluation answers the following three questions:
• RQ1: Can Mprof effectively diagnose the real-world

OOM errors in MapReduce applications? We reproduced
28 real-world OOM errors, and then performed Mprof on
them to see whether the root causes can be correctly identi-
fied.
• RQ2: How much overhead does Mprof add to the run-

ning jobs? We rerun each job with and without Mprof, and
regard their time difference as the overhead.

• RQ3: How does Mprof trace OOM errors back to the
problematic user code, skewed data, and improper con-
figurations in real-world OOM errors? We performed 3
case studies to demonstrate the diagnosis procedure.

6.1. Experimental setup

We reproduced 28 real-world OOM errors that occur in di-
verse Hadoop MapReduce applications (jobs), including raw
MapReduce code, Apache Pig [6], Apache Hive [12], Apache
Mahout [13], and Cloud9 [14]. Twenty of the errors are selected
from the OOM cases described in our empirical study. The se-
lection criteria are that the error should be reproducible (i.e.,
with detailed data characteristics, user code, and OOM stack
trace). Eight errors are new reproducible OOM errors collected
from Mahout/Hive/Pig JIRAs and open forums after the empir-
ical study was performed. Since we do not have the original
dataset, we use public dataset (Wikipedia) and synthetic dataset
(random text and a well-known benchmark [22] that can gen-
erate skewed data) instead. We made sure that the OOM stack
traces of our reproduced jobs are the same as that reported by
the users. All the jobs are conducted on a 11-node cluster using
our enhanced Hadoop-1.2 [23], which supports enhanced logs
and generating heap dumps at specified Ri and Gi. Each node
has 16GB RAM and the heap size of each mapper/reducer is
set to 1GB. The default job configurations are as follow: input
split size is 256MB, map buffer size is 400MB, shuffle buffer
size is 60%, reduce number is 10, and the partition function is
HashPartition. If the job does not generate OOM errors un-
der default configurations, we will increase the job’s input split
size, map buffer size, shuffle buffer size, and decrease its reduce
number. Finally, we got 28 jobs that can generate OOM errors
under specific configurations listed in Table 8.

For each job, we first run it as a normal job. When an OOM
error occurs, we set the number of heap dumps to be 7 and
rerun the job3. While running, Mprof profiles the job’s dataflow
using dataflow counters and profile the memory usage of user
code using heap dumps. Mprof leverages Eclipse MAT [24]
to extract user objects and the buffered data from each heap
dump. After that, Mprof performs correlation analysis on the

3In general, more heap dumps means more accurate the memory profiling
will be. Mprof needs at least 3 heap dumps (before the first record is processed,
before the last record is processed, and at the time of OOM). Here, we want
to check if a small number can achieve both low overhead and effectiveness.
According to our experience, we chose 7. How to choose the number of heap
dumps is discussed in Section 7.

configurations, dataflow, and memory usage. Finally, Mprof
uses the diagnostic rules to identify the root causes.

6.2. Overall results

Table 8 illustrates the error diagnosis results, including job
names (with configurations and urls to the real-world OOM
errors), matched rules, the causes identified by Mprof, and
whether the identified causes are the root causes. In 23 cases,
the causes identified by Mprof are the same as the root
causes. In the other 5 cases, the identified causes are par-
tially the same as the root causes (i.e., the 1st root cause is
identified but the 2nd root cause has not been identified).
The reason of partial correctness is that our current skew mea-
surement (illustrated in Table 6) is incomplete. For example,
in case Wordcount-like, both large shuffle buffer and improper
data partition are the root causes. However, the second root
cause is missing, because our skew measurement currently only
detects partition skew but does not detect whether each par-
tition is extremely large. In another case ReduceMerge, the
root causes contain hotspot key, which means that the k’s corre-
sponding list(v) size is an outlier compared with other k’s list(v)
size. However, our skew measurement currently only detects
the list(v) length skew (i.e., the number of v in list(v) is an out-
lier compared with others), not list(v) size skew. More skew
measurement will be added in future work. In addition, in 6
cases (labeled 3), the memory-consuming code snippets cannot
be identified, because the user code is generated by high-level
languages (e.g., SQL-like Pig/Hive script).

Above results indicate that Mprof can effectively identify
the root causes of OOM errors in MapReduce applications
(41 out of the 46 root causes are correctly identified). The
cause patterns of problematic user code are all identified due
to the lifecycle-aware memory monitoring strategy and mem-
ory usage pattern detection. The cause patterns of skewed data
and improper configurations are partially identified due to the
dataflow model, skew measurement, and statistical rules.

6.3. Performance overhead

Since Mprof relies on enhanced logs and heap dumps to
profile the job’s dataflow and memory usage of user code,
it adds some overhead to the running jobs. The abso-
lute overhead is defined as ExecutionTime(job with Mprof) −
ExecutionTime(job without Mprof). The last column in Table 8
lists Mprof ’s overhead and the job’s total execution time with
Mprof. For example in case NLPLemmatizer, 135 means that
the overhead is 135 seconds, which occupies 23% of the job’s
execution time (575 seconds). The absolute overhead spans
from 82 seconds to 231 seconds, and the mean is 137.4 sec-
onds. Since the overhead mainly comes form heap dumping
and heap analysis, we can conclude that the average time of
dumping and analyzing a single heap is 137.4/7 = 19.6 seconds
(7 is the number of heap dumps). This time cost is linearly re-
lated to the heap size. For example, it takes 10-22 seconds to
dump and analyze a 1GB heap, while it takes 6-8 seconds to
dump and analyze a 300MB heap. The relative overhead (i.e.,
the ratio of absolute overhead to the total execution time)

11

Table 8: Results of OOM error diagnosis

Phase Job name (confs) Rules Identified causes Root causes? Verification(FixMethods) Overhead
Map NLPLemmatizer 4 Large intermediate results (282MB) (1st) X Split Rn into small 135 (23%)

(256M,400M,0.6,10,Hash) 8 Large single 〈k,v〉 record (50MB) (2nd) X records 575 (sec)
MahoutSSVD 4 Large intermediate results (326MB) (1st) X Split Rn into small 112 (17%)
(512M,400M,0.6,10,Hash) 8 Large single 〈k,v〉 record (110MB) (2nd) X records 661
InMemWordCount 1 Large map-level accumulated results (412MB) (1st) X ↓ Input split size, 121 (18%)
(512M,400M,0.6,10,Hash) 1 Large input split size (512MB) (2nd) X Use FixMethod(a) 687
MapSideAggregation 1 Large map-level accumulated results (476MB) (1st) X 3 ↓ Input split size, 95 (22%)
(256M,400M,0.6,10,Hash) 1 Large input split size (256MB) (2nd) X Use FixMethod(a) 432
GroupByOperator 1 Large map-level accumulated results (498MB) (1st) X 3 ↓ Input split size, 97 (19%)
(512M,400M,0.6,10,Hash) 1 Large input split size (512MB) (2nd) X Use FixMethod(a) 501
PigDistinctCount 3 Large group-level accumulated results (358MB) (1st) X 3 Use FixMethod (a) 82 (16%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G8 > UpperInnerFence(G1, . . . ,G8)) (2nd) X 497
CDHJob 9-1 Large map buffer (500MB) (1st) X ↓ map buffer size 113 (38%)
(256M,500M,0.6,10,Hash) 297
MahoutBayes 5 Large external data (2.8GB) (1st) X ↓ external data 87 (31%)
(256M,400M,0.6,10,Hash) (trained model) 273
MahoutConvertText 5 Large external data (1.8GB) (1st) X+ ↓ external data 91 (31%)
(256M,400M,0.6,10,Hash) (training data) 292
HashJoin 5 Large external data (1.6GB) (1st) X+ ↓ external data 114 (25%)
(256M,400M,0.6,10,Hash) (the first table) 449
HashSetJoin 5 Large external data (1.1GB) (1st) X ↓ external data 87(14%)
(256M,400M,0.6,10,Hash) (100K+ join keys) 620

Shuffle ShuffleInMemory 6-2 Improper data partition (Gini(AP1, . . . ,AP5)> 0.4) (1st) X+ Use RangePartition 110 (38%)
(256M,400M,0.6,5,Hash) 285
Wordcount-like 9-2 Large shuffle buffer (70%) (1st) X ↓ shuffle buffer 129 (47%)
(256M,400M,0.7,5,Hash) Improper data partition (Gini(AP1, . . . ,AP5)< 0.4) (2nd) missing ↑ partition number 272
PigJoin 9-2 Large shuffle buffer (70%) (1st) X ↓ shuffle buffer 123 (27%)
(256M,400M,0.7,5,Hash) Improper data partition (Gini(AP1, . . . ,AP5)< 0.4) (2nd) missing ↑ partition number 455
ShuffleError 9-2 Large shuffle buffer (70%) (1st) X ↓ shuffle buffer 104 (24%)
(256M,400M,0.7,10,Hash) 427
NestedDISTINCT 3 Large group-level accumulated results (437MB) (1st) X+ 3 Use FixMethod (b) 179 (31%)
(256M,400M,0.6,10,Hash) 583
PigOrderLimit 3 Large group-level accumulated results (402MB) (1st) X 3 Use FixMethod (b) 194 (27%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G91 > UpperInnerFence(G1, . . . ,G91)) (2nd) X 723

Reduce CollaborativeFiltering 5 Large external data (1.3GB) (1st) X ↓ external data 89 (23%)
(256M,400M,0.6,10,Hash) (100million+ items) 385
GraphPartitioner 3 Large group-level accumulated results (433MB) (1st) X Use FixMethod (c) 205 (21%)
(256M,400M,0.6,10,Hash) 971
FindFrequentValues 3 Large group-level accumulated results (391MB) (1st) X Use FixMethod (b) 138 (11%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G31 > UpperInnerFence(G1, . . . ,G31)) (2nd) X 1231
ReduceMerge 3 Large group-level accumulated results (372MB) (1st) X Use FixMethod (a), 136 (9%)
(256M,400M,0.6,10,Hash) Hotspot key (G12 < UpperInnerFence(G1, . . . ,G12)) (2nd) missing Shrink 〈k, list(v)〉 group 1522
PositionalIndexer 3 Large group-level accumulated results (396MB) (1st) X Use FixMethod (a) 144 (17%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G25 > UpperInnerFence(G1, . . . ,G25)) (2nd) X 853
BuildInvertedIndex 3 Large group-level accumulated results (415MB) (1st) X Use FixMethod (c) 231 (16%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G231 > UpperInnerFence(G1, . . . ,G231)) (2nd) X 1478
CooccurMatrix 3 Large group-level accumulated results (372MB) (1st) X Use FixMethod (c) 155 (6%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G16 > UpperInnerFence(G1, . . . ,G16)) (2nd) X 2532
JoinLargeGroups 3 Large group-level accumulated results (396MB) (1st) X+ 3 Use FixMethod (a), 187 (10%)
(256M,400M,0.6,10,Hash) Hotspot key (G61 < UpperInnerFence(G1, . . . ,G61)) (2nd) missing Shrink 〈k, list(v)〉 group 1914
CrawlDatum 3 Large group-level accumulated results (421MB) (1st) X Use FixMethod (c) 202 (21%)
(256M,400M,0.6,10,Hash) Hotspot key (G319 < UpperInnerFence(G1, . . . ,G319)) (2nd) missing Shrink 〈k, list(v)〉 group 953
TraceDataAnalysis 3 Large group-level accumulated results (516MB) (1st) X Use FixMethod (c) 196 (11%)
(256M,400M,0.6,10,Hash) 7 Hotspot key (G115 > UpperInnerFence(G1, . . . ,G115)) (2nd) X Shrink 〈k, list(v)〉 group 1725
PutSortReducer 3 Large group-level accumulated results (658MB) (1st) X Use FixMethod (c) 171 (12%)
(256M,400M,0.6,10,Hash) 8 Large intermediate results (2nd) X 1386

* (1st) X means that the first root cause has been correctly identified. (2nd) missing means that the second root cause has not been identified. 3 means that the
memory-consuming code snippets cannot be identified (because the user code is generated by high-level languages). + means that the root causes are not identified
by the experts, but by indirect verification (i.e., trying the fix methods to verify if the OOM errors will disappear).
* Shrink 〈k, list(v)〉 group: Redesign the k to avoid hotspot key. For example, using composite key 〈(k,k′),v〉 instead of 〈k,v〉 may reduce the number of records
in each group.
* FixMethod: (a) Change the accumulative operation to one-pass streaming operation. For example, to deduplicate the records in a group, user code does not need
to accumulate the distinct records in a Set. Instead, it can utilize the framework’s sort mechanism to sort the records (i.e., Secondary Sort [25]). Then, sequential
comparison can be performed to find the distinct records. (b) Divide the accumulative operation into several memory-efficient lightweight operations. (c) Spill the
accumulated results into disk periodically and then perform on-disk merge.
* Overhead: The first number (e.g., 135 seconds in NLPLemmatizer) denotes the absolute overhead, while the x% (e.g., 23%) represents the relative overhead. The
second number (e.g., 575 seconds) denotes the job’s total execution time with Mpro f .

12

http://stackoverflow.com/questions/20247185/java-lang-outofmemoryerror-on-running-hadoop-job
https://issues.apache.org/jira/browse/MAHOUT-1700
http://puffsun.iteye.com/blog/1902837
http://stackoverflow.com/questions/16684712/out-of-memory-due-to-hash-maps-used-in-map-side-aggregation
https://issues.apache.org/jira/browse/HIVE-1139
http://mail-archives.apache.org/mod_mbox/pig-user/201105.mbox/%3CBANLkTi=Tnc8icJo48LKQDhEuT=jXBpD+oA@mail.gmail.com%3E
http://stackoverflow.com/questions/13674190/cdh-4-1-error-running-child-java-lang-outofmemoryerror-java-heap-space
http://stackoverflow.com/questions/10080800/outofmemory-error-when-running-the-wikipedia-bayes-example-on-mahout
http://stackoverflow.com/questions/22921936/mahout-exception-java-heap-space
http://stackoverflow.com/questions/15316539/hadoop-mapper-over-consumption-of-memoryheap
http://www.mikevalenty.com/hadoop-mapreduce-join-optimization-with-a-bloom-filter/
https://issues.apache.org/jira/browse/MAPREDUCE-5580
http://stackoverflow.com/questions/19298357/out-of-memory-error-in-mapreduce-shuffle-phase
http://stackoverflow.com/questions/17162679/pig-join-gets-outofmemoryerror-in-reducer-when-mapred-job-shuffle-input-buffer-p
http://jason4zhu.blogspot.com/2014/11/shuffle-error-by-java-lang-out-of-memory-error-java-heap-space.html
http://mail-archives.apache.org/mod_mbox/pig-user/201201.mbox/%3C4F174294.8090509@cern.ch%3E
https://mail-archives.apache.org/mod_mbox/pig-user/201201.mbox/%3CD570DEB688737C44A53497A16D0A7CAC0789B0@EAGF-ERFPMBX42.ERF.thomson.com%3E
https://issues.apache.org/jira/browse/MAHOUT-1032
http://stackoverflow.com/questions/12831076/oom-exception-in-hadoop-reduce-child
http://stackoverflow.com/questions/23042829/getting-java-heap-space-error-while-running-a-mapreduce-code-for-large-dataset
http://stackoverflow.com/questions/15541900/why-does-the-last-reducer-stop-with-java-heap-error-during-merge-step
http://www.cs.cmu.edu/~lezhao/TA/2010/HW2/
http://stackoverflow.com/questions/17980491/building-inverted-index-exceed-the-java-heap-size
http://mail-archives.apache.org/mod_mbox/hadoop-common-user/201010.mbox/%3CAANLkTi=aNjiUezv-a9yFZpbXXWFsbjeKKyd2KmqCUAWc@mail.gmail.com%3E
http://stackoverflow.com/questions/22281188/fail-to-join-large-groups
http://www.wangzhe.tech/MapReduce/MapReduce%E4%BB%BB%E5%8A%A1-java.lang.OutOfMemoryError%EF%BC%9AGC%20overhead%20limit%20exceeded/2016/08/09/
http://www.jianshu.com/p/3a977ec4a17c
http://blog.jrwang.me/2016/gc-overhead-limit-in-putsortreducer/

spans from 6% to 47%, and the mean is 21.6%. This range is
wide because the overhead is not sensitive to the job’s execution
time (mainly depends on the number and sizes of heap dumps).
If the total execution time is short, the relative overhead will be
high. The overhead of enhanced logs can be omitted, since it
only takes less than 1 second to count the dataflow and perform
logging.

Above results show that Mprof adds an average of 19.6 ∗
heapNumber seconds to the running jobs. We believe that this
overhead is acceptable for a diagnostic tool. Since the dataflow
profiler and user code memory profiler can be turned off in
normal jobs, Mprof adds no overhead to the normal jobs if no
OOM errors occur.

6.4. Case studies
The representative MapReduce application types contain text

processing, data mining, SQL analysis, Web indexing, graph
computing, etc. Since the number of cases used in this study
is limited, our selection criteria try to cover (1) representative
application types as many as possible; (2) different types of
user code; (3) OOM errors that occur in map(), reduce(), and
combine(). Based on these criteria, we selected three applica-
tions as shown in Table 9.

Table 9: Coverage of the selected cases

Application Type User code OOM in
NLPLemmatizer Text processing Raw Java code map()
CooccurMatrix Data mining Raw Java code reduce()
PigDistinctCount Big SQL SQL-like script combine()

The following case studies illustrate how Mprof figures out
the correlation among configurations, dataflow, and memory
usage. The studies also detail how Mprof uses quantitative rules
to identify the root causes of real-world OOM errors.

6.4.1. Case study 1: NLPLemmatizer
This case aims to lemmatize the words in Wikipedia through

invoking a third-party library named StanfordLemmatizer. This
OOM error occurs in Line 5 in the following map(), while
it is processing the 76th record (R76). Each record denotes a
line of the Wikipedia (its text has been compacted). From the
code, we cannot directly identify the root causes, which can be
large accumulated results kept in slem, large intermediate re-
sults generated at R76, or both. After deducing the trend of map-
level user objects (shown in Figure 8 (a)), our profiler identifies
that there is not a linear/non-linear growth in [R1,R76), but a
sharp growth at current record R76. Our profiler further veri-
fies that this sharp growth is only related to R76 (drawn as a
red solid line). So, Rule 4 is matched and the root cause is that
map() generates large record-level intermediate results during
processing R76. Our profiler also figures out that the large in-
termediate results consist of a 232MB ArrayList and a 50MB
String, which are referenced by the memory-consuming method
slem.lemmatize(). Then, Rule 4 invokes Rule 8 to identify if
R76 is a large single record. Our profiler figures out that R76
is 50MB, which is much larger than the other records (the sec-
ond largest record is 12MB). So, Rule 8 is matched and the

second root cause is that R76 is a large single record (a super
long line). Our identified causes are the same as the root causes
identified by the expert (the author): For tagging each word in
the line, lemmatize() allocates large temporary data structures
that might be 3 orders of magnitude larger than the line. To fix
this error, users can split the super long line into multiple small
lines (records).

1 public class Mapper {
2 StanfordLemmatizer slem = new StanfordLemmatizer();
3 public void map(Long key, Text value) {
4 String line = value.toString();
5 for(String word: slem.lemmatize(line)) => 282 MB
6 emit(word, 1);
7 }
8 } Case Study 1

6.4.2. Case study 2: CooccurMatrix
This case aims to compute the word co-occurrence matrix of

Wikipedia. As shown in the following code, reduce() allocates
a self-defined data structure named OHMap to aggregate the
records in each 〈k, list(v)〉 group. Each key is a word and value
is an OHMap that holds this word’s neighboring words. The
OOM error occurs in Line 6 of reduce(), while it is processing
the 779,551st record in the 16th group (G16). From the source
code, we do not know the semantics of plus() and cannot iden-
tify the root causes. Our profiler identifies that there is not a
linear/non-linear growth in [G1,G16), since the corresponding
slopes of memory growth in [G1,G16) are 0, as shown in Fig-
ure 8 (b). However, there is a linear growth in group G16, as
shown in Figure 8 (c). So, Rule 3 is matched and the root cause
is large group-level accumulated results. The group-level ac-
cumulated results consist of a 372MB wordMap:OHMap ref-
erenced by memory-consuming method plus() (i.e., plus() ac-
cumulates too many words in the group-level buffer wordMap).
Then, Rule 3 invokes Rule 7 to check if the too many words are
the result of hotspot key. Our profiler figures out that the num-
ber of records in group G16 has 6 times more records than the
other groups and the hotspot key (hotspot word) is “of”. In ad-
dition, there is a sharp growth at current record R779,551. How-
ever, our profiler verifies that this growth (drawn as a red dotted
line) is related to all the records in G16, because the growth is
only 30MB when reduce() only processes R779,551. The key-
word “Arrays.copyOf()” in this error’s OOM stack trace indi-
cates that this sharp growth is a result of data structure expan-
sion. Data structures such as ArrayList and HashMap can ex-
pand 1.5 or 2 times of the original size when they are nearly
full. To fix this error, users need to change this in-memory ag-
gregation to on-disk merge/aggregation.

1 public class Reducer {
2 void reduce(Text key, Iterable<OHMap> values) {
3 Iterator<OHMap> iter = values.iterator();
4 OHMap wordMap = new OHMap();
5 while (iter.hasNext()) { // for(V value: values)
6 wordMap.plus(iter.next()); => wordMap:OHMap(372MB)
7 }
8 emit(key, wordMap);
9 }

10 } Case Study 2

13

Figure 8: Quantified correlation between user objects and the input data of user code

6.4.3. Case study 3: PigDistinctCount

This job is automatically generated by a SQL-like Pig script,
which tries to count the number of distinct values in column
pageurl for each distinct pagerank in tableA. This script first
aggregates the tuples using GroupBy(pagerank). Then, in each
group, it uses count(distinct pageurl) to deduplicate the tuples
that have the same value of pageurl. The stack trace shows that
the OOM error occurs in combine(), while it is processing the
247,932nd record in 8th group (G8). Since we cannot see the
explicit combine(), we cannot identify the root causes.

1 pTable = LOAD tableA as (pagerank, pageurl, duration);
2 rankTable = GROUP pTable BY pagerank;
3 urlTable = FOREACH rankTable {
4 urls = DISTINCT urlTable.pageurl;
5 GENERATE group, COUNT(urls), SUM(pTable.duration);
6 };
7 STORE urlTable into "/output/newTable"; Case Study 3

Our profiler figures out that there is a continuous growth
in group G8 (as shown in Figure 8 (d)), and G8 has much
more records (247,932 records) than the other groups (the sec-
ond largest group has 69,257 records). So, Rule 3 is matched
and the root cause is that combine() generates large group-
level accumulated results during processing 247,932 records
in G8 (i.e., a group-level buffer holds too many distinct tu-
ples that have the same pagerank). Similar to Case 2, the
sharp growth at R247,932 is related to the all the records in
G8 and is the result of data structure expansion. Our pro-
filer further figures out the group-level accumulated results
contain a 281MB pig.data.InternalDistinctBag and a 77MB
pig.data.BinSedesTuple, which are referenced by the memory-
consuming method PigCombine.processOnePackageOutput().
To identify the group-level buffer, we refer to the Pig API and
find the buffer is an ArrayList allocated by InternalDistinct-
Bag for in-memory sort. To identify the high-level memory-
consuming operator, we further refer to the Pig manual [26]
and identify that the DISTINCT is the cause. This operator al-
locates a data structure (i.e., InternalDistinctBag) to accumu-
late all the input records to sort and deduplicate them. To fix
this error, users can change the key to shrink the group or divide
DISTINCT operator into multiple streaming operators.

The above case studies reveal that (1) Mprof can figure out
the correlation between memory usage and dataflow through
memory profiling and identifying the memory usage patterns.
(2) Mprof can figure out the correlation between dataflow and

configurations through dataflow profiling and skew measure-
ment. (3) Mprof can use quantitative rules to identify the cause
patterns. (4) Mprof can identify the memory-consuming code
snippets if user code is written manually (i.e., not generated by
high-level languages).

7. Limitation and Discussion

This section discusses the limitation of our empirical study,
Mprof ’s limitation, Mprof ’s generality, how to select the num-
ber of heap dumps, and the potential ways to improve Mporf ’s
performance.

7.1. Limitation of our empirical study

Representativeness of applications Our empirical study
only covers the applications that run atop open-source frame-
works. Although many companies (e.g., Facebook and Yahoo!)
use Hadoop frameworks, some other companies have built their
own (e.g., Dryad in Microsoft). We have not studied the ap-
plications on these private frameworks. However, our studied
cases have covered widely-used Hadoop applications, such as
Apache Pig, Apache Hive, and Apache Mahout.

Pattern completeness Since the root causes of 153 OOM
errors are unknown, there may be some new OOM cause pat-
terns or fix patterns. Moreover, the users’ error descriptions and
the experts’ professional answers may only cover the major root
cause when an OOM error has multiple root causes.

Bias in our judgment Although we tried our best to under-
stand, identify, and classify the root causes, there may be still
inaccurate identification or classification. For example, if there
are multiple professional answers, we only select the ones that
are accepted by users. However, the other answers may also be
right in some cases.

7.2. Limitation and discussion of Mprof

Limitation The main drawback of our profiler is that it
requires a little manual effort. (1) For memory profiling,
users need to rerun the failed job and set the number of heap
dumps. (2) For cause identification, users need to link the iden-
tified cause patterns (e.g., large accumulated results, memory-
consuming methods, and skewed data) with the code semantics,
especially when user code is generated by high-level languages.

14

For example in the case NLPLemmatizer, our profiler can fig-
ure out the large record-level intermediate results contain an
ArrayList, but it does not know what this data structure is used
for. It is challenging to automatically understand user code se-
mantics.

Generality Although our profiler is designed for MapRe-
duce, it is useful for other big data frameworks such as Dryad
[27] and Spark [28]. These MapReduce-like frameworks have
flexible DAG-based dataflow, but their primitive data dependen-
cies are the same as MapReduce dataflow. These frameworks
support pipelining, but user code in their applications still pro-
cesses the 〈k,v〉 records in a streaming style. So, the user ob-
jects still have fixed lifecycles. Moreover, job configurations
such as buffer size, partition number, and partition function are
also available in these frameworks. In addition, our profiler can
also be used to diagnose the causes of high memory consump-
tion.

Selection criteria of the number of heap dumps How to
select the number of heap dumps (h) is a trade-off between the
overhead and the accuracy of memory profiling. The evaluation
shows that the average time of dumping and analyzing a single
heap is 19.6 second and a small number (7) is still effective. So,
users can choose this number or adjust the number according to
their expected overhead (19.6∗h seconds).

8. Related Work

Failure study on big data applications Many researchers
have studied the failures in big data applications/systems. Li et
al. [29] studied 250 failures in SCOPE jobs and found the root
causes are undefined columns, wrong schemas, incorrect row
format, etc. They also found 3 OOM errors that are caused by
accumulating large data (e.g, all input rows) in memory. The 3
errors can be classified to the large accumulated results pattern
in our study. Kavulya et al. [30] analyzed 4100 failed Hadoop
jobs, and found 36% failures are Array indexing errors and 23%
failures are IOExceptions. Xiao et al. [31] studied the correct-
ness of MapReduce programs. They summarized 5 patterns of
non-commutative reduce functions, which will generate incon-
sistent results if re-executed. Zhou et al. [32] studied the qual-
ity issues of big data platform in Microsoft. They found 36%
issues are caused by system side defects and 2 issues (1%) are
memory issues. Gunawi et al. [33] studied 3655 development
and deployment issues in cloud systems such as Hadoop and
HBase [34]. They reported 1 OOM error in HBase (users sub-
mit queries on large data sets) and 1 OOM error in Hadoop File
System (users create thousands of small files in parallel). Dif-
ferent from the above studies, our work focuses on analyzing
the root causes of OOM errors.

Memory leak detection Memory leak means that users for-
get to release the useless objects. Memory leaks can lead to
OOM errors, so researchers have proposed many memory leak
detectors. For example, Cork [10] uses object’s type growth
to identify the data structures that may contain useless objects.
Container profiling [11] tracks the operations on containers to
identify the unused data entries. However, these detectors can-
not be directly used to diagnose OOM errors in MapReduce ap-

plications, since they cannot figure out the correlation between
a MapReduce application’s runtime memory usage and its static
information. In our empirical study, we have not found mem-
ory leaks. One reason is that user code is written by GC-based
languages (Java/Scala) in our studied applications. The other
reason is that it is hard for us to judge whether the large data/re-
sults in user code are necessarily or unnecessarily persisted.

Memory management optimization FACADE [35] pro-
poses a compiler and runtime to separate data storage from data
manipulation: data are stored in the unbounded off-heap, while
heap objects are created as memory-bounded facades for func-
tion calls. InterruptibleTask [36] presents a new type of data-
parallel tasks, which can be interrupted upon memory pressure
(excessive GC effort or OOM errors) and execute interrupt han-
dling logics specified by users. The tasks can reclaim part or
all of its consumed memory when memory pressure comes,
and re-activate when the pressure goes away. Our study shows
that OOM errors can be caused by data skew, while SkewTune
[37] provides a dynamic repartition mechanism for MapReduce
framework. SkewTune can be potentially incorporated into our
tool to optimize the memory consumption and fix the OOM er-
rors caused by data skew.

9. Conclusion and Future Work

MapReduce applications frequently suffer from out of mem-
ory errors. In this paper, we performed a comprehensive study
on 56 real-world OOM errors in MapReduce applications, and
found the OOM root causes are improper job configurations,
data skew, and memory-consuming user code. To diagnose
OOM errors, we propose a memory profiler that can automati-
cally figure out the correlation between a MapReduce applica-
tion’s runtime memory usage and its static information. Based
on the correlation, our profiler uses quantitative rules to diag-
nose OOM errors. The evaluation shows that our profiler can
effectively identify the root causes of OOM errors in real-world
MapReduce applications.

In the future, we can improve our work in three aspects. (1)
We further enhance our diagnostic rules to reduce the missing
rate. (2) Our current profiler has a little heavy overhead, thus
we further design lightweight memory profiling technique to
reduce the overhead. (3) We plan to mitigate our approach to
other big data frameworks (e.g., Spark), and evaluate our pro-
filer on their applications.

10. Acknowledgements

This work was supported by the National Key Research and
Development Plan (2016YFB1000803), National Natural Sci-
ence Foundation of China (61672506), and Beijing Natural Sci-
ence Foundation (4164104).

References

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in 6th Symposium on Operating System Design and Im-
plementation (OSDI), 2004, pp. 137–150.

15

[2] “Why the identity mapper can get out of memory?”
[Online]. Available: http://stackoverflow.com/questions/12302708/
why-the-identity-mapper-can-get-out-of-memory

[3] “java.lang.OutOfMemoryError on running Hadoop job.” [On-
line]. Available: http://stackoverflow.com/questions/20247185/
java-lang-outofmemoryerror-on-running-hadoop-job

[4] “Reducer’s Heap out of memory.” [Online]. Available: http://
stackoverflow.com/questions/8705911/reducers-heap-out-of-memory

[5] “Hadoop mailing list.” [Online]. Available: http://hadoop-common.
472056.n3.nabble.com/Users-f17301.html

[6] “Apache Pig.” [Online]. Available: http://pig.apache.org
[7] “Eclipse Memory Analyzer,” http://www.eclipse.org/mat.
[8] S. Cherem, L. Princehouse, and R. Rugina, “Practical memory leak de-

tection using guarded value-flow analysis,” in Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and Im-
plementation (PLDI), 2007, pp. 480–491.

[9] Y. Xie and A. Aiken, “Context- and path-sensitive memory leak detec-
tion,” in Proceedings of the 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (FSE), 2005, pp. 115–125.

[10] M. Jump and K. S. McKinley, “Cork: dynamic memory leak detection for
garbage-collected languages,” in Proceedings of the 34th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
2007, pp. 31–38.

[11] G. H. Xu and A. Rountev, “Precise memory leak detection for java soft-
ware using container profiling,” in 30th International Conference on Soft-
ware Engineering (ICSE), 2008, pp. 151–160.

[12] “Apache Hive.” [Online]. Available: https://hive.apache.org/
[13] “Apache Mahout.” [Online]. Available: https://mahout.apache.org
[14] “Cloud9: A Hadoop toolkit for working with big data.” [Online].

Available: http://lintool.github.io/Cloud9/
[15] “Mprof: A Memory Profiler for Diagnosing Memory Problems in

MapReduce Applications,” https://github.com/JerryLead/Mprof.
[16] L. Xu, W. Dou, F. Zhu, C. Gao, J. Liu, H. Zhong, and J. Wei, “Experience

report: A characteristic study on out of memory errors in distributed data-
parallel applications,” in 26th IEEE International Symposium on Software
Reliability Engineering, (ISSRE), 2015, pp. 518–529.

[17] “Hadoop Distributed File System.” [Online]. Available: http://hadoop.
apache.org/docs/r1.2.1/hdfs design.html

[18] D. Miner and A. Shook, MapReduce Design Patterns: Building Effective
Algorithms and Analytics for Hadoop. O’Reilly Media, 2012.

[19] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.
Morgan & Claypool Publishers, 2010.

[20] “Dominator tree.” [Online]. Available: http://help.eclipse.org/mars/topic/
org.eclipse.mat.ui.help/concepts/dominatortree.html?cp=44 2 2

[21] “What are outliers in the data?” [Online]. Available: http:
//www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm

[22] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and
M. Stonebraker, “A comparison of approaches to large-scale data analy-
sis,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2009, pp. 165–178.

[23] “Enhanced Hadoop-1.2.” [Online]. Available: https://github.com/
JerryLead/hadoop-1.2.0-enhanced

[24] “Enhanced Eclipse MAT.” [Online]. Available: https://github.com/
JerryLead/enhanced-Eclipse-MAT

[25] T. White, Hadoop - The Definitive Guide. O’Reilly Media, 2009.
[26] “DISTINCT operator in Pig Latin.” [Online]. Available: http:

//pig.apache.org/docs/r0.13.0/basic.html#distinct
[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: distributed

data-parallel programs from sequential building blocks,” in Proceedings
of the 2007 EuroSys Conference (EuroSys), 2007, pp. 59–72.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012, pp. 15–28.

[29] S. Li, H. Zhou, H. Lin, T. Xiao, H. Lin, W. Lin, and T. Xie, “A character-
istic study on failures of production distributed data-parallel programs,”
in 35th International Conference on Software Engineering (ICSE), 2013,
pp. 963–972.

[30] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces
from a production mapreduce cluster,” in 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010, pp.
94–103.

[31] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin, W. Chen, and
L. Zhou, “Nondeterminism in mapreduce considered harmful? an em-
pirical study on non-commutative aggregators in mapreduce programs,”
in 36th International Conference on Software Engineering (ICSE), 2014,
pp. 44–53.

[32] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin, “An empirical
study on quality issues of production big data platform,” in 37th Interna-
tional Conference on Software Engineering (ICSE), 2015.

[33] H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and
A. D. Satria, “What bugs live in the cloud?: A study of 3000+ issues in
cloud systems,” in Proceedings of the ACM Symposium on Cloud Com-
puting, Seattle (SoCC), 2014, pp. 7:1–7:14.

[34] “Apache HBase.” [Online]. Available: http://hbase.apache.org/
[35] K. Nguyen, K. Wang, Y. Bu, L. Fang, J. Hu, and G. H. Xu, “FACADE:

A compiler and runtime for (almost) object-bounded big data applica-
tions,” in Proceedings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015, pp. 675–690.

[36] L. Fang, K. Nguyen, G. H. Xu, B. Demsky, and S. Lu, “Interruptible tasks:
Treating memory pressure as interrupts for highly scalable data-parallel
programs,” in ACM SIGOPS 25th Symposium on Operating Systems Prin-
ciples (SOSP), 2015.

[37] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia, “Skewtune: mit-
igating skew in mapreduce applications,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2012, pp. 25–36.

16

http://stackoverflow.com/questions/12302708/why-the-identity-mapper-can-get-out-of-memory
http://stackoverflow.com/questions/12302708/why-the-identity-mapper-can-get-out-of-memory
http://stackoverflow.com/questions/20247185/java-lang-outofmemoryerror-on-running-hadoop-job
http://stackoverflow.com/questions/20247185/java-lang-outofmemoryerror-on-running-hadoop-job
http://stackoverflow.com/questions/8705911/reducers-heap-out-of-memory
http://stackoverflow.com/questions/8705911/reducers-heap-out-of-memory
http://hadoop-common.472056.n3.nabble.com/Users-f17301.html
http://hadoop-common.472056.n3.nabble.com/Users-f17301.html
http://pig.apache.org
http://www.eclipse.org/mat
https://hive.apache.org/
https://mahout.apache.org
http://lintool.github.io/Cloud9/
https://github.com/JerryLead/Mprof
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://help.eclipse.org/mars/topic/org.eclipse.mat.ui.help/concepts/dominatortree.html?cp=44_2_2
http://help.eclipse.org/mars/topic/org.eclipse.mat.ui.help/concepts/dominatortree.html?cp=44_2_2
http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
https://github.com/JerryLead/hadoop-1.2.0-enhanced
https://github.com/JerryLead/hadoop-1.2.0-enhanced
https://github.com/JerryLead/enhanced-Eclipse-MAT
https://github.com/JerryLead/enhanced-Eclipse-MAT
http://pig.apache.org/docs/r0.13.0/basic.html#distinct
http://pig.apache.org/docs/r0.13.0/basic.html#distinct
http://hbase.apache.org/

APPENDIX

Table 10: Links of real-world OOM errors referred in this paper
ID The real-world OOM errors referred in this paper Version Info URL
e01 Out of heap space errors on TTs Hadoop 0.20.2 http://tinyurl.com/p9prayt
e02 pig join gets OutOfMemoryError in reducer when mapred.job.shuffle.input.buffer.percent=0.70 Pig http://tinyurl.com/kb4zmot
e03 Reducer’s Heap out of memory Pig 0.8 http://tinyurl.com/mftlvvv
e04 Reducers fail with OutOfMemoryError while copying Map outputs Hadoop http://tinyurl.com/j9k4oyw
e05 Building Inverted Index exceed the Java Heap Size Hadoop http://tinyurl.com/ojf9npb
e06 memoryjava.lang.OutOfMemoryError related with number of reducer? Hadoop http://tinyurl.com/q6jomja
e07 Hadoop Streaming Memory Usage Hadoop http://tinyurl.com/orfv3n3
e08 Hadoop Pipes: how to pass large data records to map/reduce tasks Hadoop http://tinyurl.com/phwdob4
e09 Hadoop Error: Java heap space Hadoop 2.2 http://tinyurl.com/qy6wyj9
e10 OutOfMemory Error when running the wikipedia bayes example on mahout Mahout http://tinyurl.com/p3cj4ve
e11 Mahout on Elastic MapReduce: Java Heap Space Mahout 0.6 http://tinyurl.com/na5wodj
e12 Hive: Whenever it fires a map reduce it gives me this error Hive 0.10 http://tinyurl.com/p32aqfd
e13 OutOfMemoryError of PIG job (UDF loads big file) Pig http://tinyurl.com/ne6o6z3
e14 Writing a Hadoop Reducer which writes to a Stream Hadoop http://tinyurl.com/p46zupz
e15 java.lang.OutOfMemoryError on running Hadoop job Hadoop 0.18.0 http://tinyurl.com/odydwfx
e16 Why does the last reducer stop with java heap error during merge step Hadoop http://tinyurl.com/crbd6q8
e17 MapReduce Algorithm - in Map Combining Hadoop http://tinyurl.com/ohcue2r
e18 how to solve reducer memory problem? Hadoop http://tinyurl.com/okq74kp
e19 java.lang.OutOfMemoryError while running Pig Job Pig http://tinyurl.com/ovpo8th
e20 A join operation using Hadoop MapReduce Hadoop http://tinyurl.com/b5m72hv
e21 Set number Reducer per machines Cloud9 http://tinyurl.com/m4fo6wr

17

http://hadoop-common.472056.n3.nabble.com/Out-of-heap-space-errors-on-TTs-td3348456.html
http://tinyurl.com/p9prayt
http://stackoverflow.com/questions/17162679/pig-join-gets-outofmemoryerror-in-reducer-when-mapred-job-shuffle-input-buffer-p
http://tinyurl.com/kb4zmot
http://stackoverflow.com/questions/8705911/reducers-heap-out-of-memory
http://tinyurl.com/mftlvvv
http://answers.mapr.com/questions/8886/reducers-fail-with-outofmemoryerror-while-copying-map-outputs.html
http://tinyurl.com/j9k4oyw
http://stackoverflow.com/questions/17980491/building-inverted-index-exceed-the-java-heap-size
http://tinyurl.com/ojf9npb
http://hadoop-common.472056.n3.nabble.com/memoryjava-lang-OutOfMemoryError-related-with-number-of-reducer-td4038743.html
http://tinyurl.com/q6jomja
http://stackoverflow.com/questions/17975335/hadoop-streaming-memory-usage
http://tinyurl.com/orfv3n3
http://stackoverflow.com/questions/4021828/hadoop-pipes-how-to-pass-large-data-records-to-map-reduce-tasks
http://tinyurl.com/phwdob4
http://stackoverflow.com/questions/23521149/hadoop-error-java-heap-space
http://tinyurl.com/qy6wyj9
http://stackoverflow.com/questions/10080800/outofmemory-error-when-running-the-wikipedia-bayes-example-on-mahout
http://tinyurl.com/p3cj4ve
http://stackoverflow.com/questions/10376171/mahout-on-elastic-mapreduce-java-heap-space
http://tinyurl.com/na5wodj
http://stackoverflow.com/questions/24564357/hive-whenever-it-fires-a-map-reduce-it-gives-me-this-error-can-not-create-a-pa
http://tinyurl.com/p32aqfd
http://hadoop-common.472056.n3.nabble.com/OutOfMemoryError-of-PIG-job-UDF-loads-big-file-td327956.html
http://tinyurl.com/ne6o6z3
http://stackoverflow.com/questions/25767022/writing-a-hadoop-reducer-which-writes-to-a-stream
http://tinyurl.com/p46zupz
http://stackoverflow.com/questions/20247185/java-lang-outofmemoryerror-on-running-hadoop-job
http://tinyurl.com/odydwfx
http://stackoverflow.com/questions/15541900/why-does-the-last-reducer-stop-with-java-heap-error-during-merge-step
http://tinyurl.com/crbd6q8
http://puffsun.iteye.com/blog/1902837
http://tinyurl.com/ohcue2r
http://hadoop-common.472056.n3.nabble.com/how-to-solve-reducer-memory-problem-td4037710.html
http://tinyurl.com/okq74kp
https://mail-archives.apache.org/mod_mbox/pig-user/201105.mbox/%3CBANLkTikCyLB5GUu=OjYY9LSABLy-9VCbpw@mail.gmail.com%3E
http://tinyurl.com/ovpo8th
http://stackoverflow.com/questions/16633250/a-join-operation-using-hadoop-mapreduce
http://tinyurl.com/b5m72hv
http://mail-archives.apache.org/mod_mbox/hadoop-common-user/201010.mbox/%3CAANLkTi=aNjiUezv-a9yFZpbXXWFsbjeKKyd2KmqCUAWc@mail.gmail.com%3E
http://tinyurl.com/m4fo6wr

	Introduction
	Background
	Programming model and user code
	Dataflow
	Configurations

	Empirical Study on OOM Errors
	Cause category: Improper job configurations
	Pattern 1: Large framework buffer
	Pattern 2: Improper data partition

	Cause category: Data skew
	Pattern 3: Hotspot key
	Pattern 4: Large single key/value record

	Cause category: Memory-consuming user code
	Pattern 5: Large external data
	Pattern 6: Large intermediate results
	Pattern 7: Large accumulated results

	Memory Profiler Design and Implementation
	Dataflow profiler
	User code memory profiler
	User code templates and object lifecycles
	Lifecycle-aware memory monitoring strategy

	Correlation analysis

	OOM Cause Identification
	Identify memory-consuming code snippets
	Identify root causes in user code and error-related data
	Identify the skewed data and improper configurations

	Evaluation
	Experimental setup
	Overall results
	Performance overhead
	Case studies
	Case study 1: NLPLemmatizer
	Case study 2: CooccurMatrix
	Case study 3: PigDistinctCount

	Limitation and Discussion
	Limitation of our empirical study
	Limitation and discussion of Mprof

	Related Work
	Conclusion and Future Work
	Acknowledgements

