
Detecting Faulty Empty Cells in Spreadsheets

Liang Xu1,2, Shuo Wang2,3,Wensheng Dou1,2*, Bo Yang3, Chushu Gao1,2, Jun Wei1,2, Tao Huang1,2
1University of Chinese Academy of Sciences, China

2State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China
3North China University of Technology

2{xuliang12, wangshuo, wsdou, gaochushu, wj, tao}@otcaix.iscas.ac.cn, 3yangbo090313@163.com

Abstract—Spreadsheets play an important role in various
business tasks, such as financial reports and data analysis. In
spreadsheets, empty cells are widely used for different purposes,
e.g., separating different tables, or default value “0”. However,
a user may delete a formula unintentionally, and leave a cell
empty. Such ad-hoc modification may introduce a faulty empty
cell that should have a formula.

We observe that the context of an empty cell can help
determine whether the empty cell is faulty. For example, is the
empty cell next to a cell array in which all cells share the same
semantics? Does the empty cell have headers similar to other
non-empty cells’? In this paper, we propose EmptyCheck, to
detect faulty empty cells in spreadsheets. By analyzing the
context of an empty cell, EmptyCheck validates whether the cell
belong to a cell array. If yes, the empty cell is faulty since it does
not contain a formula. We evaluate EmptyCheck on 100
randomly sampled EUSES spreadsheets. The experimental
result shows that EmptyCheck can detect faulty empty cells with
high precision (75.00%) and recall (87.04%). Existing
techniques can detect only 4.26% of the true faulty empty cells
that EmptyCheck detects.

Keywords-Spreadsheet, fault, empty cell

I. INTRODUCTION

Spreadsheets are widely used in financial reports, data
storage and analysis. A recent study shows that, in Europe, 80%
of the companies use spreadsheets to write their financial
reports, and in America, 95% of the companies use
spreadsheets in their business [1]. In 2002, there were more
than 55 million users who worked with spreadsheets in the
United States alone [2].

Faults / errors can be easily introduced into spreadsheets
due to ad-hoc modifications [3]. Various techniques have been
developed to improve the quality of spreadsheets, such as
testing [4][5], fault detection [6][7][8][9][10], clone detection
[11][12] and debugging [13][14].

In spreadsheets, empty cells are usually used for different
purposes. Fig. 1 shows an example about empty cells. (1)
Empty cells can be used to separate different parts of data and
formulas, such as empty cells in rows 13 and 18. (2) Empty
cells can be used to form table layouts, such as cells [A2:A4].
(3) Empty cells can be used as default value “0”, such as cells
B5 and B6. All the above three cases are common in practice.
Note that, empty cells in the first two cases have nothing to do
with business logic in the spreadsheets.

However, not all empty cells should be left as they are. For
some empty cells, their contexts show that they should contain
some formulas. For example, in Fig. 1, column G calculates
the total parcel tax by adding the data in columns B, C, and E.
However, cell G8 is left empty wrongly. Two possible
scenarios can cause this: (1) The user deleted the formula in
cell G8 unintentionally, because its input cells (i.e., B8, C8
and E8) were not filled with any values. (2) The user inserted
a new row (i.e., row 8) and forgot filling the formula in cell
G8. Similarly, cells G11 and G12 should also contain
formulas. Since these empty cells (e.g., G8, G11 and G12) do
not contain formulas, any update to their input cells can cause
wrong values. For example, the value of cell G11 should be
0.5, because one of its input cells, i.e., E8, contains the value
0.5. However, cell G11 only contains the default value “0”.
Note that, cell G13 should not contain any formula, since row
13 is used to separate the whole table.

In this paper, we propose EmptyCheck, to detect faulty
empty cells in spreadsheets automatically. The key challenge
is to distinguish which empty cells are faulty and which are
not. We observe that the context of an empty cell may help
determine whether an empty cell is faulty. For example, if an
empty cell is next to a cell array, in which all cells share the
same semantics, the empty cell is likely to be faulty. For
example, in Fig. 1, empty cell G8 is next to the cell array
[G5:G7] and likely to be part of this cell array with a formula.
Based on this observation, we propose a novel cluster-based
algorithm to detect faulty empty cells in spreadsheets. We first
try to identify all cell arrays by several heuristic rules e.g., all
formulas contained in a cell array should reference their input
cells in the same way. For each empty cell, we check whether
it can be clustered into a cell array according to its context. If
we find a cell array for an empty cell, there is a high possibility
that the empty cell should contain a formula, thus we mark it
faulty.

We implement EmptyCheck as an Excel plugin and
evaluate it on 100 spreadsheets, which were randomly
selected from the EUSES corpus [15]. Our experimental
results show that: (1) Faulty empty cells are common in the
real-life spreadsheets, and 36% of the spreadsheets we studied
contain faulty empty cells. (2) 72.02% of the faulty empty
cells contain wrong values. This indicates faulty empty cells
are indeed harmful. (3) EmptyCheck can detect faulty empty
cells with high precision (75.00%) and recall (87.04%). (4)
EmptyCheck outperforms the existing techniques [16] in
detecting faulty empty cells. Only 5.39% of the faulty empty

* Corresponding author

cells can be detected by the existing techniques. We have
made all the data used in our study available online for further
study (http://www.tcse.cn/~wsdou/project/EmptyCheck/).

Although various techniques have been proposed to detect
faults and smells in spreadsheets, e.g., AmCheck [6] /
CACheck [7], TableCheck [12] and CUSTODES [8], they
usually consider empty cells as boundaries for other cells, and
do not check their validity. EmptyCheck differs from the
faulty empty cell detection proposed by SmellSheet Detective
[16] in the definitions of faulty empty cells and proposed
approaches. SmellSheet Detective considers an empty cell
faulty when its four neighboring cells in the same row or
column are all non-empty. For example, SmellSheet Detective
marks cell E8 in Fig. 1 faulty, because cell E8’s four
neighboring cells (i.e., E5, E6, E7 and E9) are not empty.
SmellSheet Detective cannot detect the faulty empty cell G12,
because its neighboring cells, i.e., G11 and G13, are empty.
We can see that SmellSheet Detective can easily miss true
faulty empty cells (e.g., cells G11 and G12) and return false
positives (e.g., cell E8). Our experimental result shows that
the neighbor-based approach [16] detected faulty empty cells
with low precision (5.39%) and recall (3.70%).

In general, the main contributions of this paper are as
follows:

 We propose a cluster-based approach, EmptyCheck, to
detect faulty empty cells in spreadsheets automatically,
by analyzing the contexts of empty cells.

 We implement EmptyCheck, and evaluate it on the
real world spreadsheets from the EUSES corpus. The
experimental result shows that EmptyCheck can detect
faulty empty cells with higher precision and recall.

 We compare EmptyCheck with existing techniques.
Our experimental result indicates EmptyCheck can
accurately detect more faulty empty cells than existing
techniques.

The remainder of this paper is organized as follows:
Section II shows our motivation and challenges. Section III
gives the detailed description of EmptyCheck. Section V
shows the results of our evaluation. We discuss the limitations

in Section VI and threats in Section VII and related work in
Section VIII. Finally, we conclude this paper in Section IX.

II. MOTIVATION

In this section, we present a real world spreadsheet
example extracted from the EUSES corpus [15]. Through this
example, we first illustrate what faulty empty cells are. We
further show the challenges in detecting faulty empty cells.

A. Motivating Example

Fig. 1 shows a real world spreadsheet snippet extracted
from the EUSES corpus [15]. This spreadsheet snippet is used
to calculate the parcel tax. It contains many empty cells. We
cluster these empty cells into two categories according to the
degree of their harmfulness as follows.

Harmless empty cells. Users may leave some cells empty
intentionally. First, users may insert empty rows or columns
to make the data layout more intuitive, such as rows 13 and 18
in Fig. 1. Second, users may leave the cells as empty when the
corresponding data is not available (e.g., cells B5 and B6).
Their values need to be entered directly by users in the future,
or just leave as default value “0”. In this paper, these empty
cells are considered as correct and harmless ones.

Faulty empty cells. Some empty cells should be filled
with formulas to make sure that their values can be updated
automatically when their input cells’ values change. For
example, as shown in Fig. 1, we can recognize that the cells in
column G are used to calculate the parcel tax by adding
columns B, C and E. Although the value of G8 is correct since
its input cells B8, C8 and E8 are empty, cell G8 should be
filled with a formula “=B8+C8+E8”, so that it can be updated
automatically when the new data are filled into cells B8, C8
or E8. We consider cell G8 as a faulty empty cell since it
should contain a formula. Similarly, cells G11 and G12 are
also faulty empty cells.

Faulty empty cells may not always hold the default value
“0”. If some input cells of a faulty empty cell change, it is
possible that the faulty cell should hold a non-zero value,
causing an error. For example, as shown in Fig. 1, we have
recognized that the value of cell G11 should be calculated by
adding cells B11, C11 and E11. Thus, cell G11 should hold
the value 0.5, and contains a wrong value.

Note that, harmless empty cells usually do not degrade the
quality of spreadsheets. Therefore, in this paper, we focus on
faulty empty cells in which some formulas should be filled.

B. EmptyCheck Overview

Detecting faulty empty cells in spreadsheets needs to
address two technical challenges. Let us explain them using
the example shown in Fig. 1. First, which empty cells are
faulty? How to detect them? Many empty cells exist because
they are necessary to design the layout of spreadsheets, e.g.,
A2 and C3. We must filter out them to avoid producing too
many false positives. Second, how to confirm the harmfulness
degree of faulty empty cells? The faulty empty cells that have
caused errors are more serious than other faulty empty cells.

Fig. 1. A real world spreadsheet snippet extracted from the EUSES corpus
[15]. The empty cells marked by a red right-cornered triangle are faulty.

It is better if we can distinguish them and allow users to focus
on more serious faulty empty cells first.

We handle the first challenge by extracting cell arrays in
spreadsheets, and focus on detecting faulty empty cells that
are adjacent to cell arrays. A cell array, proposed by Dou et al.
[6], is a consecutive range of cells in a row or column
prescribing certain computational semantic, e.g., [G5:G7],
and all its cells share the same semantics. It is possible that
some adjacent empty cells should belong to the cell array. For
example, we can see that G8 should be part of the cell array
[G5:G7]. According to the definition of cell arrays, these
empty cells in a cell array should share the same computation
pattern with other non-empty cells. Thus, empty cells in a cell
array are faulty.

To overcome the second challenge, we should know
whether a faulty empty cell’s input cells are empty, too. The
key point is how to get the input cells for a faulty empty cell.
We can get the information from the cell array’s
computational semantics. For example, G8 is part of cell array
[G5:G7], thus, we can infer that its input cells should be B8,
C8 and E8.

III. APPROACH

Given a spreadsheet, EmptyCheck analyzes the context of
empty cells and detects faulty empty cells in it. Fig. 2 presents
how EmptyCheck works. First, EmptyCheck heuristically
identifies tables (Section III.A). Next, EmptyCheck extracts
cell arrays in each table (III.B and III.C). Finally,
EmptyCheck detects the faulty empty cells in the extracted
cell arrays, and determines whether the faulty empty cells
have caused errors (III.D).

A. Table Extraction

A table is usually a rectangular block of cells, including
header cells and body cells. A table usually represents a
standalone business task, e.g., cells [A1:G20] in Fig. 1 make
up a table for calculating the parcel tax. In a table, its body
cells usually are placed continuously and form a data area. For
example, the body of the table [A1:A20] in Fig. 1 is [B5:G20],
marked by the red dashed rectangle in (s1).

In practice, users may put several tables into one
worksheet. To extract data areas in a worksheet, we first
classify cells into different types, and then extract tables based
cells’ types. We adopt the cell classification strategy proposed
by UCheck [17] to classify all the cells into four types. 1) Data
cells. The contents in data cells are numerical values or some
special strings that are usually used as data instead of labels
(e.g., “-”, “#N/A”). 2) Formula cells. The formula cells
contain formulas. 3) Label cells. Label cells usually contain
strings, and are used as table headers. 4) Empty cells.

Then, we use fence to denote a row / column that can be
used as the borders of tables. For each fence, it contains at
least one label cell, and other cells in it are all empty. For
example, the first four rows in the Fig. 1 are considered as
fences. We further use fences to separate a worksheet into
multiple data areas, e.g., [B5:G20], marked by the rectangle
with red dashed borders in Fig. 2(s1).

(s1) Extract tables

(s2) Identify cell arrays

(s3) Remove overlapping cells from cell arrays

(s4) Detect faulty empty cells

Fig. 2. Overview of EmptyCheck.

Note that, our above table extraction approach differs
slightly from previous approaches used in [6][7][17]. We
observe that it is common for users to insert one or more
empty rows or columns into a table (e.g., rows 13 and 18 in
Fig. 1), making it more readable. To avoid extracting
incomplete data areas, we do not use empty rows / columns as
fences. For example, rows 13 and 18 in Fig. 2(s1) are not
considered as fences, and we can extract a data area [B5:G20],
rather than three small data areas [B5:G12], [B14:G17] and
[B20:G20]. Thus, we can extract big data areas. This also
allows us to take as many as possible empty cells into
consideration and analyze them in the following steps.

B. Cell Array Extraction

Before elaborating how we extract cell arrays, we first
introduce the formula pattern used in our approach. For each
cell array, all their cells follow the same computational
semantics, and thus the formulas in it share the same formula
pattern. For example, cell X20 in [B20:G20] is computed by
the sum of cells [X5:X19], where X = {B, C, D, E, F, G}. The
formula pattern of the formulas in [B20:G20] is “SUM(R[-
15]C:R[-1]C)”, which is specified in the R1C1 style1.

Basically, we adopt the cell array detection algorithm in
CACheck [7]. However, we adapt it to detect cell arrays
containing empty cells. The basic idea of cell array detection
algorithm is that if a group of consecutive cells in a row /
column satisfy the following conditions, these cells can be
treated as a cell array:

 The group contains only data, formula and empty cells.
And, there are at least two cells in the group.

 The group contains at least one formula cell. The
information of formulas is the key for us to identify
faulty empty cells. If there are no formulas in a cell
array, we cannot infer whether its empty cells should
be filled with formulas or not.

 All formulas in the group should reference their input
cells in the similar way. If two formulas have some
common R1C1 expressions for their input cells, we
consider they reference their input cells in the similar
way. For example, the formulas in cells G5 and G14 in
Fig. 2(s2), their formula are “RC[-5]+RC[-4]+RC[-2]”
and “RC[-5]+RC[-4]” in the R1C1 style, respectively.
We can see that these two formulas have some
common R1C1 expressions for their input cells, i.e.,
RC[-5] and RC[-4].

For each row and column in a data area, our algorithm is
the same. Here, we only use the cells in a column to describe
our algorithm. Specifically, for each column in a data area, our
cell array detection algorithm works as follows. We use [x, y]
to denote the cells in the column, where x denotes the row
index of the first cell, and y denotes the row index of the last

cell. 1) Initially, the cells in [x, y] are treated as a potential cell
array [m, n]. 2) If the potential cell array [m, n] contains no
formula, our algorithm terminates. 3) If the potential cell array
[m, n] satisfies the above three conditions, we have detected a
cell array. We further construct a new potential cell array [n+1,
y], and check this new potential cell array from step 2
recursively. 4) If the potential cell array [m, n] does not satisfy
the above three conditions, we change the potential cell array
to [m, n-1], and check this changed potential cell array from
step 2 recursively. We call the cell arrays extracted from each
row as row-based cell arrays, and cell arrays extracted from
each column as column-based cell arrays.

Taking the column G in the data area [G5:G20] in Fig. 2
(s1), as an example. Initially, we treat cells [G5:G20] a
potential cell array. [G5:G20] is not a cell array, because the
formula in G20 does not reference its input cell in the similar
way as cell G19. Thus, we remove the last cell in [G5:G20],
and treat cells [G5:G19] as a new potential cell array. The
formulas in [G5:G19] reference their input cells in the similar
way, i.e., they share the common input R1C1 expressions
RC[-5] and RC[-4]. Thus, [G5:G19] is detected as a cell array.
Because there is only cell G20 left, the detection algorithm
terminates for column G. Therefore, in column G, we detect a
column-based cell array [G5:G19].

For the data area B5:G20 in Fig. 2(s1), we in total detect
11 row-based cell arrays ([Bi:Gi], 𝑖 = 5, 6, 7, 9, 10, 14 −
17, 19, 20) and 6 column-based cell arrays ([G5:G19] and
y5:y20, y = B, C, D, E, F). For example, Fig. 2(s2) only shows
two row-based cell arrays ([B5:G5] and [B20:G20]) and one
column-based cluster ([G5:G19]).

Note that, CACheck [7] uses empty cells as boundaries of
cell arrays. As a result, all generated cell arrays do not contain
empty cells, and empty cells can separate a cell array (e.g.,
[G5:G19]) into multiple smaller ones, e.g., [G5:G7], [G9:G10]
and [G14:G17]. In EmptyCheck, we solve these problems by
considering empty cells as part of a cell array. Thus,
EmptyCheck can extract complete cell arrays, e.g., [G5:G19].

C. Remove Overlapping Cells from Cell Arrays

Since we extract cell arrays in both row and column
directions, the row-based cell arrays and the common-based
cell arrays may share some cells. As shown in Fig. 2(s2), the
row-based cell array [B5:G5] and the column-based cell array
[G5:G19] share the common cell G5. According to the
information of the headers of two cell arrays, we can
recognize that G5 should only belong to the column-based
cell array [G5:G19].

Before explaining how we remove overlapping cells from
cell arrays, we first introduce how we recover formula pattern
for a cell array. In a cell array, all its formulas can be treated
as potential formula patterns. We select the formula which
can cover most non-empty cells as its formula pattern. If a
cell is covered, its data can be computed by the formula
pattern. For example, cell array [G5:G19] has two potential
formula patterns: “RC[-5]+RC[-4]+RC[-2]” (the R1C1 form
of formulas Bi+Ci+Ei) and “RC[-5]+RC[-4]” (the R1C1
form of formulas Bi+Ci). The potential formula pattern

1In spreadsheets, cell references can be represented in two styles: A1 and
R1C1. In the A1 style, a cell at the x-th row and y-th column is denoted as yx

in relative reference (e.g., B2), and yx in absolute reference (e.g., B2).

In the R1C1 style, a cell at m rows below and n columns right to the current
cell is denoted as R[m]C[n] in relative reference, and a cell at the m-th row

and n-th column is notated as RmCn in absolute reference.

“RC[-5]+RC[-4]+RC[-2]” can cover 10 non-empty cells,
while, the potential formula pattern “RC[-5]+RC[-4]” can
only cover 4 non-empty cells. Thus, we use “RC[-5]+RC[-
4]+RC[-2]” as cell array [G5:G19]’s formula pattern. If
multiple potential formula patterns can cover the same
number of cells, we randomly select one as the cell array’s
formula pattern.

For an overlapping cell, we further judge which cell array
it should belong to by analyzing how close the cell and the
formula pattern of its corresponding cell array is. Our
overlapping cell array removal algorithm works as follows:

 If the overlapping cell contains a formula, we count the
number of the same formulas with the formula in
overlapping cell (in R1C1 form) in each cell array and
remove this cell from the cell array with few shared
formulas. For cell arrays [B5:G5] and [G5:G19], the
formula contained in the overlapping cell G5 is “RC[-
5]+RC[-4]+RC[-2]”. Cell array [G5:G19] contains 7
common formulas, while cell array [B5:G5] contains
none. Thus, cell G5 is removed from cell array
[B5:G5], then cell array [B5:G5] changes into [B5:F5].
If the numbers of the same formulas are the same, we
decide that the cell belongs to the row-based cell array.

 If the overlapping cell is data cell or empty cell, we
calculate its expected value by using all involved cell
arrays’ formula patterns and the overlapping cell
belongs to the cell array with the smallest distance
between its actual value and expected value. We
assume that most data in spreadsheets are correct. That
means the overlapping cell’s value should be
calculated by the formula pattern of the corresponding
cell array which it belongs to. We calculate the
distance between its actual value and expected value:
|real value – expected value|. Thus, the overlapping
cell belongs to the cell array whose distance is the
smallest. If two cell arrays have the same distance, we
decide that the overlapping cell belongs to the row-
based cell array.

In the above process, some cell arrays may be changed or
added, e.g., a cell array is divided into two cell arrays by a
removed cell in it. We further check whether the changed /
added cell arrays satisfy the three conditions shown in
Section III.B. If a cell array does not satisfy the conditions
any more, we remove it from our detection results. For
example, the cell array [B5:F5] is removed because it
contains no formulas.

Through the above algorithm, we remove ten row-based
cell arrays (Bi:Gi, i = 5, 6, 7, 9, 10, 14-17, 19) and five
column-based cell arrays (y5:y19, y = B, C, D, E, F). Finally,
we extract two cell arrays, a row-based cell array [B20:G20],
marked by green color, and a column-based cell array
[G5:G19], marked by yellow color, as shown in Fig. 2(s3).

D. Faulty Empty Cell Detection

Our approach described above can detect cell arrays with
empty cells, e.g., cell array [G5:G19]. For all empty cells in a
cell array, since they lack formulas, we will consider them as

faulty empty cells. However, not all empty cells are faulty. For
example, row 13 is used as a separator, and thus cell G13
should not be considered faulty.

Suppressing false positives. We observe that in a
column-based (row-based) cell array, their cells should share
the row (column) headers of the same types. The types of
headers can be empty, string or numerical sequence (e.g., the
headers are numerical sequence, like 1, 2, 3). Each cell has
two headers: one row header and one column header. The
nearest label cell or data cell in a numerical sequence in the
same row can be treated as its row header. Similarly, the
nearest label cell or data cell in a numerical sequence in the
same column can be treated as its column header. For each
cell in a column-based (row-based) cell array, we identify
whether its row (column) header shares the same type with
that of other non-empty cells in the same cell array. For
example, in column-based cell array [G5:G19], non-empty
cell G5 and empty cell G8 share the row headers with the same
string type (“Science” and “Performing”, respectively).
However, the row headers of cells G5 and G13 have different
types (“Science” and “”, respectively), since empty cell G13’s
row header is null. Thus, the empty cell G13 is considered as
a false positive, and removed from our detection result.

Identifying faulty empty cells. Our faulty empty cell
detection algorithm can be divided into the following three
steps and the pseudo code is shown in Algorithm 1.

1) Extracting the formula pattern for each cell array in

which there is at least an empty cell (Line 4). For each cell

array, we first extract all formulas from it and express them

in the R1C1 style as possible formula patterns. We assume

that most of the formulas in the cell arrays are correct. Based

on this assumption, we simply select the formula pattern that

can cover most cells (as mentioned in III.C) as the formula

pattern for the cell array.

2) Identifying the faulty empty cells (Lines 7-12).

According to the definition of a cell array, all cells in it should

share the same semantics. In other words, the empty cells

Algorithm 1. Faulty empty cell detection
__

Input: cell arrays containing empty cells
Output: FeCells (faulty empty cells) and SeCells (faulty empty cells
that cause errors)

1: 𝐹𝑒𝐶𝑒𝑙𝑙𝑠 = ∅; // Initialize faulty empty cells

2: SeCells = 0; // Initialize faulty empty cells that cause errors

3: For each 𝑎𝑟𝑟𝑎𝑦 ∈ 𝑐𝑒𝑙𝑙 𝑎𝑟𝑟𝑎𝑦𝑠

4: fpattern= recoverFormulaPattern(𝑎𝑟𝑟𝑎𝑦);

5: For each empty 𝑐𝑒𝑙𝑙 in 𝑎𝑟𝑟𝑎𝑦

6: references =getReferences(fpattern, empty 𝑐𝑒𝑙𝑙);
7: If references only contain data, formula or empty cells

in the table

8: Add empty cell into FeCells

9: If the calculated value for empty cell is nonzero

10: Add empty cell into SeCells

11: EndIf

12: EndIf

13: EndFor

14: EndFor

15: Return FeCells and SeCells

should be filled with the formula pattern. After filled the

formula pattern, the empty cells are reported as faulty empty

cells only when all referenced cells are data cell or empty

cells and they belong to the same table with the cell array.

3) Identifying the faulty empty cells that cause errors

(Lines 9-11). For each faulty empty cell, we calculate its

value according to the formula pattern and the values of

corresponding input cells. The faulty empty cells are believed

to cause errors when they get non-zero outputs.
Taking the column-based cell array in column G, marked

by yellow color in Fig. 2(s3), as an example. As mentioned in
Section III.C, we can get its formula pattern: “RC[-5]+RC[-
4]+RC[-2]”. The empty cell G8 will reference to B8, C8 and
E8, after filled with formula “RC[-5]+RC[-4]+RC[-2]”. All
referenced cells are data cells. Thus, G8 is detected as faulty
empty cell. Similarly, G11 and G12 are also detected as faulty
empty cells. Further, we calculate the values for those three
detected empty cells. We can see that cell G11 has non-zero
output (0.5). Thus, G11 is considered as the faulty empty cell
that caused an error.

IV. IMPLEMENTATION

In this section, we give a brief introduction about the
implementation of EmptyCheck. For ease of use, we
developed EmptyCheck as an excel plugin by using the
Microsoft Visual Studio 2010 Tools for Office Language Pack
(Version 4.0 Runtime) [18].

For visualization, EmptyCheck uses a widely used method,
colors and tips, to visualize the detected faulty empty cells in
spreadsheets: the faulty empty cells that have caused errors are
marked by red color and others are marked by yellow color.
The tips give the recommended formulas that should be filled.
Fig. 2(s4) shows the visualized result of EmptyCheck. In this
example, EmptyCheck detects three faulty empty cells (i.e.,
G8, G11 and G12) and one of them (G11, marked by red color)
caused an error. When users click a faulty empty cell, the tips
give the suggestion for the corresponding cell.

V. EVALUATION

Our evaluation studies the following three research
questions:

RQ1: How common are faulty empty cells in real-life

spreadsheets?

RQ2: Can EmptyCheck detect faulty empty cells precisely?

Specifically, what are the precision, recall and F-Measure?

RQ3: How is EmptyCheck compared with existing

techniques, e.g., the neighbor-based approach?

To answer the above three research questions, we
evaluated EmptyCheck on 100 spreadsheets randomly
selected from the EUSES corpus [15]. To answer RQ1, we
manually checked all empty cells in these spreadsheets to
determine whether they are faulty. To answer RQ2, we
manually validated whether the faulty empty cells detected by
EmptyCheck are true or not. To answer RQ3, we compared
EmptyCheck with the neighbor-based approach [16].

A. Experimental Subjects

We use the spreadsheets in the EUSES corpus [15] as our
experimental subjects, which are the most frequently used
spreadsheet corpus for spreadsheet-related studies. The
EUSES corpus contains more than 4,000 spreadsheets. A
previous study by Bas Jansen [19] shows that the spreadsheets
in the EUSES corpus are similar to that in the Enron corpus
[20], which are used by the Enron Corporation [21]. Thus, the
spreadsheets in EUSES can represent the spreadsheets used in
real life. Since our approach relies on the formula information,
we only focus on the spreadsheets that contain at least one
formula. In total, there are 1,617 spreadsheets containing
formulas in the EUSES corpus. It is time-consuming and
impractical to build a ground truth for our experiments using
all these 1,617 spreadsheets. Therefore, we randomly sample
100 spreadsheets from them and build the ground truth for
these spreadsheets by validating all empty cells and manually
determining whether they are faulty or not. This process took
the first two authors about three weeks.

Our random sampling algorithm works as follow. First, we
randomly sample a corresponding number of spreadsheet
from each domain according to the percentage of the total
spreadsheets it contains. Because that the spreadsheets in The
EUSES corpus [15] are clustered into different domains and
each domain’s spreadsheets are grouped in an individual
folder. That allows us to avoid missing some domains’
spreadsheets. Second, we try to understand the functionality
of each selected spreadsheet and delete the spreadsheets that
we cannot fully understand according to the limited
information (e.g., the semantics of headers). Because the
creators of these spreadsheets are not available, we need to
manually validate whether empty cells in selected
spreadsheets are faulty or not. If we cannot fully understand
the spreadsheets, we may misjudge some empty cells. When
deleting some incomprehensible spreadsheets, we randomly
select the same number of spreadsheets from remained
spreadsheets in the same domain. Finally, we selected 100
spreadsheets in total.

Table I shows the statistics of our experimental subject.
The distribution of spreadsheets in different domains is shown
in column SS. There are 190 worksheets (WS) in our
experimental subject, from which we identify 16,299 formulas
(Formula). As mentioned before, many empty cells are used
for data layout. We in total got 19,079 empty cells (Empty).

TABLE I. STATISTICS OF 100 SELECTED SPREADSHEETS FROM THE EUSES

CORPUS [15].

Categories SS WS Formula Empty

cs101 2 2 52 20

database 10 31 1,282 1,131

financial 14 19 1,332 1,948

forms3 2 2 95 50

grades 23 37 5,074 6,000

homework 24 31 3,001 2,647

inventory 17 58 2,612 4,093

modeling 8 10 2,851 3,190

Total 100 190 16,299 19,079

B. Evaluation Metrics

Let 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ denote the faulty empty cells in the

ground truth that consist of all faulty empty cells in the
selected spreadsheets from EUSES [15], 𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
denote the cells detected by EmptyCheck. The precision,
recall and F-Measure used in our evaluation are calculated as
follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∩ 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑|
 (1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∩ 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|
 (2)

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3)

Next section, we will discuss how we build the ground
truth in detail.

C. RQ1: How Common Are Faulty Empty Cells?

Since the creators of the spreadsheets in the EUSES corpus
[15] are not available, we cannot get the ground truth from the
original authors. Therefore, we manually validated all empty
cells and determined whether they are faulty or not. We
carefully checked each empty cell in the 100 selected
spreadsheets, and try to answer the following questions for
each empty cell:

1) Should it contain a formula?

2) If yes, can we recover a formula for the empty cell?

3) If yes, it is detected as faulty empty cell, and should

the input cells of the empty cell have non-zero value?

4) If yes, this faulty empty cell causes an error.

To avoid possible mistakes, each empty cell has been
cross-checked by the first two authors of this paper. Table II
shows our manually validated result. In total, from these 100
selected spreadsheets, we find 486 faulty empty cells (Faulty
Empty Cells / Total). Furthermore, we found that 350 faulty
empty cells have caused errors (Faulty Empty Cells / Error).
We can see that 72.02% faulty empty cells have caused errors
(% E/T). Thus, faulty empty cells are harmful in spreadsheets
and it is important to detect the faulty empty cells.

Table II also indicates how common faulty empty cells are.
We can see that 36.00% (36 out of 100) of the selected
spreadsheets (SS) and 24.21% (46 out of 190) of the
worksheets (WS) contain at least one faulty empty cell. We
found faulty empty errors exists in the cells in the spreadsheets
of all categories except categories form3. These numbers
indicate that faulty empty cells are common in real-life
spreadsheets.

Therefore, we can draw the following conclusion:

The faulty empty cells are common in real-life
spreadsheets. Most (72.02%) of faulty empty cells are
harmful and have caused errors in spreadsheets.

We use our manual validated results as the estimation of
the real ground truth to answer RQ2 and RQ3.

D. RQ2: Detection Quality of EmptyCheck

To evaluate the quality of EmptyCheck, we ran
EmptyCheck on the 100 sampled spreadsheets. Table III
shows the detection results reported by EmptyCheck. We can
see that EmptyCheck detected 564 faulty empty cells (Faulty
Empty Cells / Detected), and 423 faulty empty cells are
confirmed as true positives (Faulty Empty Cells / True). Thus,
the precision of EmptyCheck is 75.00% (Faulty Empty Cells
/ Precision) and the recall is 87.04% (Faulty Empty Cells /
Recall).

We further investigate the precision and recall of
EmptyCheck in detecting the serious faulty empty cell that
have caused errors. As shown in Table III EmptyCheck report
405 faulty empty cells that had caused errors (Faulty Empty
Cells that Have Caused Errors / Detected), and among of them,
296 are confirmed as true positives (Faulty Empty Cells that
Have Caused Errors / True), Thus, EmptyCheck can achieve
high precision (73.09%) and recall (84.57%) in detecting the
faulty empty cells that had caused errors, too.

Therefore, we can draw the following conclusion:

EmptyCheck can detect faulty empty cells with high
precision (75.00%) and recall (87.04%).

False positives of detected faulty empty cells. The
differences between the value of column Detected and that of
column True in Table III are the false positives. We inspect all
141 false positives, and find out the reasons why EmptyCheck
cannot achieve higher precision. (1) EmptyCheck failed to
extract irregular tables correctly. Our table extraction
algorithm always tries to extract the rectangle area as tables.
While some tables whose boundaries are marked by bold
borders of cells are not regular rectangle area. For an irregular
table, EmptyCheck extract the minimum rectangle area which
covers this table, containing some unrelated empty cells. 16
(11.35%) false positives belong to this case. (2) EmptyCheck
identified headers for some cells incorrectly. Some cells’ row
headers are fixed length numbers (e.g., “164834” and
“033835”). EmptyCheck identified them as data cells. 4
(2.84%) false positives belong to this case. (3) EmptyCheck

TABLE II. STATISTICS OF FAULTY EMPTY CELL IN 100 SELECTED

SPREADSHEETS FROM THE EUSES CORPUS[15].

Categories SS WS
Faulty Empty Cells

Total Error % E/T

cs101 1 1 3 3 100.00%

database 5 5 29 11 37.93%

financial 3 3 24 24 100.00%

forms3 0 0 0 0 0.00%

grades 4 6 69 59 85.51%

homework 7 7 68 50 73.53%

inventory 10 16 91 56 61.54%

modeling 6 8 202 147 72.77%

Total 36 46 486 350 72.02%

cannot understand the semantics of cells’ headers. The
semantics of the headers of cells usually determine which cells
should contain formulas. Thus, our approach may misjudge
situations and introduce false positives. 121 (85.82%) false
positives belong to this case.

Fig. 3 shows an example of false positives caused by the
third reason. This spreadsheet is used to process the data of
reinvestment needs, containing four columns (Year,
Reinvestment Needs, Firm Value and Reinvestment Needs as
percent of Firm Value) and thirteen rows (rows 2-11 are the
data of each year). EmptyCheck extracted a row-based cell
array [B13:D13] (marked by green color) and a column-based
cell array [D2:D11] (marked by yellow color). According to
our faulty empty cells detection algorithm, EmptyCheck
reports cells B13 and C13, because they should be filled in
with formula “=AVERAGE(R[-11]C:R[-2]C)”, as the same
formula in D13. However, according to the row header of row
13, “Average Reinvestment Need as % of Value =”, we can
see that row 13 is used to calculate the average of reinvestment
need as percent of firm value. Since all needed data is stored
in column D, that only cell D13 is filled with formula is thus
reasonable. In other words, cells B13 and C13 should be left
to be empty.

False negatives of detected faulty empty cells. We also
inspected all 63 false negatives to find out the main reasons
why EmptyCheck cannot achieve higher recall. (1)
Incomplete table extraction. To avoid extracting incomplete
data areas, we define a row / column that only contains at least
a label cell and other cells in it are empty as a fence. We
observed that some columns or rows contain no data in some
tables, and they are identified as fence mistakenly. 37 (58.73%)
false negatives belong to this case. (2) The headers of some
faulty empty cells are missing. As mentioned before,
EmptyCheck suppresses false positives according to the type
information of headers. 22 (34.92%) true faulty empty cells
are removed mistakenly. (3) EmptyCheck detects faulty
empty cells by recovering the formulas for the empty cell. In
some cases, EmptyCheck failed to recover correct formula
according to the information contained in cell arrays. 4 (6.35%)
false negatives belong to this case.

An example of false negatives caused by the first reason is
shown in Fig. 4. This spreadsheet is used to handle the
physical plant inventory according to the header in cell A1
(“TABLE 1 (continued): PHYSICAL PLANT INVENTORY”).

This worksheet contains two tables A6:H10 and A15:H20.
According to the header in A20 (TOTAL) and the formulas in
cells B20 and C20, we can infer that cell H20 should be filled
in with the formula “=SUM(R[-3]C:R[-2]C)”, to calculate the
total value of “FUNCTIONALLY, OBSOLETE”. While,
according our definition of fences, the column H is identified
as fence to extract table. Thus, H20 is not reported as faulty
empty cells.

E. RQ3: Comparison with Existing Techinques

Cunha et al. [16][22] proposed a neighbor-based approach
to detect faulty empty cells: if an empty cell’s four neighbor
cells in the same row or column are all non-empty, then they
consider it as a faulty empty cell. For example, for empty cell
E8 in Fig. 1, its four neighbor cells are E5, E6, E7 and E9.
Since these four cells are not empty, so E8 is considered as a
faulty empty cell. However, that is wrong. So, the neighbor-
based approach can introduce false positives. For another
empty cell G12, since G11 is empty, so G12 is not considered
as faulty empty cells. Thus, the neighbor-based approach may
introduce false negatives, too.

We compared EmptyCheck and the neighbor-based
approach on the same 100 sampled EUSES [15] spreadsheets.
We inspected whether EmptyCheck can outperform existing
techniques in detecting faulty empty cells. We did not
compare EmptyCheck with other fault detection techniques,
e.g., AmCheck [6], CACheck [7] and CUSTODES [8],

Fig. 3. An example of false positives reported by EmptyCheck

Fig. 4. An example of false negatives reported by EmptyCheck

TABLE III. FAULTY EMPTY CELLS DETECTED BY EMPTYCHECK ON SAMPLED SPREADSHEETS.

Categories
Faulty Empty Cell Faulty Empty Cell that Have Caused Error

Detected True Precision Recall Detected True Precision Recall

cs101 3 3 100.00% 100.00% 3 3 100.00% 100.00%

database 33 27 81.82% 93.10% 13 11 84.62% 100.00%

financial 48 23 47.92% 95.83% 44 23 52.27% 95.83%

forms3 0 0 0.00% 0.00% 0 0 0.00% 0.00%

grades 94 65 69.15% 94.20% 78 57 73.08% 96.61%

homework 85 68 80.00% 100.00% 63 50 79.37% 100.00%

inventory 119 56 47.06% 61.54% 76 33 43.42% 58.93%

modeling 182 181 99.45% 89.60% 128 119 92.97% 80.95%

Total 564 423 75.00% 87.04% 405 296 73.09% 84.57%

because these techniques are not designed to detect faulty
empty cells and none of empty cells can be detected by them.

Table IV shows the detection result of the neighbor-based
approach. We can see that the neighbor-based approach
detected 334 faulty empty cells (Detected). However, only 18
of them are confirmed to be true positives (True). The
precision and recall of the neighbor-based approach are 5.39%
and 3.70%, respectively. While, EmptyCheck can achieve
higher precision (75.00%) and recall (87.04%). The F-
Measure of EmptyCheck is also much higher than that of
neighbor-based approach (0.8057 vs 0.0439). Thus,
EmptyCheck improves the state of the art greatly.

We further compare the detected faulty empty cells by two
approaches. We find that EmptyCheck can detect all the faulty
empty cells that were detected by the neighbor-based
approach. While the neighbor-based method can only detect
4.26% of faulty empty cells detected by EmptyCheck. This
indicates that EmptyCheck can detect much more faulty
empty cells than the neighbor-based approach.

Therefore, we can draw the following conclusion:

EmptyCheck perform much better than existing
techniques in detecting faulty empty cells.

VI. DISCUSSION

A. Limitations

Although our experimental results indicate that
EmptyCheck can detect faulty empty cells in spreadsheets
with high precision and recall, it has some limitations.

EmptyCheck detect faulty empty cells by clustering
empty cell into cell arrays. There exist some empty cells that
are not adjacent to any cell arrays. We need to understand the
concrete semantics (e.g., the table structure and header
semantics) to know whether the empty cells are faulty or not
(an example is discussed in Section V.D). It is very
challenging to understand the semantics of headers, and thus
detecting faulty empty cells in this case is also challenging.
We leave this as future work.

To recover the formula pattern, EmptyCheck simply
selects the formula which can cover most non-empty cells in
each cell array based on the assumption that most of the
formulas and data in the cell arrays are correct. This
assumption is not always true. That means EmptyCheck may
recommend wrong formulas for detected faulty empty cells.
To alleviate this situation, the formula pattern synthesis
algorithm designed in CACheck [7] can be employed.

B. Reference to Empty Cell

Reference to empty cells is studied by Cunha [22]. In their
work, if a formula references an empty cell, it will be
considered as a typical error. They propose an approach to
detect reference to empty cells by checking every input cells.
For example, cells B9 and C9 in Fig. 1 are empty and
referenced by the formula in cell G9. Thus, cells G9 are
considered to be smelly. Fixing the faulty empty cells
detected by EmptyCheck may introduce reference to empty

cell errors. For example, for cell G12, EmptyCheck detects it
as faulty empty cell and advises users to fix this faulty empty
cell by filling in with the formula “B12+C12+E12”. After
users fix this faulty cell, a reference to empty cell error will
be introduced in G12, because Cells B12, C12 and E12 are
empty cells. However, we believe that EmptyCheck is still
important for spreadsheet quality improvement. First, these
data cells are mainly left empty because there is no available
input data. It is common to use empty cells to represent the
default value “0” in spreadsheets. Second, EmptyCheck
focuses on the empty cells that should contain formulas. They
are caused by deleting formulas or forgetting to add formulas
unintentionally. Thus, faulty empty cells detected by
EmptyCheck can cause severe consequences.

VII. THREATS TO VALIDITY

Our experimental results indicate EmptyCheck can
perform well in detecting faulty empty cells. We discuss some
threats to our approach and evaluation in this section.

Representativeness of our experimental subject. The
representativeness of our experimental subject is one threat to
the validation of our evaluation. We select EUSES [15] as our
experimental subject. It is because EUSES has been widely
used in many spreadsheet-related studies. The spreadsheets in
EUSES were extracted from World Wide Web, involving
many different domains. A recent study carried out by Bas
Jansen [19] also shows the spreadsheets in EUSES can
represent the spreadsheets used in real life.

Manual validation of faulty empty cells. Since the
creators of the spreadsheets in the EUSES corpus [15] are not
available, we manually identified and validated whether
empty cells are faulty or not. For our built ground truth, we
cannot make sure that it does not contain any false positives
or false negatives. We take two measures to alleviate possible
mistakes. First, to ensure that we can understand the contents
of spreadsheets, we avoid selecting overly complex
spreadsheets. Second, every result is cross-checked by the first
two authors of this paper.

Ground truth used in the experiments. Since it is
impractical to obtain all faulty empty cells in the selected
spreadsheets, we build the ground truth by checking all empty
cells in them manually. This ground truth may contain some
false positives or false negatives although we have done our
best to avoid that. In the future, we will try to get a complete

TABLE IV. FAULTY EMPTY CELLS DETECTED BY THE NEIGHBOR-
BASED APPROACH [16].

Category
Faulty Empty Cells

Detected True Precision Recall

cs101 0 0 0.00% 0.00%

database 22 0 0.00% 0.00%

financial 21 0 0.00% 0.00%

forms3 0 0 0.00% 0.00%

grades 85 0 0.00% 0.00%

homework 98 0 0.00% 0.00%

inventory 10 0 0.00% 0.00%

modeling 98 18 18.37% 8.96%

Total 334 18 5.39% 3.70%

ground truth in a small set of spreadsheets for which we can
find the original authors.

VIII. RELATED WORK

In this section, we introduce several pieces of related work
concerning empty cell smell, spreadsheet fault / smell
detection, testing and debugging.

Fault categorization. Cunha et al. [22] groups their
spreadsheet smells into different categories: Statistical Smells,
Type Smells, Content Smells and Functional Dependencies
Based Smells. They also integrated the detection algorithms of
these smells into a tools, SmellSheet Detective [16]. Hermans
et al. [9][10] adapted code smells in the field of software
engineering to spreadsheets. EmptyCheck proposes a new
spreadsheet smell, faulty empty cell, as a subclass of Type
Smells.

Spreadsheet fault / smell detection. AmCheck [6] and
CACheck [7] are most related to our work. They firstly detect
cell arrays, in which the cells should share the same semantics,
and then repair the inconsistent formulas by synthesizing the
correct formulas. However, cell arrays used in AmCheck and
CACheck must be continuous and contain no empty cells.
Thus, they cannot detect any faulty empty cell. UCheck [17]
proposed a unit inference system and reports an error when its
unit inference system cannot infer a unit in normal form for a
cell. Dimension [23] is a reasoning system, which can infer
dimension information to check the consistency of
spreadsheet formulas. UCheck and Dimension rely on the
formulas in the spreadsheets, thus they cannot detect faulty
empty cells, which do not have any formulas. TableCheck [12]
can detect table clones, in which the corresponding cells share
the same header information, then detect related smells by
identifying the inconsistencies among table clones. Hermans
et al. [11] proposed a fingerprints based algorithm to detect
exact and near-miss clones. It can facilitate finding and
removing data clones However, spreadsheet clone detection
techniques rely on that there are two similar areas in
spreadsheets. EmptyCheck can detect faulty empty cells in
single table. Cunha et al. [22] proposed that, if a formula
references empty cells, it should be considered smelly. In
summary, EmptyCheck is orthogonal to existing work.

Testing and debugging. WYSIWYT [4] was developed
for testing spreadsheets. It provides the immediate feedback
of the spreadsheet’s tested-ness. AutoTest [5] can
automatically generate test cases to help users test their
spreadsheets. GoalDebug [14] allows users to specify the
expected outputs for any concerned cells with incorrect
outputs, then GoalDebug generates correction suggestions.
CheckCell [13] is the first data debugging tool for
spreadsheets, which can identify the cells that have high
impact on the results of computation. The fault localization
techniques attempt to help end-users locate fault by reducing
the search space and prioritizing the sequence of the search
through space [24][25][26][27]. Spectrum-based fault
localization (SFL) [25][28] achieves localization process by
ranking cells by their suspiciousness to contain a fault.
Spectrum-enhanced dynamic slicing (SENDYS) [26] a

technique that combines SFL with slicing-hitting-set-
computation (SHSC) [24]. Constraint-based debugging [27]
converts the formulas into a set of constraints. Those
techniques rely on the contents in the cells, and the faulty
empty cells cannot be detected and tested by them.

Spreadsheet evolution. VEnron [29] is the first versioned
spreadsheet corpus, containing 360 evolution groups and
7,209 spreadsheets. SpreadCluster [30] is a similarity-based
algorithm designed to identify different versions of the same
spreadsheets. Hermans et al. [31] studied the spreadsheet
evolution based on 54 pairs of spreadsheets. Each pair consists
of a “bad” spreadsheet created by users and a “good”
spreadsheet refactored by F1F9 for “bad” one. SheetDiff [32]
can identify the differences between two versions of
spreadsheet efficiently and effectively, providing more
readable high-level changes. There are many spreadsheet
comparison tools, such as DiffEngineX [33] and Synkronizer
[34], aiming at detecting and visualizing differences between
two spreadsheets. Faulty empty cells may be introduced
during spreadsheet evolution, EmptyCheck can be used to
detect the faulty empty cells in different versions of
spreadsheets.

IX. CONCLUSION

Although some cells in spreadsheets are empty, they
should have formulas according to their context. We find that
this kind of faulty empty cells are common (36%) in real-life
spreadsheets. In this paper, we propose a cluster-based
approach, EmptyCheck, which can detect faulty empty cells
automatically. Our evaluation on real-life spreadsheets in the
EUSES corpus [15] shows that the faulty empty cells are
common in real life spreadsheets. Most (72.02%) of faulty
empty cells are harmful and have caused errors in
spreadsheets. EmptyCheck can detect faulty empty cells with
high precision and recall. While, existing techniques (e.g., the
neighbor-based approach) can only detect 4.26% of faulty
empty cells that are detected by EmptyCheck.

We plan to pursue our future work in three ways. 1) We
can further improve the precision of EmptyCheck by taking
the semantics of cell headers into consideration. 2) To
improve the recall of EmptyCheck, we will explore more
efficient table extraction and cell array detection algorithms.
3) We will explore more efficient approach, which are not able
to be clustered into cell arrays, e.g., we can extract the context
features of empty cells and detect faulty empty cells based on
supervised machine learning.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (61702490, 61502011,
6171014), Beijing Natural Science Foundation (4164104),
National Key Research and Development Plan
(2016YFB1000803), Frontier Science Project of Chinese
Academy of Sciences (QYZDJ-SSW-JSC036), Youth
Innovation Promotion Association at CAS, and Beijing
College Students’ Research Project of High-Level Cross
Cultivation of Undergraduate.

REFERENCES

[1] R. Panko, “Facing the Problem of Spreadsheet Errors,” Decis. Line,

vol. 35, pp. 8–10, 2006.
[2] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of End

Users and End User Programmers,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2005, pp. 207–214.

[3] Ko A J, Abraham R, Beckwith L, et al., “The State of the Art in End-

User Software Engineering,” ACM Comput. Surv., vol. 43, pp. 1–44,
2011.

[4] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What You See Is

What You Test: A Methodology for Testing Form-Based Visual
Programs,” in Proceedings of International Conference on Software

Engineering (ICSE), 1998, pp. 198–207.

[5] R. Abraham and M. Erwig, “AutoTest: A Tool for Automatic Test
Case Generation in Spreadsheets,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2006, pp. 43–50.
[6] W. Dou, S.-C. Cheung, and J. Wei, “Is Spreadsheet Ambiguity

Harmful? Detecting and Repairing Spreadsheet Smells due to

Ambiguous Computation,” in Proceedings of International
Conference on Software Engineering (ICSE), 2014, pp. 848–858.

[7] W. Dou, C. Xu, S. C. Cheung, and J. Wei, “CACheck: Detecting and

Repairing Cell Arrays in Spreadsheets,” Trans. Softw. Eng., vol. 43,
pp. 226–251, 2017.

[8] S.-C. Cheung, W. Chen, Y. Liu, and C. Xu, “CUSTODES: Automatic

Spreadsheet Cell Clustering and Smell Detection using Strong and
Weak Features,” in Proceedings of International Conference on

Software Engineering (ICSE), 2016, pp. 464–475.

[9] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
Visualizing Inter-Worksheet Smells in Spreadsheets,” in Proceedings

of International Conference on Software Engineering (ICSE), 2012,

pp. 441–451.
[10] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and

Refactoring Code Smells in Spreadsheet Formulas,” Empir. Softw.

Eng., vol. 20, pp. 549–575, 2015.
[11] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen, “Data Clone

Detection and Visualization in Spreadsheets,” in Proceedings of

International Conference on Software Engineering (ICSE), 2013, pp.
292–301.

[12] W. Dou, S.-C. Cheung, C. Gao, C. Xu, L. Xu, and J. Wei, “Detecting

Table Clones and Smells in Spreadsheets,” in Proceedings of ACM
SIGSOFT International Symposium on the Foundations of Software

Engineering (FSE), 2016, pp. 787–798.

[13] D. W. Barowy, D. Gochev, and E. D. Berger, “CheckCell: Data
Debugging for Spreadsheets,” in Proceedings of ACM International

Conference on Object Oriented Programming Systems Languages &

Applications (OOPSLA), 2014, pp. 507–523.
[14] R. Abraham and M. Erwig, “GoalDebug: A Spreadsheet Debugger for

End Users,” in Proceedings of International Conference on Software

Engineering (ICSE), 2007, pp. 251–260.
[15] M. Fisher and G. Rothermel, “The EUSES Spreadsheet Corpus: A

Shared Resource for Supporting Experimentation with Spreadsheet
Dependability Mechanisms,” ACM SIGSOFT Softw. Eng. Notes, pp.

1–5, 2005.

[16] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, and J. Saraiva,

“SmellSheet Detective: A Tool for Detecting Bad Smells in

Spreadsheets,” in Proceedings of IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), 2012, pp.
243–244.

[17] R. Abraham and M. Erwig, “UCheck: A Spreadsheet Type Checker

for End Users,” J. Vis. Lang. Comput., vol. 18, pp. 71–95, 2007.
[18] “Microsoft Visual Studio 2010 Tools for Office Language Pack

(Version 4.0 Runtime).” [Online]. Available:

https://www.microsoft.com/en-us/download/details.aspx?id=54246.
[19] B. Jansen, “Enron versus EUSES: A Comparison of Two Spreadsheet

Corpora,” in Proceedings of Workshop on Software Engineering

Methods in Spreadsheets (SEMS), 2015, pp. 41–47.
[20] F. Hermans and E. Murphy-Hill, “Enron’s Spreadsheets and Related

Emails: A Dataset and Analysis,” in Proceedings of the 37th IEEE

International Conference on Software Engineering (ICSE), 2015, pp.
7–16.

[21] “Enron Corporation.” [Online]. Available:

https://en.wikipedia.org/wiki/Enron.
[22] J. Cunha, J. P. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a

Catalog of Spreadsheet Smells,” Lect. Notes Comput. Sci., vol. 7336,

pp. 202–216, 2012.
[23] C. Chambers and M. Erwig, “Automatic Detection of Dimension

Errors in Spreadsheets,” J. Vis. Lang. Comput., vol. 20, pp. 269–283,

2009.

[24] B. Hofer, A. Perez, R. Abreu, and F. Wotawa, “On the Empirical

Evaluation of Fault Localization Techniques for Spreadsheets,”

Autom. Softw. Eng., vol. 22, pp. 47–74, 2015.
[25] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the Accuracy

of Spectrum-based Fault Localization,” in Proceedings of the Testing:

Academic and Industrial Conference Practice and Research
Techniques - MUTATION (TAICPART-MUTATION), 2007, pp. 89–

98.
[26] B. Hofer, F. Wotawa, B. Hofer, and F. Wotawa, “Spectrum Enhanced

Dynamic Slicing for Fault Localization,” in Proceedings of European

Conference on Artificial Intelligence (ECAI), 2012, pp. 420–425.
[27] R. Abreu, A. Riboira, and F. Wotawa, “Constraint-based Debugging

of Spreadsheets,” in Proceedings of Ibero-American Conference on

Software Engineering, 2012.
[28] E. Getzner, B. Hofer, and F. Wotawa, “Improving Spectrum-Based

Fault Localization for Spreadsheet Debugging,” in proceedings of

IEEE International Conference on Software Quality, Reliability and
Security (QRS), 2017, pp. 102–113.

[29] W. Dou, L. Xu, S.-C. Cheung, C. Gao, J. Wei, and T. Huang, “VEnron:

A Versioned Spreadsheet Corpus and Related Evolution Analysis,” in
Proceedings of International Conference on Software Engineering

Companion (ICSE), 2016, pp. 162–171.

[30] L. Xu, W. Dou, C. Gao, J. Wang, J. Wei, H. Zhong, T. Huang,
“SpreadCluster: Recovering Versioned Spreadsheets through

Similarity-Based Clustering,” in Proceedings of International

Conference on Mining Software Repositories (MSR), 2017, pp. 158–
169.

[31] B. Jansen and F. Hermans, “Code Smells in Spreadsheet Formulas

Revisited on an Industrial Dataset,” in Proceedings of IEEE
International Conference on Software Maintenance and Evolution

(ICSME), 2015, pp. 372–380.

[32] C. Chambers, M. Erwig, and M. Luckey, “SheetDiff: A Tool for
Identifying Changes in Spreadsheets,” in Proceedings of IEEE

Symposium on Visual Languages and Human-Centric Computing

(VL/HCC), 2010, pp. 85–92.
[33] “Florencesoft DiffEngineX - Compare Excel Workbooks xlsx.”

[Online]. Available: https://www.florencesoft.com/.

[34] “Synkronizer Excel Compare: Compare, update and merge Excel
files.” [Online]. Available: http://www.synkronizer.com/.

