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Abstract—Spreadsheets play an important role in various 
business tasks, such as financial reports and data analysis. In 
spreadsheets, empty cells are widely used for different purposes, 
e.g., separating different tables, or default value “0”. However, 
a user may delete a formula unintentionally, and leave a cell 
empty. Such ad-hoc modification may introduce a faulty empty 
cell that should have a formula. 

We observe that the context of an empty cell can help 
determine whether the empty cell is faulty. For example, is the 
empty cell next to a cell array in which all cells share the same 
semantics? Does the empty cell have headers similar to other 
non-empty cells’? In this paper, we propose EmptyCheck, to 
detect faulty empty cells in spreadsheets. By analyzing the 
context of an empty cell, EmptyCheck validates whether the cell 
belong to a cell array. If yes, the empty cell is faulty since it does 
not contain a formula. We evaluate EmptyCheck on 100 
randomly sampled EUSES spreadsheets. The experimental 
result shows that EmptyCheck can detect faulty empty cells with 
high precision (75.00%) and recall (87.04%). Existing 
techniques can detect only 4.26% of the true faulty empty cells 
that EmptyCheck detects. 
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I.  INTRODUCTION 

Spreadsheets are widely used in financial reports, data 
storage and analysis. A recent study shows that, in Europe, 80% 
of the companies use spreadsheets to write their financial 
reports, and in America, 95% of the companies use 
spreadsheets in their business [1]. In 2002, there were more 
than 55 million users who worked with spreadsheets in the 
United States alone [2]. 

Faults / errors can be easily introduced into spreadsheets 
due to ad-hoc modifications [3]. Various techniques have been 
developed to improve the quality of spreadsheets, such as 
testing [4][5], fault detection [6][7][8][9][10], clone detection 
[11][12] and debugging [13][14]. 

In spreadsheets, empty cells are usually used for different 
purposes. Fig. 1 shows an example about empty cells. (1) 
Empty cells can be used to separate different parts of data and 
formulas, such as empty cells in rows 13 and 18. (2) Empty 
cells can be used to form table layouts, such as cells [A2:A4]. 
(3) Empty cells can be used as default value “0”, such as cells 
B5 and B6. All the above three cases are common in practice. 
Note that, empty cells in the first two cases have nothing to do 
with business logic in the spreadsheets. 

However, not all empty cells should be left as they are. For 
some empty cells, their contexts show that they should contain 
some formulas. For example, in Fig. 1, column G calculates 
the total parcel tax by adding the data in columns B, C, and E. 
However, cell G8 is left empty wrongly. Two possible 
scenarios can cause this: (1) The user deleted the formula in 
cell G8 unintentionally, because its input cells (i.e., B8, C8 
and E8) were not filled with any values. (2) The user inserted 
a new row (i.e., row 8) and forgot filling the formula in cell 
G8. Similarly, cells G11 and G12 should also contain 
formulas. Since these empty cells (e.g., G8, G11 and G12) do 
not contain formulas, any update to their input cells can cause 
wrong values. For example, the value of cell G11 should be 
0.5, because one of its input cells, i.e., E8, contains the value 
0.5. However, cell G11 only contains the default value “0”. 
Note that, cell G13 should not contain any formula, since row 
13 is used to separate the whole table. 

In this paper, we propose EmptyCheck, to detect faulty 
empty cells in spreadsheets automatically. The key challenge 
is to distinguish which empty cells are faulty and which are 
not. We observe that the context of an empty cell may help 
determine whether an empty cell is faulty. For example, if an 
empty cell is next to a cell array, in which all cells share the 
same semantics, the empty cell is likely to be faulty. For 
example, in Fig. 1, empty cell G8 is next to the cell array 
[G5:G7] and likely to be part of this cell array with a formula. 
Based on this observation, we propose a novel cluster-based 
algorithm to detect faulty empty cells in spreadsheets. We first 
try to identify all cell arrays by several heuristic rules e.g., all 
formulas contained in a cell array should reference their input 
cells in the same way. For each empty cell, we check whether 
it can be clustered into a cell array according to its context. If 
we find a cell array for an empty cell, there is a high possibility 
that the empty cell should contain a formula, thus we mark it 
faulty. 

We implement EmptyCheck as an Excel plugin and 
evaluate it on 100 spreadsheets, which were randomly 
selected from the EUSES corpus [15]. Our experimental 
results show that: (1) Faulty empty cells are common in the 
real-life spreadsheets, and 36% of the spreadsheets we studied 
contain faulty empty cells. (2) 72.02% of the faulty empty 
cells contain wrong values. This indicates faulty empty cells 
are indeed harmful. (3) EmptyCheck can detect faulty empty 
cells with high precision (75.00%) and recall (87.04%). (4) 
EmptyCheck outperforms the existing techniques [16] in 
detecting faulty empty cells. Only 5.39% of the faulty empty 
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cells can be detected by the existing techniques. We have 
made all the data used in our study available online for further 
study (http://www.tcse.cn/~wsdou/project/EmptyCheck/).  

Although various techniques have been proposed to detect 
faults and smells in spreadsheets, e.g., AmCheck [6] / 
CACheck [7], TableCheck [12] and CUSTODES [8], they 
usually consider empty cells as boundaries for other cells, and 
do not check their validity. EmptyCheck differs from the 
faulty empty cell detection proposed by SmellSheet Detective 
[16] in the definitions of faulty empty cells and proposed 
approaches. SmellSheet Detective considers an empty cell 
faulty when its four neighboring cells in the same row or 
column are all non-empty. For example, SmellSheet Detective 
marks cell E8 in Fig. 1 faulty, because cell E8’s four 
neighboring cells (i.e., E5, E6, E7 and E9) are not empty. 
SmellSheet Detective cannot detect the faulty empty cell G12, 
because its neighboring cells, i.e., G11 and G13, are empty. 
We can see that SmellSheet Detective can easily miss true 
faulty empty cells (e.g., cells G11 and G12) and return false 
positives (e.g., cell E8). Our experimental result shows that 
the neighbor-based approach [16] detected faulty empty cells 
with low precision (5.39%) and recall (3.70%). 

In general, the main contributions of this paper are as 
follows: 

 We propose a cluster-based approach, EmptyCheck, to 
detect faulty empty cells in spreadsheets automatically, 
by analyzing the contexts of empty cells. 

 We implement EmptyCheck, and evaluate it on the 
real world spreadsheets from the EUSES corpus. The 
experimental result shows that EmptyCheck can detect 
faulty empty cells with higher precision and recall. 

 We compare EmptyCheck with existing techniques. 
Our experimental result indicates EmptyCheck can 
accurately detect more faulty empty cells than existing 
techniques. 

The remainder of this paper is organized as follows: 
Section II shows our motivation and challenges. Section III 
gives the detailed description of EmptyCheck. Section V 
shows the results of our evaluation. We discuss the limitations 

in Section VI and threats in Section VII and related work in 
Section VIII. Finally, we conclude this paper in Section IX. 

II. MOTIVATION 

In this section, we present a real world spreadsheet 
example extracted from the EUSES corpus [15]. Through this 
example, we first illustrate what faulty empty cells are. We 
further show the challenges in detecting faulty empty cells. 

A. Motivating Example 

Fig. 1 shows a real world spreadsheet snippet extracted 
from the EUSES corpus [15]. This spreadsheet snippet is used 
to calculate the parcel tax. It contains many empty cells. We 
cluster these empty cells into two categories according to the 
degree of their harmfulness as follows. 

Harmless empty cells. Users may leave some cells empty 
intentionally. First, users may insert empty rows or columns 
to make the data layout more intuitive, such as rows 13 and 18 
in Fig. 1. Second, users may leave the cells as empty when the 
corresponding data is not available (e.g., cells B5 and B6). 
Their values need to be entered directly by users in the future, 
or just leave as default value “0”. In this paper, these empty 
cells are considered as correct and harmless ones. 

Faulty empty cells. Some empty cells should be filled 
with formulas to make sure that their values can be updated 
automatically when their input cells’ values change. For 
example, as shown in Fig. 1, we can recognize that the cells in 
column G are used to calculate the parcel tax by adding 
columns B, C and E. Although the value of G8 is correct since 
its input cells B8, C8 and E8 are empty, cell G8 should be 
filled with a formula “=B8+C8+E8”, so that it can be updated 
automatically when the new data are filled into cells B8, C8 
or E8. We consider cell G8 as a faulty empty cell since it 
should contain a formula. Similarly, cells G11 and G12 are 
also faulty empty cells. 

Faulty empty cells may not always hold the default value 
“0”. If some input cells of a faulty empty cell change, it is 
possible that the faulty cell should hold a non-zero value, 
causing an error. For example, as shown in Fig. 1, we have 
recognized that the value of cell G11 should be calculated by 
adding cells B11, C11 and E11. Thus, cell G11 should hold 
the value 0.5, and contains a wrong value. 

Note that, harmless empty cells usually do not degrade the 
quality of spreadsheets. Therefore, in this paper, we focus on 
faulty empty cells in which some formulas should be filled. 

B. EmptyCheck Overview 

Detecting faulty empty cells in spreadsheets needs to 
address two technical challenges. Let us explain them using 
the example shown in Fig. 1. First, which empty cells are 
faulty? How to detect them? Many empty cells exist because 
they are necessary to design the layout of spreadsheets, e.g., 
A2 and C3. We must filter out them to avoid producing too 
many false positives. Second, how to confirm the harmfulness 
degree of faulty empty cells? The faulty empty cells that have 
caused errors are more serious than other faulty empty cells. 

 
Fig. 1. A real world spreadsheet snippet extracted from the EUSES corpus 
[15]. The empty cells marked by a red right-cornered triangle are faulty. 



It is better if we can distinguish them and allow users to focus 
on more serious faulty empty cells first. 

We handle the first challenge by extracting cell arrays in 
spreadsheets, and focus on detecting faulty empty cells that 
are adjacent to cell arrays. A cell array, proposed by Dou et al. 
[6], is a consecutive range of cells in a row or column 
prescribing certain computational semantic, e.g., [G5:G7], 
and all its cells share the same semantics. It is possible that 
some adjacent empty cells should belong to the cell array. For 
example, we can see that G8 should be part of the cell array 
[G5:G7]. According to the definition of cell arrays, these 
empty cells in a cell array should share the same computation 
pattern with other non-empty cells. Thus, empty cells in a cell 
array are faulty. 

To overcome the second challenge, we should know 
whether a faulty empty cell’s input cells are empty, too. The 
key point is how to get the input cells for a faulty empty cell. 
We can get the information from the cell array’s 
computational semantics. For example, G8 is part of cell array 
[G5:G7], thus, we can infer that its input cells should be B8, 
C8 and E8. 

III. APPROACH 

Given a spreadsheet, EmptyCheck analyzes the context of 
empty cells and detects faulty empty cells in it. Fig. 2 presents 
how EmptyCheck works. First, EmptyCheck heuristically 
identifies tables (Section III.A). Next, EmptyCheck extracts 
cell arrays in each table (III.B and III.C). Finally, 
EmptyCheck detects the faulty empty cells in the extracted 
cell arrays, and determines whether the faulty empty cells 
have caused errors (III.D). 

A.  Table Extraction 

A table is usually a rectangular block of cells, including 
header cells and body cells. A table usually represents a 
standalone business task, e.g., cells [A1:G20] in Fig. 1 make 
up a table for calculating the parcel tax. In a table, its body 
cells usually are placed continuously and form a data area. For 
example, the body of the table [A1:A20] in Fig. 1 is [B5:G20], 
marked by the red dashed rectangle in (s1). 

In practice, users may put several tables into one 
worksheet. To extract data areas in a worksheet, we first 
classify cells into different types, and then extract tables based 
cells’ types. We adopt the cell classification strategy proposed 
by UCheck [17] to classify all the cells into four types. 1) Data 
cells. The contents in data cells are numerical values or some 
special strings that are usually used as data instead of labels 
(e.g., “-”, “#N/A”). 2) Formula cells. The formula cells 
contain formulas. 3) Label cells. Label cells usually contain 
strings, and are used as table headers. 4) Empty cells. 

Then, we use fence to denote a row / column that can be 
used as the borders of tables. For each fence, it contains at 
least one label cell, and other cells in it are all empty. For 
example, the first four rows in the Fig. 1 are considered as 
fences. We further use fences to separate a worksheet into 
multiple data areas, e.g., [B5:G20], marked by the rectangle 
with red dashed borders in Fig. 2(s1). 

 
(s1) Extract tables 

 
(s2) Identify cell arrays 

 
(s3) Remove overlapping cells from cell arrays 

 
(s4) Detect faulty empty cells 

Fig. 2. Overview of EmptyCheck. 



Note that, our above table extraction approach differs 
slightly from previous approaches used in [6][7][17]. We 
observe that it is common for users to insert one or more 
empty rows or columns into a table (e.g., rows 13 and 18 in 
Fig. 1), making it more readable. To avoid extracting 
incomplete data areas, we do not use empty rows / columns as 
fences. For example, rows 13 and 18 in Fig. 2(s1) are not 
considered as fences, and we can extract a data area [B5:G20], 
rather than three small data areas [B5:G12], [B14:G17] and 
[B20:G20]. Thus, we can extract big data areas. This also 
allows us to take as many as possible empty cells into 
consideration and analyze them in the following steps. 

B. Cell Array Extraction 

Before elaborating how we extract cell arrays, we first 
introduce the formula pattern used in our approach. For each 
cell array, all their cells follow the same computational 
semantics, and thus the formulas in it share the same formula 
pattern. For example, cell X20 in [B20:G20] is computed by 
the sum of cells [X5:X19], where X = {B, C, D, E, F, G}. The 
formula pattern of the formulas in [B20:G20] is “SUM(R[-
15]C:R[-1]C)”, which is specified in the R1C1 style1. 

Basically, we adopt the cell array detection algorithm in 
CACheck [7]. However, we adapt it to detect cell arrays 
containing empty cells. The basic idea of cell array detection 
algorithm is that if a group of consecutive cells in a row / 
column satisfy the following conditions, these cells can be 
treated as a cell array: 

 The group contains only data, formula and empty cells. 
And, there are at least two cells in the group. 

 The group contains at least one formula cell. The 
information of formulas is the key for us to identify 
faulty empty cells. If there are no formulas in a cell 
array, we cannot infer whether its empty cells should 
be filled with formulas or not. 

 All formulas in the group should reference their input 
cells in the similar way. If two formulas have some 
common R1C1 expressions for their input cells, we 
consider they reference their input cells in the similar 
way. For example, the formulas in cells G5 and G14 in 
Fig. 2(s2), their formula are “RC[-5]+RC[-4]+RC[-2]” 
and “RC[-5]+RC[-4]” in the R1C1 style, respectively. 
We can see that these two formulas have some 
common R1C1 expressions for their input cells, i.e., 
RC[-5] and RC[-4]. 

For each row and column in a data area, our algorithm is 
the same. Here, we only use the cells in a column to describe 
our algorithm. Specifically, for each column in a data area, our 
cell array detection algorithm works as follows. We use [x, y] 
to denote the cells in the column, where x denotes the row 
index of the first cell, and y denotes the row index of the last 

cell. 1) Initially, the cells in [x, y] are treated as a potential cell 
array [m, n]. 2) If the potential cell array [m, n] contains no 
formula, our algorithm terminates. 3) If the potential cell array 
[m, n] satisfies the above three conditions, we have detected a 
cell array. We further construct a new potential cell array [n+1, 
y], and check this new potential cell array from step 2 
recursively. 4) If the potential cell array [m, n] does not satisfy 
the above three conditions, we change the potential cell array 
to [m, n-1], and check this changed potential cell array from 
step 2 recursively. We call the cell arrays extracted from each 
row as row-based cell arrays, and cell arrays extracted from 
each column as column-based cell arrays. 

Taking the column G in the data area [G5:G20] in Fig. 2 
(s1), as an example. Initially, we treat cells [G5:G20] a 
potential cell array. [G5:G20] is not a cell array, because the 
formula in G20 does not reference its input cell in the similar 
way as cell G19. Thus, we remove the last cell in [G5:G20], 
and treat cells [G5:G19] as a new potential cell array. The 
formulas in [G5:G19] reference their input cells in the similar 
way, i.e., they share the common input R1C1 expressions 
RC[-5] and RC[-4]. Thus, [G5:G19] is detected as a cell array. 
Because there is only cell G20 left, the detection algorithm 
terminates for column G. Therefore, in column G, we detect a 
column-based cell array [G5:G19]. 

For the data area B5:G20 in Fig. 2(s1), we in total detect 
11 row-based cell arrays ([Bi:Gi], 𝑖 = 5, 6, 7, 9, 10, 14 −
17, 19, 20) and 6 column-based cell arrays ([G5:G19] and 
y5:y20, y = B, C, D, E, F). For example, Fig. 2(s2) only shows 
two row-based cell arrays ([B5:G5] and [B20:G20]) and one 
column-based cluster ([G5:G19]). 

Note that, CACheck [7] uses empty cells as boundaries of 
cell arrays. As a result, all generated cell arrays do not contain 
empty cells, and empty cells can separate a cell array (e.g., 
[G5:G19]) into multiple smaller ones, e.g., [G5:G7], [G9:G10] 
and [G14:G17]. In EmptyCheck, we solve these problems by 
considering empty cells as part of a cell array. Thus, 
EmptyCheck can extract complete cell arrays, e.g., [G5:G19]. 

C. Remove Overlapping Cells from Cell Arrays 

Since we extract cell arrays in both row and column 
directions, the row-based cell arrays and the common-based 
cell arrays may share some cells. As shown in Fig. 2(s2), the 
row-based cell array [B5:G5] and the column-based cell array 
[G5:G19] share the common cell G5. According to the 
information of the headers of two cell arrays, we can 
recognize that G5 should only belong to the column-based 
cell array [G5:G19]. 

Before explaining how we remove overlapping cells from 
cell arrays, we first introduce how we recover formula pattern 
for a cell array. In a cell array, all its formulas can be treated 
as potential formula patterns. We select the formula which 
can cover most non-empty cells as its formula pattern. If a 
cell is covered, its data can be computed by the formula 
pattern. For example, cell array [G5:G19] has two potential 
formula patterns: “RC[-5]+RC[-4]+RC[-2]” (the R1C1 form 
of formulas Bi+Ci+Ei) and “RC[-5]+RC[-4]” (the R1C1 
form of formulas Bi+Ci). The potential formula pattern 

1In spreadsheets, cell references can be represented in two styles: A1 and 
R1C1. In the A1 style, a cell at the x-th row and y-th column is denoted as yx 

in relative reference (e.g., B2), and $y$x in absolute reference (e.g., $B$2). 

In the R1C1 style, a cell at m rows below and n columns right to the current 
cell is denoted as R[m]C[n] in relative reference, and a cell at the m-th row 

and n-th column is notated as RmCn in absolute reference. 



“RC[-5]+RC[-4]+RC[-2]” can cover 10 non-empty cells, 
while, the potential formula pattern “RC[-5]+RC[-4]” can 
only cover 4 non-empty cells. Thus, we use “RC[-5]+RC[-
4]+RC[-2]” as cell array [G5:G19]’s formula pattern. If 
multiple potential formula patterns can cover the same 
number of cells, we randomly select one as the cell array’s 
formula pattern. 

For an overlapping cell, we further judge which cell array 
it should belong to by analyzing how close the cell and the 
formula pattern of its corresponding cell array is. Our 
overlapping cell array removal algorithm works as follows: 

 If the overlapping cell contains a formula, we count the 
number of the same formulas with the formula in 
overlapping cell (in R1C1 form) in each cell array and 
remove this cell from the cell array with few shared 
formulas. For cell arrays [B5:G5] and [G5:G19], the 
formula contained in the overlapping cell G5 is “RC[-
5]+RC[-4]+RC[-2]”. Cell array [G5:G19] contains 7 
common formulas, while cell array [B5:G5] contains 
none. Thus, cell G5 is removed from cell array 
[B5:G5], then cell array [B5:G5] changes into [B5:F5]. 
If the numbers of the same formulas are the same, we 
decide that the cell belongs to the row-based cell array. 

 If the overlapping cell is data cell or empty cell, we 
calculate its expected value by using all involved cell 
arrays’ formula patterns and the overlapping cell 
belongs to the cell array with the smallest distance 
between its actual value and expected value. We 
assume that most data in spreadsheets are correct. That 
means the overlapping cell’s value should be 
calculated by the formula pattern of the corresponding 
cell array which it belongs to. We calculate the 
distance between its actual value and expected value: 
|real value – expected value|. Thus, the overlapping 
cell belongs to the cell array whose distance is the 
smallest. If two cell arrays have the same distance, we 
decide that the overlapping cell belongs to the row-
based cell array. 

In the above process, some cell arrays may be changed or 
added, e.g., a cell array is divided into two cell arrays by a 
removed cell in it. We further check whether the changed / 
added cell arrays satisfy the three conditions shown in 
Section III.B. If a cell array does not satisfy the conditions 
any more, we remove it from our detection results. For 
example, the cell array [B5:F5] is removed because it 
contains no formulas. 

Through the above algorithm, we remove ten row-based 
cell arrays (Bi:Gi, i = 5, 6, 7, 9, 10, 14-17, 19) and five 
column-based cell arrays (y5:y19, y = B, C, D, E, F). Finally, 
we extract two cell arrays, a row-based cell array [B20:G20], 
marked by green color, and a column-based cell array 
[G5:G19], marked by yellow color, as shown in Fig. 2(s3). 

D. Faulty Empty Cell Detection 

Our approach described above can detect cell arrays with 
empty cells, e.g., cell array [G5:G19]. For all empty cells in a 
cell array, since they lack formulas, we will consider them as 

faulty empty cells. However, not all empty cells are faulty. For 
example, row 13 is used as a separator, and thus cell G13 
should not be considered faulty. 

Suppressing false positives. We observe that in a 
column-based (row-based) cell array, their cells should share 
the row (column) headers of the same types. The types of 
headers can be empty, string or numerical sequence (e.g., the 
headers are numerical sequence, like 1, 2, 3). Each cell has 
two headers: one row header and one column header. The 
nearest label cell or data cell in a numerical sequence in the 
same row can be treated as its row header. Similarly, the 
nearest label cell or data cell in a numerical sequence in the 
same column can be treated as its column header. For each 
cell in a column-based (row-based) cell array, we identify 
whether its row (column) header shares the same type with 
that of other non-empty cells in the same cell array. For 
example, in column-based cell array [G5:G19], non-empty 
cell G5 and empty cell G8 share the row headers with the same 
string type (“Science” and “Performing”, respectively). 
However, the row headers of cells G5 and G13 have different 
types (“Science” and “”, respectively), since empty cell G13’s 
row header is null. Thus, the empty cell G13 is considered as 
a false positive, and removed from our detection result. 

Identifying faulty empty cells. Our faulty empty cell 
detection algorithm can be divided into the following three 
steps and the pseudo code is shown in Algorithm 1. 

1) Extracting the formula pattern for each cell array in 

which there is at least an empty cell (Line 4). For each cell 

array, we first extract all formulas from it and express them 

in the R1C1 style as possible formula patterns. We assume 

that most of the formulas in the cell arrays are correct. Based 

on this assumption, we simply select the formula pattern that 

can cover most cells (as mentioned in III.C) as the formula 

pattern for the cell array. 

2)  Identifying the faulty empty cells (Lines 7-12). 

According to the definition of a cell array, all cells in it should 

share the same semantics. In other words, the empty cells 

Algorithm 1. Faulty empty cell detection 
____________________________________________________________________________________________________________________________________________________________________________________________ 

Input: cell arrays containing empty cells 
Output: FeCells (faulty empty cells) and SeCells (faulty empty cells 
that cause errors) 

1: 𝐹𝑒𝐶𝑒𝑙𝑙𝑠 = ∅;    // Initialize faulty empty cells 

2: SeCells = 0;       // Initialize faulty empty cells that cause errors 

3: For each 𝑎𝑟𝑟𝑎𝑦 ∈ 𝑐𝑒𝑙𝑙 𝑎𝑟𝑟𝑎𝑦𝑠 

4: fpattern= recoverFormulaPattern(𝑎𝑟𝑟𝑎𝑦); 

5: For each empty 𝑐𝑒𝑙𝑙 in 𝑎𝑟𝑟𝑎𝑦 

6: references =getReferences(fpattern, empty 𝑐𝑒𝑙𝑙); 
7: If references only contain data, formula or empty cells 

in the table 

8: Add empty cell into FeCells 

9: If the calculated value for empty cell is nonzero 

10: Add empty cell into SeCells 

11: EndIf 

12: EndIf 

13: EndFor 

14: EndFor 

15: Return FeCells and SeCells 
 



should be filled with the formula pattern. After filled the 

formula pattern, the empty cells are reported as faulty empty 

cells only when all referenced cells are data cell or empty 

cells and they belong to the same table with the cell array. 

3) Identifying the faulty empty cells that cause errors 

(Lines 9-11). For each faulty empty cell, we calculate its 

value according to the formula pattern and the values of 

corresponding input cells. The faulty empty cells are believed 

to cause errors when they get non-zero outputs. 
Taking the column-based cell array in column G, marked 

by yellow color in Fig. 2(s3), as an example. As mentioned in 
Section III.C, we can get its formula pattern: “RC[-5]+RC[-
4]+RC[-2]”. The empty cell G8 will reference to B8, C8 and 
E8, after filled with formula “RC[-5]+RC[-4]+RC[-2]”. All 
referenced cells are data cells. Thus, G8 is detected as faulty 
empty cell. Similarly, G11 and G12 are also detected as faulty 
empty cells. Further, we calculate the values for those three 
detected empty cells. We can see that cell G11 has non-zero 
output (0.5). Thus, G11 is considered as the faulty empty cell 
that caused an error. 

IV. IMPLEMENTATION 

In this section, we give a brief introduction about the 
implementation of EmptyCheck. For ease of use, we 
developed EmptyCheck as an excel plugin by using the 
Microsoft Visual Studio 2010 Tools for Office Language Pack 
(Version 4.0 Runtime) [18]. 

For visualization, EmptyCheck uses a widely used method, 
colors and tips, to visualize the detected faulty empty cells in 
spreadsheets: the faulty empty cells that have caused errors are 
marked by red color and others are marked by yellow color. 
The tips give the recommended formulas that should be filled. 
Fig. 2(s4) shows the visualized result of EmptyCheck. In this 
example, EmptyCheck detects three faulty empty cells (i.e., 
G8, G11 and G12) and one of them (G11, marked by red color) 
caused an error. When users click a faulty empty cell, the tips 
give the suggestion for the corresponding cell. 

V. EVALUATION 

Our evaluation studies the following three research 
questions: 

RQ1: How common are faulty empty cells in real-life 

spreadsheets? 

RQ2: Can EmptyCheck detect faulty empty cells precisely? 

Specifically, what are the precision, recall and F-Measure? 

RQ3: How is EmptyCheck compared with existing 

techniques, e.g., the neighbor-based approach? 

To answer the above three research questions, we 
evaluated EmptyCheck on 100 spreadsheets randomly 
selected from the EUSES corpus [15]. To answer RQ1, we 
manually checked all empty cells in these spreadsheets to 
determine whether they are faulty. To answer RQ2, we 
manually validated whether the faulty empty cells detected by 
EmptyCheck are true or not. To answer RQ3, we compared 
EmptyCheck with the neighbor-based approach [16]. 

A. Experimental Subjects 

We use the spreadsheets in the EUSES corpus [15] as our 
experimental subjects, which are the most frequently used 
spreadsheet corpus for spreadsheet-related studies. The 
EUSES corpus contains more than 4,000 spreadsheets. A 
previous study by Bas Jansen [19] shows that the spreadsheets 
in the EUSES corpus are similar to that in the Enron corpus 
[20], which are used by the Enron Corporation [21]. Thus, the 
spreadsheets in EUSES can represent the spreadsheets used in 
real life. Since our approach relies on the formula information, 
we only focus on the spreadsheets that contain at least one 
formula. In total, there are 1,617 spreadsheets containing 
formulas in the EUSES corpus. It is time-consuming and 
impractical to build a ground truth for our experiments using 
all these 1,617 spreadsheets. Therefore, we randomly sample 
100 spreadsheets from them and build the ground truth for 
these spreadsheets by validating all empty cells and manually 
determining whether they are faulty or not. This process took 
the first two authors about three weeks. 

Our random sampling algorithm works as follow. First, we 
randomly sample a corresponding number of spreadsheet 
from each domain according to the percentage of the total 
spreadsheets it contains. Because that the spreadsheets in The 
EUSES corpus [15] are clustered into different domains and 
each domain’s spreadsheets are grouped in an individual 
folder. That allows us to avoid missing some domains’ 
spreadsheets. Second, we try to understand the functionality 
of each selected spreadsheet and delete the spreadsheets that 
we cannot fully understand according to the limited 
information (e.g., the semantics of headers). Because the 
creators of these spreadsheets are not available, we need to 
manually validate whether empty cells in selected 
spreadsheets are faulty or not. If we cannot fully understand 
the spreadsheets, we may misjudge some empty cells. When 
deleting some incomprehensible spreadsheets, we randomly 
select the same number of spreadsheets from remained 
spreadsheets in the same domain. Finally, we selected 100 
spreadsheets in total. 

Table I shows the statistics of our experimental subject. 
The distribution of spreadsheets in different domains is shown 
in column SS. There are 190 worksheets (WS) in our 
experimental subject, from which we identify 16,299 formulas 
(Formula). As mentioned before, many empty cells are used 
for data layout. We in total got 19,079 empty cells (Empty). 

TABLE I. STATISTICS OF 100 SELECTED SPREADSHEETS FROM THE EUSES 

CORPUS [15]. 

Categories SS WS Formula Empty 

cs101 2 2 52 20 

database 10 31 1,282 1,131 

financial 14 19 1,332 1,948 

forms3 2 2 95 50 

grades 23 37 5,074 6,000 

homework 24 31 3,001 2,647 

inventory 17 58 2,612 4,093 

modeling 8 10 2,851 3,190 

Total 100 190 16,299 19,079 

  



B. Evaluation Metrics 

Let 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ denote the faulty empty cells in the 

ground truth that consist of all faulty empty cells in the 
selected spreadsheets from EUSES [15], 𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 
denote the cells detected by EmptyCheck. The precision, 
recall and F-Measure used in our evaluation are calculated as 
follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∩ 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑|
         (1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝐸𝐶𝑒𝑙𝑙𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 ∩ 𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|

|𝐸𝐶𝑒𝑙𝑙𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ|
         (2) 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                   (3) 

Next section, we will discuss how we build the ground 
truth in detail. 

C. RQ1: How Common Are Faulty Empty Cells? 

Since the creators of the spreadsheets in the EUSES corpus 
[15] are not available, we cannot get the ground truth from the 
original authors. Therefore, we manually validated all empty 
cells and determined whether they are faulty or not. We 
carefully checked each empty cell in the 100 selected 
spreadsheets, and try to answer the following questions for 
each empty cell: 

1) Should it contain a formula? 

2) If yes, can we recover a formula for the empty cell? 

3) If yes, it is detected as faulty empty cell, and should 

the input cells of the empty cell have non-zero value? 

4) If yes, this faulty empty cell causes an error. 

To avoid possible mistakes, each empty cell has been 
cross-checked by the first two authors of this paper. Table II 
shows our manually validated result. In total, from these 100 
selected spreadsheets, we find 486 faulty empty cells (Faulty 
Empty Cells / Total). Furthermore, we found that 350 faulty 
empty cells have caused errors (Faulty Empty Cells / Error). 
We can see that 72.02% faulty empty cells have caused errors 
(% E/T). Thus, faulty empty cells are harmful in spreadsheets 
and it is important to detect the faulty empty cells. 

Table II also indicates how common faulty empty cells are. 
We can see that 36.00% (36 out of 100) of the selected 
spreadsheets (SS) and 24.21% (46 out of 190) of the 
worksheets (WS) contain at least one faulty empty cell. We 
found faulty empty errors exists in the cells in the spreadsheets 
of all categories except categories form3. These numbers 
indicate that faulty empty cells are common in real-life 
spreadsheets. 

Therefore, we can draw the following conclusion:  

The faulty empty cells are common in real-life 
spreadsheets. Most (72.02%) of faulty empty cells are 
harmful and have caused errors in spreadsheets. 

We use our manual validated results as the estimation of 
the real ground truth to answer RQ2 and RQ3. 

D. RQ2: Detection Quality of EmptyCheck 

To evaluate the quality of EmptyCheck, we ran 
EmptyCheck on the 100 sampled spreadsheets. Table III 
shows the detection results reported by EmptyCheck. We can 
see that EmptyCheck detected 564 faulty empty cells (Faulty 
Empty Cells / Detected), and 423 faulty empty cells are 
confirmed as true positives (Faulty Empty Cells / True). Thus, 
the precision of EmptyCheck is 75.00% (Faulty Empty Cells 
/ Precision) and the recall is 87.04% (Faulty Empty Cells / 
Recall). 

We further investigate the precision and recall of 
EmptyCheck in detecting the serious faulty empty cell that 
have caused errors. As shown in Table III EmptyCheck report 
405 faulty empty cells that had caused errors (Faulty Empty 
Cells that Have Caused Errors / Detected), and among of them, 
296 are confirmed as true positives (Faulty Empty Cells that 
Have Caused Errors / True), Thus, EmptyCheck can achieve 
high precision (73.09%) and recall (84.57%) in detecting the 
faulty empty cells that had caused errors, too.  

Therefore, we can draw the following conclusion: 

EmptyCheck can detect faulty empty cells with high 
precision (75.00%) and recall (87.04%). 

False positives of detected faulty empty cells. The 
differences between the value of column Detected and that of 
column True in Table III are the false positives. We inspect all 
141 false positives, and find out the reasons why EmptyCheck 
cannot achieve higher precision. (1) EmptyCheck failed to 
extract irregular tables correctly. Our table extraction 
algorithm always tries to extract the rectangle area as tables. 
While some tables whose boundaries are marked by bold 
borders of cells are not regular rectangle area. For an irregular 
table, EmptyCheck extract the minimum rectangle area which 
covers this table, containing some unrelated empty cells. 16 
(11.35%) false positives belong to this case. (2) EmptyCheck 
identified headers for some cells incorrectly. Some cells’ row 
headers are fixed length numbers (e.g., “164834” and 
“033835”). EmptyCheck identified them as data cells. 4 
(2.84%) false positives belong to this case. (3) EmptyCheck 

TABLE II. STATISTICS OF FAULTY EMPTY CELL IN 100 SELECTED 

SPREADSHEETS FROM THE EUSES CORPUS[15]. 

Categories SS WS 
Faulty Empty Cells 

Total Error  %  E/T 

cs101 1 1 3 3 100.00% 

database 5 5 29 11 37.93% 

financial 3 3 24 24 100.00% 

forms3 0 0 0 0 0.00% 

grades 4 6 69 59 85.51% 

homework 7 7 68 50 73.53% 

inventory 10 16 91 56 61.54% 

modeling 6 8 202 147 72.77% 

Total 36 46 486 350 72.02% 

 



cannot understand the semantics of cells’ headers. The 
semantics of the headers of cells usually determine which cells 
should contain formulas. Thus, our approach may misjudge 
situations and introduce false positives. 121 (85.82%) false 
positives belong to this case. 

Fig. 3 shows an example of false positives caused by the 
third reason. This spreadsheet is used to process the data of 
reinvestment needs, containing four columns (Year, 
Reinvestment Needs, Firm Value and Reinvestment Needs as 
percent of Firm Value) and thirteen rows (rows 2-11 are the 
data of each year). EmptyCheck extracted a row-based cell 
array [B13:D13] (marked by green color) and a column-based 
cell array [D2:D11] (marked by yellow color). According to 
our faulty empty cells detection algorithm, EmptyCheck 
reports cells B13 and C13, because they should be filled in 
with formula “=AVERAGE(R[-11]C:R[-2]C)”, as the same 
formula in D13. However, according to the row header of row 
13, “Average Reinvestment Need as % of Value =”, we can 
see that row 13 is used to calculate the average of reinvestment 
need as percent of firm value. Since all needed data is stored 
in column D, that only cell D13 is filled with formula is thus 
reasonable. In other words, cells B13 and C13 should be left 
to be empty. 

False negatives of detected faulty empty cells. We also 
inspected all 63 false negatives to find out the main reasons 
why EmptyCheck cannot achieve higher recall. (1) 
Incomplete table extraction. To avoid extracting incomplete 
data areas, we define a row / column that only contains at least 
a label cell and other cells in it are empty as a fence. We 
observed that some columns or rows contain no data in some 
tables, and they are identified as fence mistakenly. 37 (58.73%) 
false negatives belong to this case. (2) The headers of some 
faulty empty cells are missing. As mentioned before, 
EmptyCheck suppresses false positives according to the type 
information of headers. 22 (34.92%) true faulty empty cells 
are removed mistakenly. (3) EmptyCheck detects faulty 
empty cells by recovering the formulas for the empty cell. In 
some cases, EmptyCheck failed to recover correct formula 
according to the information contained in cell arrays. 4 (6.35%) 
false negatives belong to this case. 

An example of false negatives caused by the first reason is 
shown in Fig. 4. This spreadsheet is used to handle the 
physical plant inventory according to the header in cell A1 
(“TABLE 1 (continued): PHYSICAL PLANT INVENTORY”). 

This worksheet contains two tables A6:H10 and A15:H20. 
According to the header in A20 (TOTAL) and the formulas in 
cells B20 and C20, we can infer that cell H20 should be filled 
in with the formula “=SUM(R[-3]C:R[-2]C)”, to calculate the 
total value of “FUNCTIONALLY, OBSOLETE”. While, 
according our definition of fences, the column H is identified 
as fence to extract table. Thus, H20 is not reported as faulty 
empty cells. 

E. RQ3: Comparison with Existing Techinques 

Cunha et al. [16][22] proposed a neighbor-based approach 
to detect faulty empty cells: if an empty cell’s four neighbor 
cells in the same row or column are all non-empty, then they 
consider it as a faulty empty cell. For example, for empty cell 
E8 in Fig. 1, its four neighbor cells are E5, E6, E7 and E9. 
Since these four cells are not empty, so E8 is considered as a 
faulty empty cell. However, that is wrong. So, the neighbor-
based approach can introduce false positives. For another 
empty cell G12, since G11 is empty, so G12 is not considered 
as faulty empty cells. Thus, the neighbor-based approach may 
introduce false negatives, too. 

We compared EmptyCheck and the neighbor-based 
approach on the same 100 sampled EUSES [15] spreadsheets. 
We inspected whether EmptyCheck can outperform existing 
techniques in detecting faulty empty cells. We did not 
compare EmptyCheck with other fault detection techniques, 
e.g., AmCheck [6], CACheck [7] and CUSTODES [8], 

 
Fig. 3. An example of false positives reported by EmptyCheck 

 
Fig. 4. An example of false negatives reported by EmptyCheck 

 

TABLE III. FAULTY EMPTY CELLS DETECTED BY EMPTYCHECK ON SAMPLED SPREADSHEETS. 

Categories 
Faulty Empty Cell Faulty Empty Cell that Have Caused Error 

Detected True Precision Recall Detected True Precision Recall 

cs101 3 3 100.00% 100.00% 3 3 100.00% 100.00% 

database 33 27 81.82% 93.10% 13 11 84.62% 100.00% 

financial 48 23 47.92% 95.83% 44 23 52.27% 95.83% 

forms3 0 0 0.00% 0.00% 0 0 0.00% 0.00% 

grades 94 65 69.15% 94.20% 78 57 73.08% 96.61% 

homework 85 68 80.00% 100.00% 63 50 79.37% 100.00% 

inventory 119 56 47.06% 61.54% 76 33 43.42% 58.93% 

modeling 182 181 99.45% 89.60% 128 119 92.97% 80.95% 

Total 564 423 75.00% 87.04% 405 296 73.09% 84.57% 

  



because these techniques are not designed to detect faulty 
empty cells and none of empty cells can be detected by them. 

Table IV shows the detection result of the neighbor-based 
approach. We can see that the neighbor-based approach 
detected 334 faulty empty cells (Detected). However, only 18 
of them are confirmed to be true positives (True). The 
precision and recall of the neighbor-based approach are 5.39% 
and 3.70%, respectively. While, EmptyCheck can achieve 
higher precision (75.00%) and recall (87.04%). The F-
Measure of EmptyCheck is also much higher than that of 
neighbor-based approach (0.8057 vs 0.0439). Thus, 
EmptyCheck improves the state of the art greatly. 

We further compare the detected faulty empty cells by two 
approaches. We find that EmptyCheck can detect all the faulty 
empty cells that were detected by the neighbor-based 
approach. While the neighbor-based method can only detect 
4.26% of faulty empty cells detected by EmptyCheck. This 
indicates that EmptyCheck can detect much more faulty 
empty cells than the neighbor-based approach. 

Therefore, we can draw the following conclusion: 

EmptyCheck perform much better than existing 
techniques in detecting faulty empty cells. 

VI. DISCUSSION 

A. Limitations 

Although our experimental results indicate that 
EmptyCheck can detect faulty empty cells in spreadsheets 
with high precision and recall, it has some limitations. 

EmptyCheck detect faulty empty cells by clustering 
empty cell into cell arrays. There exist some empty cells that 
are not adjacent to any cell arrays. We need to understand the 
concrete semantics (e.g., the table structure and header 
semantics) to know whether the empty cells are faulty or not 
(an example is discussed in Section V.D). It is very 
challenging to understand the semantics of headers, and thus 
detecting faulty empty cells in this case is also challenging. 
We leave this as future work. 

To recover the formula pattern, EmptyCheck simply 
selects the formula which can cover most non-empty cells in 
each cell array based on the assumption that most of the 
formulas and data in the cell arrays are correct. This 
assumption is not always true. That means EmptyCheck may 
recommend wrong formulas for detected faulty empty cells. 
To alleviate this situation, the formula pattern synthesis 
algorithm designed in CACheck [7] can be employed. 

B. Reference to Empty Cell 

Reference to empty cells is studied by Cunha [22]. In their 
work, if a formula references an empty cell, it will be 
considered as a typical error. They propose an approach to 
detect reference to empty cells by checking every input cells. 
For example, cells B9 and C9 in Fig. 1 are empty and 
referenced by the formula in cell G9. Thus, cells G9 are 
considered to be smelly. Fixing the faulty empty cells 
detected by EmptyCheck may introduce reference to empty 

cell errors. For example, for cell G12, EmptyCheck detects it 
as faulty empty cell and advises users to fix this faulty empty 
cell by filling in with the formula “B12+C12+E12”. After 
users fix this faulty cell, a reference to empty cell error will 
be introduced in G12, because Cells B12, C12 and E12 are 
empty cells. However, we believe that EmptyCheck is still 
important for spreadsheet quality improvement. First, these 
data cells are mainly left empty because there is no available 
input data. It is common to use empty cells to represent the 
default value “0” in spreadsheets. Second, EmptyCheck 
focuses on the empty cells that should contain formulas. They 
are caused by deleting formulas or forgetting to add formulas 
unintentionally. Thus, faulty empty cells detected by 
EmptyCheck can cause severe consequences. 

VII. THREATS TO VALIDITY 

Our experimental results indicate EmptyCheck can 
perform well in detecting faulty empty cells. We discuss some 
threats to our approach and evaluation in this section. 

Representativeness of our experimental subject. The 
representativeness of our experimental subject is one threat to 
the validation of our evaluation. We select EUSES [15] as our 
experimental subject. It is because EUSES has been widely 
used in many spreadsheet-related studies. The spreadsheets in 
EUSES were extracted from World Wide Web, involving 
many different domains. A recent study carried out by Bas 
Jansen [19] also shows the spreadsheets in EUSES can 
represent the spreadsheets used in real life. 

Manual validation of faulty empty cells. Since the 
creators of the spreadsheets in the EUSES corpus [15] are not 
available, we manually identified and validated whether 
empty cells are faulty or not. For our built ground truth, we 
cannot make sure that it does not contain any false positives 
or false negatives. We take two measures to alleviate possible 
mistakes. First, to ensure that we can understand the contents 
of spreadsheets, we avoid selecting overly complex 
spreadsheets. Second, every result is cross-checked by the first 
two authors of this paper. 

Ground truth used in the experiments. Since it is 
impractical to obtain all faulty empty cells in the selected 
spreadsheets, we build the ground truth by checking all empty 
cells in them manually. This ground truth may contain some 
false positives or false negatives although we have done our 
best to avoid that. In the future, we will try to get a complete 

TABLE IV. FAULTY EMPTY CELLS DETECTED BY THE NEIGHBOR-
BASED APPROACH [16]. 

Category 
Faulty Empty Cells 

Detected True Precision Recall 

cs101 0 0 0.00% 0.00% 

database 22 0 0.00% 0.00% 

financial 21 0 0.00% 0.00% 

forms3 0 0 0.00% 0.00% 

grades 85 0 0.00% 0.00% 

homework 98 0 0.00% 0.00% 

inventory 10 0 0.00% 0.00% 

modeling 98 18 18.37% 8.96% 

Total 334 18 5.39% 3.70% 

  



ground truth in a small set of spreadsheets for which we can 
find the original authors. 

VIII. RELATED WORK 

In this section, we introduce several pieces of related work 
concerning empty cell smell, spreadsheet fault / smell 
detection, testing and debugging. 

Fault categorization. Cunha et al. [22] groups their 
spreadsheet smells into different categories: Statistical Smells, 
Type Smells, Content Smells and Functional Dependencies 
Based Smells. They also integrated the detection algorithms of 
these smells into a tools, SmellSheet Detective [16]. Hermans 
et al. [9][10] adapted code smells in the field of software 
engineering to spreadsheets. EmptyCheck proposes a new 
spreadsheet smell, faulty empty cell, as a subclass of Type 
Smells. 

Spreadsheet fault / smell detection. AmCheck [6] and 
CACheck [7] are most related to our work. They firstly detect 
cell arrays, in which the cells should share the same semantics, 
and then repair the inconsistent formulas by synthesizing the 
correct formulas. However, cell arrays used in AmCheck and 
CACheck must be continuous and contain no empty cells. 
Thus, they cannot detect any faulty empty cell. UCheck [17] 
proposed a unit inference system and reports an error when its 
unit inference system cannot infer a unit in normal form for a 
cell. Dimension [23] is a reasoning system, which can infer 
dimension information to check the consistency of 
spreadsheet formulas. UCheck and Dimension rely on the 
formulas in the spreadsheets, thus they cannot detect faulty 
empty cells, which do not have any formulas. TableCheck [12] 
can detect table clones, in which the corresponding cells share 
the same header information, then detect related smells by 
identifying the inconsistencies among table clones. Hermans 
et al. [11] proposed a fingerprints based algorithm to detect 
exact and near-miss clones. It can facilitate finding and 
removing data clones However, spreadsheet clone detection 
techniques rely on that there are two similar areas in 
spreadsheets. EmptyCheck can detect faulty empty cells in 
single table. Cunha et al. [22] proposed that, if a formula 
references empty cells, it should be considered smelly. In 
summary, EmptyCheck is orthogonal to existing work. 

Testing and debugging. WYSIWYT [4] was developed 
for testing spreadsheets. It provides the immediate feedback 
of the spreadsheet’s tested-ness. AutoTest [5] can 
automatically generate test cases to help users test their 
spreadsheets. GoalDebug [14] allows users to specify the 
expected outputs for any concerned cells with incorrect 
outputs, then GoalDebug generates correction suggestions. 
CheckCell [13] is the first data debugging tool for 
spreadsheets, which can identify the cells that have high 
impact on the results of computation. The fault localization 
techniques attempt to help end-users locate fault by reducing 
the search space and prioritizing the sequence of the search 
through space [24][25][26][27]. Spectrum-based fault 
localization (SFL) [25][28] achieves localization process by 
ranking cells by their suspiciousness to contain a fault. 
Spectrum-enhanced dynamic slicing (SENDYS) [26] a 

technique that combines SFL with slicing-hitting-set-
computation (SHSC) [24]. Constraint-based debugging [27] 
converts the formulas into a set of constraints. Those 
techniques rely on the contents in the cells, and the faulty 
empty cells cannot be detected and tested by them.  

Spreadsheet evolution. VEnron [29] is the first versioned 
spreadsheet corpus, containing 360 evolution groups and 
7,209 spreadsheets. SpreadCluster [30] is a similarity-based 
algorithm designed to identify different versions of the same 
spreadsheets. Hermans et al. [31] studied the spreadsheet 
evolution based on 54 pairs of spreadsheets. Each pair consists 
of a “bad” spreadsheet created by users and a “good” 
spreadsheet refactored by F1F9 for “bad” one. SheetDiff [32] 
can identify the differences between two versions of 
spreadsheet efficiently and effectively, providing more 
readable high-level changes. There are many spreadsheet 
comparison tools, such as DiffEngineX [33] and Synkronizer 
[34], aiming at detecting and visualizing differences between 
two spreadsheets. Faulty empty cells may be introduced 
during spreadsheet evolution, EmptyCheck can be used to 
detect the faulty empty cells in different versions of 
spreadsheets. 

IX. CONCLUSION 

Although some cells in spreadsheets are empty, they 
should have formulas according to their context. We find that 
this kind of faulty empty cells are common (36%) in real-life 
spreadsheets. In this paper, we propose a cluster-based 
approach, EmptyCheck, which can detect faulty empty cells 
automatically. Our evaluation on real-life spreadsheets in the 
EUSES corpus [15] shows that the faulty empty cells are 
common in real life spreadsheets. Most (72.02%) of faulty 
empty cells are harmful and have caused errors in 
spreadsheets. EmptyCheck can detect faulty empty cells with 
high precision and recall. While, existing techniques (e.g., the 
neighbor-based approach) can only detect 4.26% of faulty 
empty cells that are detected by EmptyCheck. 

We plan to pursue our future work in three ways. 1) We 
can further improve the precision of EmptyCheck by taking 
the semantics of cell headers into consideration. 2) To 
improve the recall of EmptyCheck, we will explore more 
efficient table extraction and cell array detection algorithms. 
3) We will explore more efficient approach, which are not able 
to be clustered into cell arrays, e.g., we can extract the context 
features of empty cells and detect faulty empty cells based on 
supervised machine learning. 
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