
Race Detection for Event-Driven Node.js
Applications

Xiaoning Chang†‡, Wensheng Dou†‡*¶, Jun Wei†‡, Tao Huang†‡¶, Jinhui Xie§, Yuetang Deng§,
Jianbo Yang§, Jiaheng Yang§

†State Key Lab of Computer Sciences, Institute of Software, Chinese Academy of Sciences, Beijing, China
‡University of Chinese Academy of Sciences, Beijing, China

*Nanjing Institute of Software Technology, Nanjing, China
§Tencent, Inc., Guangzhou, China

†{changxiaoning17, wsdou, wj, tao}@otcaix.iscas.ac.cn, §{hugoxie, yuetangdeng, xiaotuoyang, jiahengyang}@tencent.com

Abstract—Node.js has become a widely-used event-driven
architecture for server-side and desktop applications. Node.js
provides an effective asynchronous event-driven programming
model, and supports asynchronous tasks and multi-priority
event queues. Unexpected races among events and asynchronous
tasks can cause severe consequences. Existing race detection
approaches in Node.js applications mainly adopt random fuzzing
technique, and can miss races due to large schedule space.

In this paper, we propose a dynamic race detection approach
NRace for Node.js applications. In NRace, we build precise
happens-before relations among events and asynchronous tasks in
Node.js applications, which also take multi-priority event queues
into consideration. We further develop a predictive race detection
technique based on these relations. We evaluate NRace on 10 real-
world Node.js applications. The experimental result shows that
NRace can precisely detect 6 races, and 5 of them have been
confirmed by developers.

Index Terms—Node.js, event-driven architecture, race detec-
tion

I. INTRODUCTION

Node.js is an increasingly popular event-driven architecture,
and widely used in server-side and desktop applications. The
official Node.js package manager npm [1] has become the
largest package registry and consists of more than 1,500,000
building blocks in April 2021. Nowadays, 50% professional
developers use Node.js to develop their frameworks, libraries
and tools [2]. Industrial giants, such as PayPal [3], Uber [4]
and Yahoo [5], also widely adopt Node.js in their systems.

Node.js adopts an event-driven architecture, and provides
an effective asynchronous programming model. In Node.js,
time-consuming IO operations, e.g., file access operations, can
be delegated as asynchronous tasks, running in the dedicated
threads in libuv [6]. Thus, Node.js applications are not blocked
by these time-consuming IO operations. Once an asynchronous
task completes, a completion event is put into certain event
queue. Different from other event-driven architectures, e.g.,
client-side JavaScript [7] and Android [8], [9], Node.js pro-
vides multiple event queues, which have different priorities.
These events in different event queues are scheduled by the
looper thread, i.e., the main thread in Node.js, based on their

¶Wensheng Dou and Tao Huang are the corresponding authors.

priorities. Note that, asynchronous tasks are concurrently exe-
cuted in the dedicated underlying threads, which are different
from the looper thread.

The above asynchronous programming model in Node.js
can introduce races. First, since asynchronous tasks and their
corresponding events are executed asynchronously, unordered
executions among events can cause unexpected interleavings
by developers, thus taking the application into faulty states.
Second, unordered asynchronous tasks and events can access
to the same external resource e.g., files, thus introducing races.
Races in Node.js applications can cause severe consequences,
e.g., unexpected application states, and even worse system
crashes [10], [11]. As server-side applications, races in Node.js
applications may affect many end users. Thus, it is important
for Node.js developers to automatically detect races in Node.js
applications.

Existing approaches on race detection in event-driven archi-
tectures mainly focus on client-side JavaScript applications [7],
[12]–[17] and Android applications [8], [9], [18]–[20]. Race
detection approaches in client-side JavaScript applications [7],
[12]–[17] mainly concern programming model features in
browsers, e.g., DOM and AJAX. Race detection approaches
in Android applications [8], [9], [18]–[20] mainly concern
Android GUI model and the multi-thread programming model.
Note that, all these approaches only consider one event queue
while Node.js supports multiple event queues and schedules
events with different priorities. Therefore, it is challenging
to apply these approaches to Node.js applications, although
programming models of browsers, Android and Node.js are
conceptually similar. Recently, a few race detection approaches
have been proposed for Node.js applications. Node.fz [11]
adopts the fuzzing technique to randomly perturb event sched-
ules. NodeRacer [21] further utilizes happens-before relations
to eliminate infeasible event schedules. However, they only
expose limited schedule space, and miss races. NodeAV [22]
only detects atomicity violations in Node.js, and ignores other
kinds of races.

In this paper, we propose NRace, a predictive race de-
tector for Node.js applications. Given a Node.js application,
NRace records its execution trace, and builds precise happens-
before relations among asynchronous tasks and events. Further,

1. var pretty_print = null;
2.

3. process.nextTick(function create () {
4. pretty_print = default_print;
5. var server = http.createServer(function process(req) {
6. req.on(‘data’, updateLog);
7. }).listen(8080);
8. });
9.

10.function updateLog(chunk){
11. var content = chunk.parsed.username;
12. var print = chunk.parsed.pretty;
13. fs.writeFile(‘log.json’, content, function wrt () {
14.

15. pretty_print = print;
16. });
17.}
18.

19.setTimeout(function show() {
20. cont = fs.readFileSync(‘log.json’);
21. print(cont, pretty_print);
22.}, 5000);

𝑒!"#"!

𝑒#$%&'(#

𝑒)*#!

𝑒+*&"#&

23. http.request({username: ‘mary’, pretty: false});

24. http.request({username: ‘bob’, pretty: true});

Looper Thread

𝑒!"#"":
//parse chunk
fs.writeFile(‘log.json’, …);

𝑒,*##:
pretty_print = print;
//print is true

𝑒,*#":
pretty_print = print;
//print is false

𝑒!"#"#:
//parse chunk
fs.writeFile(‘log.json’, …);

asyncTask1:
WRITEFILE

asyncTask2:
WRITEFILE

𝑒-./0#&:
pretty_print = default_print;
//create server

Thread Pool

𝑒#$%&'(#:
cont = fs.readFileSync(‘log.json’);
READFILE log.json
print(cont, pretty_print);

(a) (b)

//𝑟𝑒𝑞1

//𝑟𝑒𝑞2

Fig. 1. A simplified Node.js application. (a) shows a simple web server and two requests. (b) shows its execution process, in which edatai
and ewrti represents

the events for request reqi (i ∈ {1, 2}). We present actual file operations in capital letters, i.e., WRITEFILE and READFILE, and distinguish them
from related API invocations, e.g., fs.writeF ile.

NRace predicts races in alternative executions that satisfy
happens-before relations. NRace takes asynchronous tasks and
multi-priority event queues into consideration, and proposes an
efficient algorithm to build and query happens-before relations
in real-world Node.js applications. To reduce benign races,
we further propose a few commutative race patterns based on
frequently observed benign races.

To demonstrate the effectiveness of NRace, we evaluate
NRace on real-world Node.js applications from two aspects.
First, we evaluate NRace for bug detection on 10 known races
in real-world Node.js applications. The experimental result
shows that NRace is able to effectively detect all 10 known
races while the state-of-the-art fuzzing technique NodeRacer
only detects 6 races in three hours. Second, we further apply
NRace on 10 open-source Node.js applications, and detect 6
previously unknown races, 5 of which have been confirmed by
developers. NRace and its experimental subjects are available
at https://github.com/tcse-iscas/nrace.

We summarize our main contributions as follows:
• We propose a predictive race detector for Node.js appli-

cations, and build precise happens-before relations that
can handle asynchronous tasks and multi-priority event
queues in Node.js applications.

• We implement our approach as NRace and evaluate it on

real-world Node.js applications. The experimental results
show that NRace can effectively detect races in real-world
Node.js applications.

II. MOTIVATION

In this section, we present an illustrative example to explain
the Node.js event-driven programming model and races rising
in Node.js applications.

A. Motivating Example

Figure 1(a) shows a simplified Node.js web server applica-
tion (Line 1-22) and two requests for it (Line 23-24).

In this web server application, it first uses API
process.nextT ick() to register event ecreate of type NextTick
(Line 3). Then, it registers event etimeout of type Timeout to
execute after 5000 milliseconds (Line 19). When processing
ecreate, the looper thread executes its callback create() to
write the default setting to variable pretty print (Line 4)
and to create a server (Line 5). The server registers event
edata to process user requests (Line 6). Once a request
arrives, event edata is triggered. The looper thread processes
edata and executes its callback updateLog() with parameter
chunk, which represents the received data of request. Callback

https://github.com/tcse-iscas/nrace

updateLog() parses chunk (Line 11-12) and logs username
into log file log.json (Line 13).

In order not to block the looper thread, callback
updateLog() delegates the time-consuming file writing oper-
ation as an asynchronous task asyncTask to the thread pool
and registers event ewrt to execute after the completion of
asyncTask (Line 13). While the looper thread proceeds, a
thread in the thread pool asynchronously writes file log.json.
On the completion of asynchronous task asyncTask, event
ewrt is triggered. The looper thread executes its callback wrt()
to update the variable pretty print according to the request
(Line 15).

For each request, two events edata and ewrt, and an
asynchronous task asyncTask are executed. Let’s assume
that two requests req1 and req2 with different pretty-print
configurations simultaneously arrive (Line 23-24). Event edata
and ewrt and asynchronous task asyncTask will be executed
twice, once per request. For simplicity, we denote edatai , ewrti
and asyncTaski for each request reqi (i ∈ {1, 2}).

Once 5000 milliseconds elapse, event etimeout is trig-
gered. The looper thread executes its callback show() to
synchronously read log file log.json (Line 20) and print
content cont with the pretty-print setting pretty print (Line
21).

Note that, in Node.js, once an event is generated, it is put
into an event queue. Node.js maintains several event queues
to hold different types of events, i.e., NextTick, Promise,
Immediate, Timeout and IO [23]. Events in the same event
queue are scheduled in the order that they are enqueued.

The looper thread processes Immediate, Timeout and IO
event queues in a round-robin manner. When an event queue
is exhausted or the number of processed events reaches a
threshold, the looper thread switches to process the next event
queue. However, if there are events of NextTick type, these
NextTick events will be processed first before the loop thread
processes any event [23]. Therefore, in Figure 1(a), ecreate is
processed before etimeout.

B. Races in Node.js Applications

For each request in Figure 1(a), two events edata and ewrt,
and an asynchronous task asyncTask are executed in order
edata → asyncTask → ewrt. However, two executions of
req1 and req2 can interleave and thus cause races. Figure 1(b)
shows an execution of races for two requests. We can see three
races in Figure 1(b).

(1) Event etimeout can be triggered before asyncTask1’s
completion event ewrt1 . Consequently, event etimeout pretty
prints the content of log.json. Compared with the execution
shown in Figure 1(b), this is a race between event etimeout
and ewrt1 on variable pretty print, causing the print format
to be non-deterministic.

(2) Asynchronous task asyncTask1 and asyncTask2 are
concurrently executed in the thread pool and their processing
order in the file system is unknown. Thus, the content of
file log.json is non-deterministic. This is a race between
asyncTask1 and asyncTask2 on file log.json.

(3) Event etimeout and asynchronous task asyncTask1 can
run concurrently. Their execution order in the file system is
uncertain. Therefore, this is a race between event etimeout and
asynchronous task asyncTask1 on file log.json.

C. Approach Overview

In order to detect races in Node.js applications, we need to
address two technical challenges. First, in addition to memory
locations, how can we model accesses on external resources,
e.g., file log.json in Figure 1(a)? As shown in the above
example, external resources are contended by events and asyn-
chronous tasks. In Node.js, external resources are managed
by underlying system and opaque to developers. Second,
Node.js has its special execution mechanism for events and
asynchronous tasks, e.g., the execution order between ecreate
and etimeout caused by the multi-priority event queues. How
can we design precise happens-before relations among events
and asynchronous tasks?

For the first challenge, we study the file system APIs in
Node.js and model them into several basic file access opera-
tions with various types, e.g., Crate, Read, Write and Delete.
Then, we further model these file access operations according
to whether they are synchronous. Finally, we build precise
conflicting patterns on these file access operations. Therefore,
we can detect races among events and asynchronous tasks on
external resources. Second, we build precise happens-before
relations among events and asynchronous tasks. Specially, we
design an efficient algorithm to build happens-before relations
caused by multi-priority event queues.

III. APPROACH

Figure 2 presents the overview of NRace. Given a Node.js
application with its test cases, NRace can predictively de-
tect potential races. First, we run the Node.js application to
profile its execution trace (Section III-A). Then, we design
happens-before relations for Node.js applications, which can
reflect the partial order among events and asynchronous tasks
(Section III-B). We further design an efficient algorithm to
build the happens-before graph for the collect execution trace.
(Section III-C). Finally, we detect potential races on conflicting
operations that are not ordered by the happens-before graph
(Section III-D) and filter out benign races using predefined
commutative race patterns (Section III-E).

A. Trace Collection

An execution trace of a Node.js application is a sequence
of operations, which are performed by events or asynchronous
tasks. In the following paper, we uniformly call events and
asynchronous tasks as actions for simplicity, when we need to
unify events and asynchronous tasks.

Lifecycle related operations. Lifecycle related operations
are used to control the generation and execution of events and
asynchronous tasks. We summarize them as follows.
• start(a): start executing action a, i.e., an event or an

asynchronous task.

Node.js

application

& Test case

Bug

report

Trace collection
Happens-before graph

construction
Race detection Pruning races

Fig. 2. The overview of NRace.

• end(a): end executing action a, i.e., an event or an
asynchronous task.

• delegate(e, t): event e delegates asynchronous task t to
the thread pool.

• register(ei, ej): event ei registers event ej . There are
two cases for event registration. First, event ei registers
event ej to execute after the completion of an asyn-
chronous task. For example, edata1 registers ewrt1 for
asyncTask1 in Figure 1. Second, Node.js allows devel-
opers to schedule events with several built-in APIs, e.g.,
process.nextT ick(), setImmediate(), setInterval()
and setT imeout(). That said, event ej is registered
by event ei and will be executed after a period of
time. Events registered by API process.nextT ick(),
setImmediate(), setInterval() and setT imeout() are
of type of NextTick, Immediate and Timeout1, respec-
tively.

• trigger(t, e): event e is triggered by the completion of
asynchronous task t and put into the corresponding event
queue.

• trigger(ei, ej): event ej is triggered by event ei and put
into the corresponding event queue.

• resolve(e, p): When promise p is created, a resolved
event p.resolved is registered to be executed once the
promise p is resolved (fullfilled) [24]. resolve(e, p) de-
notes that event e resolves promise p.

• pall = Promise.all([p1, p2, ..., pn]): API Promise.all()
returns promise pall, which will be resolved after all
promises p1, p2, ..., pn are resolved, or rejected after one
of promises p1, p2, ..., pn is rejected.

• prace = Promise.race([p1, p2, ..., pn]): API
Promise.race() returns promise prace, which will be
resolved or rejected after one of promises p1, p2, ..., pn
is resolved or rejected.

Resource access operations. Resource access operations
include memory access operations and external resource access
operations. We summarize them as follows.
• read(v, val, e): event e reads memory location v and

obtains value val. We consider both reading variables
and getting fields of objects as read operations.

• write(v, val, e): event e writes value val to memory lo-
cation v. Similarly, we consider writing variables, putting
fields and deleting fields of objects as write operations.

• fileAccess(f, type, a): acton a, i.e., an event or an
asynchronous task, accesses file f with access type
type. To model external resource accesses, we map

1Events registered by setInterval() and setT imeout() are of type
Timeout.

each file system API into one or multiple operations.
In particular, we support seven access types on files,
i.e., Create, Open, Read, Write Close, Delete, and
Stat. For example, fs.readF ileSync(bar.txt) invoked
by event e is modeled as fileAccess(bar.txt, Read, e).
We model an asynchronous file access into a sequence
of lifecycle related operations and file access opera-
tions. For example, fs.readF ile(bar.txt, cb) invoked
by event e is modeled as a sequence of operations:
delegate(e, t), start(t), fileAccess(bar.txt, Read, t),
end(t) and start(cb), where t is the asynchronous task
that performs the file access operation and cb is the
completion event of asynchronous task t.

Other operations. In addition to above operations, we also
track following operations, which are used to filter benign
races in Section III-E.
• conditional(val, e): event e performs a if − check and

the checking result is val.
• binary(opt, left, right, val, e): event e performs a bi-

nary operation, whose left and right operands are left
and right, respectively. The operator and result of binary
operation is opt and val, respectively.

In NRace, we utilize async hooks [25] to track lifecycle
related operations. async hooks provides several functions
to record lifecycle related operations, e.g., init(), before(),
after(), promiseResolve(). For example, every time an
event e is registered, function init() is called to track the type
of event e and the event that registers e. We further utilize
Jalangi [26] to track the remaining operations. For example,
Jalangi records the names of variables and the values written
into the variables for write operations so that it can track
information for resource access operations.

B. Happens-Before Relation

Given an execution trace τ , happens-before relation ≺ is
a partial relation among actions in trace τ , i.e., events and
asynchronous tasks. For action acti and actj , we denote acti
happens before actj as acti ≺ actj .

In addition, we also build happens-before relations over
operations performed by actions. For operation opi and opj ,
we denote opi happens before opj as opi ≺ opj . We overload
happens-before operator ≺ for both actions and operations.

Rule 1 (Transitivity): The happens-before relation ≺ is
transitive, i.e., for action acti, actj and actk, if acti ≺ actk
and actk ≺ actj , then acti ≺ actj .

Rule 2 (Program-Order): Operations performed by the
same action are deterministically executed in the program
order. If operation opi and opj are executed by the same action
and opi occurs before opj in trace τ , then opi ≺ opj .

Rule 3 (Event-Atomicity): Each event is executed without
interruption. That said, for operation opi and opj performed by
event ei and ej respectively, if opi ≺ opj , then any operation
in ei happens before any operation in ej .

Rule 4 (Event-Registration): Each event needs to be
registered before it is processed. That said, if event ej is
registered by event ei, then ei ≺ ej .

Rule 5 (SetInterval): If events e1, e2, ..., en are registered
in order via API setInterval(), then these events are executed
in the registration order, i.e., ei ≺ ei+1 for 1 ≤ i ≤ n− 1.

Rule 6 (Promise-Resolve): If event ei resolves promise p
and event ej is the resolved event associated with promise p,
then ei ≺ ej .

Rule 7 (Promise-All): If promises p1, p2, ..., pn are argu-
ments passed to API Promise.all() and promise pi is resolved
by event ei, then pall is resolved after e1, e2, ..., en. In other
words, the resolved event eall associated with pall is executed
after e1, e2, ..., en. Therefore, we build happens-before relation
ei ≺ eall, where 1 ≤ i ≤ n.

Rule 8 (Promise-Race): If promises p1, p2, ..., pn are ar-
guments passed to API Promise.race() and promise pi is
resolved by event ei, then prace is resolved after one of
e1, e2, ..., en. In other words, the resolved event erace asso-
ciated with prace is executed after one of e1, e2, ..., en.

We build the happens-before relation among e1, e2, ..., en
and erace in an alternative manner. We first check happens-
before relations among e1, e2, ..., en. If there exists two events
ei and ej such that ei ≺ ej , then we remove the corresponding
promise pj from arguments of API Promise.race(), where
1 ≤ i, j ≤ n. If there is only one remaining promise pk as the
argument of API Promise.race(), we build happens-before
relation ek ≺ erace.

Rule 9 (AsyncTask-Delegation): If event e delegates an
asynchronous task t, then delegate(e, t) ≺ start(t).

Rule 10 (AsyncTask-Completion): If the completion of
asynchronous task t triggers event e, then t ≺ e.

Rule 11 (FIFO): Events of the same type are put into the
same event queue. The looper thread processes events in the
same event queue in FIFO order. For event ei and ej with
the same type, i.e., NextT ick, Immediate and Promise,
if ei is registered before ej is registered, then ei ≺ ej . In
particular, for IO event ei and ej , if ei is triggered before ej ,
then ei ≺ ej .

Rule 12 (FIFO-Timeout): Events of Timeout type are also
processed in the FIFO manner. For event ei and ej of Timeout
type, if ei is registered before ej is registered and the delay
time of ei is no more than that of ej , then ei ≺ ej .

Rule 13 (NextTick): Events of NextTick type hold the
highest priority to be executed. For event ei and ej , where ei
is of NextTick type while ej is other types, if ei is registered
before ej is executed, then ei ≺ ej .

Discussion. Some existing works, e.g., NodeRacer [21],
NodeAV [22], and AsyncG [27], also propose some happens-
before relations for Node.js applications. NodeRacer [22] and
AsyncG [27] only focus on happens-before relations among
events, and ignore happens-before relations between events

and asynchronous tasks. They also ignore happens-before re-
lations among operations. Thus, they do not contain happens-
before rule 2, 3, 9 and 10. NodeAV [22] treats asynchronous IO
tasks as synchronous operations, and cannot reflect happens-
before rule 9 and 10. Further, NodeAV does not support
happens-before rule 6, 7, 8, and ignores the delay time in
rule 12.

Therefore, these existing works lack some key happens-
before rules for detecting races in Node.js applications. Our
happens-before relations can reflect the relations among events
and asynchronous tasks, and relations among operations. Thus,
our happens-before relations are more complete and precise
than existing works. We believe that our happens-before
relations can also benefit existing works.

C. Happens-Before Graph Construction

Based on an execution trace τ , we build a happens-before
graph G(V,E), in which node v ∈ V is an action and edge
e ∈ E represents the happens-before relation among actions.

NodeRacer [21] and NodeAV [22] adopts the following
algorithm to construct the happen-before graph. (a) The al-
gorithm first adds all actions into the graph. (b) Then, it
builds happens-before relations for simple rule 4-7 and rule
9-10, which do not depend on any other relations. (c) Next, it
builds happens-before relations introduced by complex rules,
i.e., Promise-Race, FIFO, FIFO-Timeout and NextTick, which
depend on other relations. The algorithm checks whether each
pair of actions satisfies one of complex rules. If yes, the
corresponding relation is added into the graph.

Note that, in step (c), the newly added relations may
introduce other happens-before relations on actions that we
have evaluated through complex rules. Therefore, if step (c)
finds a new relation, the graph needs to be reprocessed again.
In other words, the graph is processed until no more relation
is found. The above recursive process is time-consuming if
there are many actions that can be applied for Promise-Race,
FIFO, FIFO-Timeout and NextTick rules in trace τ .

In order to efficiently build the happens-before graph, we
design an algorithm scalable to real-world Node.js applica-
tions, as shown in Algorithm 1. Our algorithm reduces the
overhead of happens-before graph construction from following
aspects:
• Incremental graph construction: Our algorithm starts with

empty set of nodes and edges (Line 1-2), and incremen-
tally builds the happens-before graph in the trace order
(Line 3). After action act is added into graph (Line 5), we
only need to build happens-before relations on a limited
number of actions in the graph (Line 6-7), instead of all
of actions in NodeRacer [21] and NodeAV [22].

• Efficient rule matching: Given an action act, we effi-
ciently find action act′ that happens before act for both
simple and complex rules (Line 6-7). In particular, it
optimizes the happens-before relation construction for
complex rules so that it does not perform the recursive
process and reduces the overhead, which is done via
function buildComplexHB() (Line 7).

Algorithm 1: Happens-before graph construction
Input: τ (Execution trace)
Output: G(V,E) (Happens-before graph)

1 V ← ∅;
2 E ← ∅;
3 for i← 1; i ≤ τ.length; i++ do
4 act← τ [i];
5 V ← V ∪ {act};
6 buildSimpleHB(V,E, act);
7 buildComplexHB(V,E, act);
8 end
9 Function buildComplexHB(V,E, act)

10 applyRaceRule(act);
11 U ← selectUnorderedAction(act);
12 U ′ ← sortUnorderedAction(U);
13 for j ← 1; j ≤ U ′.length; j ++ do
14 act′ ← U ′[j];
15 for rule ∈ complexRules do
16 if isMatch(act′, act, rule) then
17 E ← E ∪ {(act′, act)};
18 end
19 end
20 end

• Efficient reachability query: Since there is a large num-
ber of actions in the happens-before graph, it is time-
consuming to perform the breadth-first graph search to
query reachability. We improve the breadth-first search
by stopping exploring impossible paths in advance.

We illustrate the above three ingredients as follows.
Incremental graph construction. We observe that, given

an action act to be added into the graph, only actions that
occur before act in trace τ may happen before act. Otherwise,
trace τ will be infeasible. Based on this observation, we
incrementally build the happens-before graph, by adding one
action act into the graph according to the trace order (Line
3). For each added action act (Line 5), we only need to build
happens-before relations between action act and other actions
in the graph.

Note that, event erace involved in Promise-Race rule is
processed differently because the relation caused by Promise-
Race rule on erace is determined after e1, e2, ..., en that are
related to arguments of API Promise.race() are added into
the graph. Therefore, after all of e1, e2, ..., en are added into
graph, we add erace into the graph and build happens-before
relations for it.

Efficient rule matching. Given action act and rule rule,
we find action act′ that happens before action act and build
happens-before relation between act′ and act.

For simple rules, we directly find action act′ and
build happens-before relation between act′ and act in a
constant time. For example, when processing operation
register(e1, e2), we store registrar information e1 in e2. When
evaluating registration rule for e2, we find e1 and obtain

e1 ≺ e2 directly.
We build happens-before relations for AsyncTask-

Delegation rule in a special manner. For this rule, we
cannot obtain delegate(e, a) ≺ start(a), because there
are only actions but not operations in the happens-before
graph. In order to build relations between e and a, we
make a compromise: NRace builds the edge from e to a in
the happens-before graph. We will handle this case when
querying happens-before relations among operations, and it
causes no false happens-before relation among operations.
Thus, our race detection cannot be compromised.

For complex rules, we first evaluate Promise-Race rule for
act (Line 10), since the Promise-Race rule only depends on
the relation on the set of events corresponding to arguments
of API Promise.race(), which has been determined.

Then, we evaluate the remaining complex rules, i.e., FIFO,
FIFO-Timeout and NextTick rule for act (Line 11-19). In
order to avoid the recursive process, our algorithm performs
following optimizations.

Optimization 1: Find unordered actions. As discussed ear-
lier, NodeRacer attempts to build relations for complex rules
on each pair of actions in step (c), and wastes time on
evaluating pairs of actions that have already been ordered by
happens-before relations. This motivates us to avoid applying
complex rules on ordered actions.

We adopt chain decomposition [9], [13] to find unordered
actions. The idea of chain decomposition is to assign actions
to chains so that actions on the same chain are ordered by
happens-before relations, and actions on the different chains
may be unordered. We use a . c to denote that action a is on
chain c.

Our chain decomposition algorithm is described as follows.
When we add action act into the happens-before graph by
simple rules, we greedily assign action act to a chain. (i) We
first find the set of actions A, where actions in A have happens-
before edges with act. (ii) If there exists an action act′ ∈ A,
after adding act into act′’s chain c′, chain c′ does not diverge,
then we assign act to chain c′. (iii) If such an action does not
exist, we create a new chain and assign act to it. For example,
in Figure 3, before adding e7 into the graph, e1, e2, ..., e6 are
assigned to two chains c1 and c2. When adding e7 into the
graph, we find e6 ≺ e7, and assigning e7 to chain c2 does not
make c2 diverge. Therefore, e7 is added into chain c2.

Given a newly added action act, function
selectUnorderedAction() (Line 11) finds actions, which
are unordered with act. Let cact denote the chain that
act belongs to, i.e., act . cact. For each chain c that is
different from cact, we identify its unordered actions with act
through the following process. We find the last action acti
in c, which satisfies the following condition: ∃actj . cact,
acti ≺ actj&(actj ≺ act||actj = act). Actions that happen
after acti in chain c are unordered with act. For example,
in Figure 3, when action e7 is added into the graph, we find
that e6 happens before e7 on chain c2, and e2 on chain c1
happens before e6. Therefore, e3 and e4 on chain c1 are
unordered with e7.

𝑐1

𝑐2

𝑒1 𝑒2 𝑒3 𝑒4

𝑒5 𝑒6 𝑒7

Fig. 3. A happens-before graph example with chain decomposition. Two
chains c1 and c2 are denoted by light grey and dark grey, respectively.

Optimization 2: Determine action evaluation order. As
discussed earlier, NodeRacer recursively applies complex rules
until the graph reaches a fixpoint. In order to avoid the recur-
sive process, we determine an evaluation order for unordered
actions via function sortUnorderedAction() (Line 12). For
action acta, actb ∈ U , if acta happens before actb on the
same chain, acta is sorted before actb in U ′. Then, we apply
complex rules between action act′ ∈ U ′ and act (Line 13-19).

Note that, the newly added relation on act′ and act only
introduces relations on actions that are registered by act′. For
example, in Figure 3, if we add the relation from e3 to e7,
denoted as (e3, e7), which is not present in the graph, relation
(e3, e7) only introduces relations on actions registered by e3,
e.g., e4. These successor actions happen after act′ and are
not evaluated. Therefore, if we evaluate actions following the
chain order, we do not need to recursively evaluate complex
rules on the graph.

Efficient reachability query. The reachability among nodes
in the happens-before graph G reflects happens-before rela-
tions among events and asynchronous tasks. For node u and
v, iff there is a path from u to v in G, u ≺ v.

We adopt breadth-first graph search to query reachability
in the happens-before graph G. The breadth-first graph search
has a maximum time complexity of O(E). However, since
Node.js applications generates a large number of actions in a
short time, there is a large number of nodes along with edges
in the happens-before graph. The breadth-first graph search
does not scale to real-world Node.js applications.

We observe that, if node nk does not occur before node nj
in the trace τ , denoted as nk ⊀τ nj , then nk ⊀ nj and there is
no path from ni to nj through nk. Based on this observation,
to speed up querying reachability from node ni to node nj ,
we stop traversing to node nk, where nk ⊀τ nj . The benefit
is that, we stop exploring impossible paths in advance, thus
improving efficiency.

Based on happens-before relations among actions, we can
determine happens-before relations among operations. For
operation opi and opj , opi ≺ opj if:

• opi and opj are performed by the same action and opi ≺τ
opj or

• opi and opj are performed by different actions and
action(opi) ≺ action(opj), where action(op) denotes
the action that performs operation op.

When querying reachability, we deal with the compro-
mise case introduced by AsyncTask-Delegation rule when
building the happens-before graph. If action(opi) delegates

TABLE I
FILE ACCESS CONFLICTING PATTERNS

Create Delete Read Write Open Close Stat

Create � � � � � � �
Delete � � � � � � �
Read � � � � �
Write � � � � � �
Open � � � � �
Close � � � � � �
Stat � �

If two types intersect at �, they form a conflicting pattern.

action(opj) and the delegation operation occurs before opi in
action(opi), then opi ⊀ opj .

We define concurrency relation as Con(opi, opj) = opi ⊀
opj ∧ opj ⊀ opi. That said, if neither opi happens before opj
nor opj happens before opi, opi has the concurrency relation
with opj . We can further refine the above concurrency relation
as Con(opi, opj) = opi ≺τ opj ∧ opi ⊀ opj ∨ opj ≺τ opi ∧
opj ⊀ opi, to reduce the number of reachability queries.

D. Race Detection

In Node.js applications, conflicting operations can be oper-
ations that access to memory locations and external resources,
e.g., files. We explain them as follows.
• Conflicting memory access operations. Two memory

access operations conflict when they access the same
memory location and at least one of them is write
operation.

• Conflicting file access operations. We define file con-
flicting patterns based on the equivalent influence of
access type on file system. The file conflicting patterns
are shown in Table I. Two file access operations conflict
when they access the same file and their access type
match one of our predefined conflicting patterns. Note
that, our pattern is more powerful than NodeAV [22],
in which file access operations are only modeled as Read
and Write. For example, fs.statSync() is modeled as an
operation of Read, and fs.writeF ileSync() is modeled
as an operation of Write. However, they do not conflict in
fact. Our file conflicting patterns can precisely describe
this un-conflicting case.

Consider two operations opi and opj , a race exists be-
tween opi and opj , denoted as Race(opi, opj), if (1) they
conflict and (2) opi have concurrency relation with opj , i.e.,
Con(opi, opj) = true.

We first process the observed trace τ to obtain the set
of operations that access the same resource x: Op(x) =
{opi|opi accesses resource x}. For each pair of operations
(opi, opj) in Op(x), we check whether they have concurrency
relation, i.e., Con(opi, opj) = true.

E. Pruning Races

We observe that the above detection approach by finding
unordered conflicting operations leads to many benign races.
We find that some commutative operations do not need to be
ordered by happens-before relations to ensure correctness. To

1. var doing = false;
2. setImmediate(cb); //e1
3. setTimeout(cb, 0); //e2
4. function cb () {
5. if(!doing) {
6. doing = true;
7. fs.writeFile(…, function wrtCb () {
8. doing = false;
9. });
10. }
11.}

𝑒!

Fig. 4. Commutative pattern summarized from ad-hoc synchronization, where
ei represents event e1 and e2.

address this issue, we summarize three commutative patterns
to automatically filter benign races.

Sequentialize actions. Node.js developers often utilize ad-
hoc synchronization to force multiple actions to execute in
sequence. For instance, in Figure 4, event e1 and e2 is
registered by API setImmediate() and setT imeout(), re-
spectively (Line 2-3). Event e1 and e2 delegates asynchronous
file writing task asyncTask1 and asyncTask2, respectively
(Line 7). If one event (e.g., e1) launches an asynchronous task
(e.g., asyncTask1), variable doing is set to true. If another
event (e.g., e2) is executed before the previous asynchronous
task (e.g., asyncTask1) completes, it does not launch its
asynchronous task (e.g., asyncTask2). In this way, developers
prevent multiple asynchronous tasks from being concurrently
executed. Therefore, although event e1 has a race with event
e2 on variable doing, there is no harmful impact on the
application.

To detect this benign race, we analyze conditional and write
operations to identify the variable that sequentializes actions. If
a variable v is read in the conditional operation and two write
operations on variable v happen before and after an action,
respectively, then variable v protects actions from races. Any
race on this variable is regarded as a benign race.

In our approach, we utilize Jalangi [26] to record
conditional operations. Since Jalangi only records
values but not variables for conditional operations, we
utilize read(xr, valr, e) operation that occurs before
conditional(valc, e) to infer the variable accessed by the
conditional operation. If valr = valc, then variable vr
accessed by read operation is regarded as the variable
accessed by conditional operation.

Use counters. Node.js applications often utilize counters.
One case is that multiple events increase a counter. No
matter which order these events are executed in, the counter
is correctly increased. Another case is that, after a Node.js
applications increases a counter, it checks whether the value
of the counter equals to a given threshold. If true, the program
will execute some functions. These read and write operations
on the counter have no harmful impact on the application,
since the counter does not reach the threshold.

A variable v is a counter variable if it satisfies the following
conditions. (a) Variable v is used by three operations in

sequence, i.e., read, binary and write. (b) Variable v is read
by a read operation, and written by a write operation. (c)
binary operation’s operator is addition or subtraction (i.e., +
or −), and its two operands are of type Number. (d) binary
operation’s left operand (or right operand) uses variable v, and
its return result uses variable v.

Similar to conditional operations, Jalangi only records
values but not variables for binary operations. We utilize
read(xr, valr, e) and write(xw, valw, e) operation that occur
before and after binary(op, left, right, valb, e) to infer the
variable accessed by binary operation. If varr = left (or
varr = right), we treat variable vr is used as left (or right)
operand of binary operation. If varb = valw we treat variable
xw is used as return result of binary operation.

Write shared resource with the same value. Some
operations are commutative because they write the shared
resource with the same value. The shared resource holds
the same value no matter in which order two events are
executed. Therefore, for two operations write1(x, val1, e1)
and write2(x, val2, e2), if they are unordered and val1 equals
to val2, we regard them as commutative operations.

Note that, the commutative patterns we design are not
sound. Without mining developer intention and semantics of
operations, we cannot ensure the commutativity between ac-
tions and operations. For example, counter variables identified
by our patterns are only self-increasing counters and actual
counters are missed. However, we manually inspect benign
races reported in our evaluation and find our patterns can
identify more than half of benign races.

IV. EVALUATION

Our evaluation answers the following research questions:
• RQ1: Can NRace detect known races in real-world

Node.js applications? How does NRace compare with the
state-of-the-art fuzzer NodeRacer [21]?

• RQ2: Can NRace detect previously-unknown races in
real-world Node.js applications?

• RQ3: What is the runtime overhead of NRace, compared
with NodeRacer [21]?

A. Experimental Setup

Dataset-1: Known races. To evaluate whether NRace can
detect known races in real-world Node.js applications, we
collect 10 known races from NodeRacer [21]. NodeRacer
provides 11 known races in Node.js applications along with
their test cases. Since one of these 11 Node.js applications,
linter-stylint, cannot be profiled via async hooks module, we
only perform the evaluation on 10 Node.js applications, as
shown in Table II. Column Project refers to applications, col-
umn Description gives a brief description of each application,
column Issue ID shows the issue report ID in GitHub, and
column Category denotes locations where races happen. Event
and Async denotes races happen on events and asynchronous
tasks, respectively.

Dataset-2: Unknown races. To evaluate whether NRace
can detect previously-unknown races in real-world Node.js

TABLE II
DATASET-1: KNOWN RACES IN REAL-WORLD NODE.JS APPLICATIONS

ID Project Description Issue ID Category

1 agentkeepalive Support keepalive http agent 23 Event
2 fiware-pep-steelskin TID’s implementation of FIWARE PEP GE 269 Event
3 ghost The headless CMS for publication 1,834 Event
4 node-mkdirp Like mkdir-p, but in Node.js 2 Async
5 nes A webSocket adapter plugin 18 Event
6 node-logger-file File endpoint for cinovo-logger 1 Async
7 socket.io Real-time application framework 1,862 Event
8 del Delete files and directories 43 Async
9 simplecrawler Flexible event driven crawler for Node.js 298 Event

10 xlsx-extract Extract data from XLSX files 7 Async

TABLE III
DATASET-2: REAL-WORLD NODE.JS APPLICATIONS

ID Project Description #Star LoC

1 nedb A JavaScript Database 12,200 1,531
2 node-http-proxy A full-featured http proxy 11,800 502
3 baobab JavaScript persistent data tree 3,100 198
4 simplecrawler Flexible event driven crawler for Node.js 2,100 1,606
5 serve-static Serve static files 1,200 159
6 nodejs-websocket A websocket server and client module 646 689
7 ncp Asynchronous recursive file copying 601 231
8 line-reader Asynchronous line-by-line file reader 427 256
9 json-file-store A simple JSON store 184 1,192
10 fiware-pep-steelskin TID’s implementation of FIWARE PEP GE 11 1,735

applications, we collect 10 Node.js applications from GitHub
that satisfy following conditions: (1) The application is able to
run on Node.js 8.6 or above, which supports the async hooks
module to track events. (2) The application offers available test
cases so that we can use them to drive the application to collect
execution trace. Finally, we collect 10 Node.js applications, as
shown in Table III. Column Project refers to the application,
column Description gives a brief description of the application,
column #Star shows the number of stargazers on GitHub,
and column LoC presents lines of JavaScript code, computed
by tool cloc [28]. We can see that most of experimental
applications are popular.

We conduct our experiments in following steps. First, we
utilize NRace to instrument the source code of the target
application and utilize the test case to drive the application to
collect execution trace. Second, we run NRace to analyze the
observed trace. To answer RQ1, we use NRace and NodeRacer
to detect known races on the dataset-1. To answer RQ2, we
perform NRace on dataset-2 to detect previously-unknown
races. For both RQ1 and RQ2, we manually inspect the code
to validate whether each detected race is real. To answer RQ3,
we measure the runtime overhead of NRace and NodeRacer. In
particular, in order to compare the overhead of happens-before
graph construction between NRace and NodeRacer [21], we
implemented the happens-before graph construction algorithm
adopted by NodeRacer, because the data structure of trace
and happens-before graph of NodeRacer is different from
ours and cannot be integrated into NRace. We compare the
runtime overhead of our proposed happens-before construction

TABLE IV
DETECTION RESULT ON DATASET-1

ID NRace NodeRacer
Detected #Total #HR #BR #FP Detected

1 Yes 4 2 2 (2) 0 No
2 Yes 13 2 10 (7) 1 Yes
3 Yes 1 1 0 (0) 0 Yes
4 Yes 1 1 0 (0) 0 Yes
5 Yes 2 1 1 (1) 0 Yes
6 Yes 9 8 1 (0) 0 No
7 Yes 1 1 0 (0) 0 No
8 Yes 7 3 4 (4) 0 Yes
9 Yes 11 1 7 (4) 3 Yes
10 Yes 3 1 0 (0) 2 No

Total 10 52 21 25 (18) 6 6

algorithm and NodeRacer’s algorithm. All experiments were
conducted on 4-core 2.4GHz with 16GB memory, running
macOS Catalina release 10.15.6.

B. Detect Known Races

We run NRace on dataset-1 to measure the NRace’s ability
to detect known races. The result is shown in Table IV.
Columns 2-6 present the result of NRace, where column
Detected indicates whether the known race is detected by
NRace. Column #Total presents the total number of races
that NRace reports, calculated by #HR + #BR + #FP ,
where #HR, #BR and #FP represents the number of harmful
races, benign races and false positives reported by NRace,
respectively. Note that the known race is included in #HR and
the number of benign races automatically identified by NRace
is shown in the bracket in column #BR.

As shown in Table IV, NRace detects all 10 known races.
We further report 42 new races from 7 Node.js applications.
After manual inspection, we find these new races can be
classified into three categories: harmful races, benign races
and false positives.

All of newly detected harmful races are side-effect races
of the known races. For example, in project fiware-pep-
steelskin, once a request req returns, event ereq writes variable
currentToken with returned data. However, if there are two
requests req1 and req2, the execution order between event
ereq1 and ereq2 is non-deterministic. If event ereq2 is executed
before event ereq1 , ereq1 overwrites variable currentToken
with returned data of req1, making request req2 hangs. One
of side-effect races is that, if event ereq1 throws an error after
ereq2 , it also overwrites currentToken with null, making
req2 hangs.

As shown in Table IV, 25 out of newly detected races are
benign races, which is consistent with the fact that there is
a large number of benign races in Node.js applications. Most
of these benign races (18/25) are automatically identified by
NRace.

False positives are determined by manual reproduction or
related code review. As shown in Table IV, NRace reports
6 false positives. These false positives are caused by ad-hoc
synchronization. For example, in project simplecrawler, event
eadd caches a URL for crawling in future and event ereq
invokes a request to crawl a given URL. If event ereq is
executed before eadd, event ereq will find that there is no URL
under crawling. Thus, it will invoke stop() method to end up
crawling. As a result, event eadd will not occur any more.

Note that, although we have detected all known races in our
experiment, as a dynamic approach, we can still miss races if
the provided test cases do not cover race-related events.

Comparison with NodeRacer. In order to compare NRace
with the state-of-the-art fuzzer NodeRacer, we utilize NodeR-
acer to detect races in 100 runs and set one hour as timeout
for it. If NodeRacer does not detect a known race in one hour,
we regard that NodeRacer does not detect the race.

Column 7 of Table IV indicates whether the known race
is detected by NodeRacer. As shown in Table IV, NodeRacer
can only detect 6 out of 10 within the given timeout.

We investigate why NodeRacer fails to find four bugs in our
experiment and find three reasons. First, although NodeRacer
eliminates the schedule space with the help of happens-before
relations, it can still miss races because of the large schedule
space. For example, there are 277 events in project socket.io.
Under the guidance of happens-before relations, the number of
possible event schedules is 24,640. So, 100 runs only explores
0.4% of the schedule space. Second, NodeRacer only fuzzes
the execution of events but does not perturb the execution of
asynchronous tasks, which further reduces the possibility to
expose races on external resources, e.g., the missing races in
project node-logger-file and xlsx-extract. Further, NodeRacer
can miss races if it runs out of time, e.g., the missing race in
project agentkeepalive. This result demonstrates that NRace is

TABLE V
DETECTION RESULT ON DATASET-2

ID Project #Total #HRace #BRace #FP

1 nedb 2 0 1 (0) 1
2 node-http-proxy 0 0 0 (0) 0
3 baobab 0 0 0 (0) 0
4 simplecrawler 5 0 4 (2) 1
5 serve-static 0 0 0 (0) 0
6 nodejs-websocket 2 0 2 (1) 0
7 ncp 2 0 2 (2) 0
8 line-reader 2 0 2 (1) 0
9 json-file-store 1 1 0 (0) 0
10 fiware-pep-steelskin 13 5 6 (3) 2

Total 27 6 17 (9) 4

more effective than NodeRacer to detect races in real-world
Node.js applications.

C. Detect Unknown Races

We run NRace on dataset-2 to measure the NRace’s ability
to detect previously unknown races. Column #Total in Table V
shows the number of detected races. As shown in Table V,
NRace detects 27 races on dataset-2 in total. After manual
inspection, we classify detected races into three categories:
harmful races, benign races and false positives, the number
of which is shown in column #HRace, #BRace and #FP, re-
spectively. Similarly, the number of benign races automatically
identified by NRace is shown in bracket in column #BRace.

NRace detects 6 harmful races in project json-file-store and
fiware-pep-steelskin. For example, in json-file-store, event esv
saves data with id myId into the JSON file and event erm
deletes data with the same id. The unordered event esv and
erm make the content of the JSON file non-deterministic. We
have submitted these detected races to developers. Five races
in project fiware-pep-steelskin is acknowledged by developers.

Table V shows that NRace reports 4 false positives, which
are also caused by ad-hoc synchronization, as discussed in
dataset-1.

NRace detects 17 benign races. For example, in project
nodejs-websocket, event ebeg asks the connection to begin
transmitting data and event ecls closes the connection. Con-
sider event ecls is executed before ebeg to set variable state
to CLOSING. When event ebeg is executed, it reads variable
state and finds variable state does not equal to OPEN , it
does not send data. Therefore, the race between event ebeg and
ecls has no harmful impact on the application. NRace automat-
ically identifies 9 out of 17 benign races. More commutative
patterns could be designed to enhance our approach.

D. Overhead

In Table VI, columns 2-5 report the performance of NRace,
where column TC, HBC, DP and T denotes the time for
trace collection, happens-before graph construction, offline
race detection along with pruning, and the total time calculated
by TC +HBC +DP , respectively.

As shown in Table VI, NRace detects races within a few
seconds. The overhead in NRace is introduced by trace collec-
tion and happens-before graph construction, For example, in

TABLE VI
RUNTIME OVERHEAD ON DATASET-1

ID NRace (s) NodeRacer (s) Speedup
TC HBC DP T HBC T HBC T

1 1.0 0.2 0.1 1.3 2.0 3,600.0 10 2,769
2 1.0 7.0 1.0 9.0 104.5 1,665.5 15 185
3 0.5 0.1 0.1 0.7 0.4 1,279.8 4 1,828
4 0.5 0.1 0.1 0.7 0.1 351.2 1 502
5 1.3 0.2 0.1 1.6 1.0 743.6 5 465
6 6.6 1.3 0.5 8.4 7.8 87.5 6 10
7 0.5 0.4 0.1 1.0 35.5 945.3 89 945
8 0.6 0.1 0.1 0.8 0.1 282.6 1 353
9 5.5 0.7 0.7 6.9 5.7 1,203.6 8 174

10 1.2 14.3 0.3 15.8 215.5 465.5 15 29
Total 18.7 24.4 3.1 46.2 372.6 10,624.6 15 230

T: Trace collection; B: Happens-before graph construction; DP: Race
detection and pruning; T: Total time.

project xlsx-extract, which consumes the most time on happen-
before graph construction, there are 675 events, 290 of which
are Immediate events. As discussed before, FIFO and NextTick
rules need to be applied to Immediate events. It takes much
time to repeatedly evaluate these two rules.

We compare the performance of NRace with NodeRacer on
dataset-1. In Table VI, columns 6-7 present the overhead of
NodeRacer, where column HBC and T denotes the overhead of
the happens-before graph construction algorithm and the total
runtime, respectively. Columns 8-9 show NRace’s speedup
compared with NodeRacer, where column HBC and T denotes
the speedup in happens-before graph construction and the total
runtime, respectively.

On the one hand, our proposed happens-before graph con-
struction algorithm performs much faster than the algorithm of
NodeRacer (from 1X to 89X). Since project node-mkdirp and
project del have a small number of events, there is little dif-
ference between the overhead of our proposed algorithm and
NodeRacer’s algorithm in these two projects. Our proposed
algorithm is efficient in happens-before graph construction for
Node.js applications.

One the other hand, since NodeRacer repeatedly executes
the application, it has large overhead. As shown Table VI,
it spends nearly three hours to detect 6 races. As shown in
column 9, NRace performs much faster than NodeRacer (from
10X to 2,769X). These results demonstrate that NRace is more
efficient in detecting races in real-world Node.js applications.

E. Threats to Validity

The threat to validity is the representativeness of experi-
mental projects. First, races selected in the evaluation come
from real-world Node.js applications and have been studied by
previous work NodeCB [10] and NodeRacer [21]. We believe
these races represent real-world bugs. Second, since most of
our selected Node.js applications have an amount of stars, we
believe they are popular and representative.

V. RELATED WORK

In this section, we discuss related works close to ours.
Event race detection. CAFA [8] and DroidRacer [18] build

happens-before relations among events, which account for

only one event queue. EventTrack [29] maintains a subset
of happens-before relations to optimize happens-before graph
construction. SIERRA [19] reifies threads, events and user
actions as actions and statically builds happens-before relations
to improve precision. These existing approaches on Android
applications cannot deal with multi-priority event queues.

WebRacer [7] formalizes the happens-before relations with
web features. EventRacer [13] proposes race coverage to
reduce the number of false positives and takes advantage of
chain decomposition to decrease the overhead of reachability
query. WAVE [14] records a sequence of operations and
controls the target program to execute the observed operations
to detect event races. ARROW [30] further statically detects
event races and automatically repairs them. These approaches
mainly focus on programming model features of browsers,
such as DOM and AJAX. Therefore, they cannot be applied
on Node.js applications.

Concurrency bug detection on Node.js applications.
NodeCB [10] presents an empirical study on 57 concurrency
bugs on real-world Node.js applications, and shows light on
concurrency bugs in Node.js applications. [31] proposes a
parallel programming abstraction GEMs. [27] proposes Async
Graph to reason about event behaviors. NodeAV [22] can
detect atomicity violations and does not consider other kinds of
races. Node.fz [11] and NodeRacer [21] fuzzes the execution
order of events to expose races. Due to randomness, they
cannot deterministically find bugs. In contrast, our approach
can systematically explore all the scheduling space of events
and asynchronous tasks.

VI. CONCLUSION

Node.js applications are increasingly popular and are widely
used by many developers and industrial giants. These ap-
plications are written in an asynchronous event-driven ar-
chitecture, and suffer from races. In this paper, we propose
NRace to detect races based on an observed execution trace.
We build precise happens-before relations among events and
asynchronous tasks in Node.js applications, which supports
multi-priority event queues. We further develop a predictive
race detection technique based on happens-before relations.
We evaluate NRace on real-world Node.js applications and
experimental results show it can detect known races as well
as unknown races.

VII. ACKNOWLEDGE

We thank Yushan Zhang and Yu Gao for providing insightful
comments about this work. This work was partially supported
by National Key R&D Program of China (2017YFB1001804),
National Natural Science Foundation of China (61732019,
62072444), Foundation of Science and Technology on Paral-
lel and Distributed Processing Laboratory (61421102000402),
Frontier Science Project of Chinese Academy of Sciences
(QYZDJ-SSW-JSC036), and Youth Innovation Promotion As-
sociation at Chinese Academy of Sciences (2018142).

REFERENCES

[1] The npm repository. [Online]. Available: https://www.npmjs.com/
[2] 64 Node.js stats that prove its awesomeness in 2021. [Online].

Available: https://hostingtribunal.com/blog/node-js-stats/
[3] Node.js at PayPal. [Online]. Available: https://www.paypal-engineering.

com/2013/11/22/node-js-at-paypal/
[4] Node.js at Uber. [Online]. Available: https://foundation.nodejs.org/

wp-content/uploads/sites/50/2017/09/Nodejs-at-Uber.pdf
[5] Node.js at Yahoo. [Online]. Available: https://www.joyent.com/blog/

node-js-on-the-road-boston-node-js-at-yahoo
[6] Libuv. [Online]. Available: https://github.com/libuv/libuv
[7] B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby, “Race detection

for web applications,” in Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2012, pp.
251–262.

[8] C. Hsiao, C. Pereira, J. Yu, G. Pokam, S. Narayanasamy, P. M. Chen,
Z. Kong, and J. Flinn, “Race detection for event-driven mobile applica-
tions,” in Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), 2014, pp. 326–336.

[9] P. Bielik, V. Raychev, and M. T. Vechev, “Scalable race detection for
Android applications,” in Proceedings of ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015, pp. 332–348.

[10] J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei,
“A comprehensive study on real world concurrency bugs in Node.js,”
in Proceedings of IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2017, pp. 520–531.

[11] J. C. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing
the server-side event-driven architecture,” in Proceedings of European
Conference on Computer Systems (EuroSys), 2017, pp. 145–160.

[12] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application
bugs caused by asynchronous calls,” in Proceedings of the International
Conference on World Wide Web (WWW), 2011, pp. 805–814.

[13] V. Raychev, M. Vechev, and M. Sridharan, “Effective race detection for
event-driven programs,” in Proceedings of ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2013, pp. 151–166.

[14] S. Hong, Y. Park, and M. Kim, “Detecting concurrency errors in
client-side JavaScript web applications,” in Proceedings of International
Conference on Software Testing, Validation and Verification (ICST),
2014, pp. 61–70.

[15] E. Mutlu, S. Tasiran, and B. Livshits, “Detecting JavaScript races that
matter,” in Proceedings of Joint Meeting of European Software Engi-
neering Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2015, pp. 381–392.

[16] C. Q. Adamsen, A. Møller, and F. Tip, “Practical initialization race de-
tection for JavaScript web applications,” Proceedings of ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), vol. 1, pp. 66:1–66:22, 2017.

[17] C. Q. Adamsen, A. Møller, S. Alimadadi, and F. Tip, “Practical
AJAX race detection for JavaScript web applications,” in Proceedings

of Joint Meeting of European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), 2018, pp. 38–48.

[18] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for Android
applications,” in Proceedings of ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI), 2014, pp. 316–
325.

[19] Y. Hu and I. Neamtiu, “Static detection of event-based races in Android
apps,” in Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018, pp. 257–270.

[20] Y. Hu, I. Neamtiu, and A. Alavi, “Automatically verifying and reproduc-
ing event-based races in Android apps,” in Proceedings of International
Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 377–
388.

[21] A. T. Endo and A. Møller, “NodeRacer: Event race detection for Node.js
applications,” in Proceedings of International Conference on Software
Testing, Validation and Verification (ICST), 2020, pp. 120–130.

[22] X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang, “Detecting
atomicity violations for event-driven Node.js applications,” in Proceed-
ings of International Conference on Software Engineering (ICSE), 2019,
pp. 631–642.

[23] M. C. Loring, M. Marron, and D. Leijen, “Semantics of asynchronous
JavaScript,” in Proceedings of ACM SIGPLAN International Symposium
on on Dynamic Languages (DLS), 2017, pp. 51–62.

[24] Promise. [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global Objects/Promise

[25] Node.js documentation about async hooks. [Online]. Available:
https://nodejs.org/api/async hooks.html

[26] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selec-
tive record-replay and dynamic analysis framework for JavaScript,”
in Proceedings of Joint Meeting of European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2013, pp. 488–498.

[27] H. Sun, D. Bonetta, F. Schiavio, and W. Binder, “Reasoning about the
Node.js event loop using async graphs,” in Proceedings of International
Symposium on Code Generation and Optimization (CGO), 2019, pp.
61–72.

[28] Cloc: Count lines of code. [Online]. Available: https://github.com/
AlDanial/cloc

[29] P. Maiya and A. Kanade, “Efficient computation of happens-before
relation for event-driven programs,” in Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2017, pp. 102–112.

[30] W. Wang, Y. Zheng, P. Liu, L. Xu, X. Zhang, and P. Eugster, “ARROW:
Automated repair of races on client-side web pages,” in Proceedings
of International Symposium on Software Testing and Analysis (ISSTA),
2016, pp. 201–212.

[31] D. Bonetta, L. Salucci, S. Marr, and W. Binder, “Gems: Shared-memory
parallel programming for Node.js,” in Proceedings of ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2016, pp. 531–547.

https://www.npmjs.com/
https://hostingtribunal.com/blog/node-js-stats/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://foundation.nodejs.org/wp-content/uploads/sites/50/2017/09/Nodejs-at-Uber.pdf
https://foundation.nodejs.org/wp-content/uploads/sites/50/2017/09/Nodejs-at-Uber.pdf
https://www.joyent.com/blog/node-js-on-the-road-boston-node-js-at-yahoo
https://www.joyent.com/blog/node-js-on-the-road-boston-node-js-at-yahoo
https://github.com/libuv/libuv
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global _Objects/Promise
https://nodejs.org/api/async _hooks.html
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc

	Introduction
	Motivation
	Motivating Example
	Races in Node.js Applications
	Approach Overview

	Approach
	Trace Collection
	Happens-Before Relation
	Happens-Before Graph Construction
	Race Detection
	Pruning Races

	Evaluation
	Experimental Setup
	Detect Known Races
	Detect Unknown Races
	Overhead
	Threats to Validity

	Related Work
	Conclusion
	Acknowledge
	References

