
The Impact Analysis of Multiple Miners and
Propagation Delay on Selfish Mining

Qing Xia†‡, Wensheng Dou†‡, Tong Xi§‡, Jing Zeng†, Fengjun Zhang†¶, Jun Wei†‡, Geng Liang†¶
†Institute of Software, Chinese Academy of Sciences, Beijing, China

‡University of Chinese Academy of Sciences, China
¶State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

§Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
†{xiaqing2018, wensheng, zengjing, fengjun, weijun, lianggeng}@iscas.ac.cn, §xitong@iie.ac.cn

Abstract—Bitcoin has emerged as a popular decentralized
cryptocurrency and attracted much attention from the public.
Bitcoin embodies the Nakamoto consensus to reach an agreement
about its blockchain ledger. However, the Nakamoto consensus
can suffer from selfish mining attacks. Existing studies on selfish
mining usually assume that the total mining power is divided
into two parts (i.e., honest and selfish), and ignore propagation
delay among miners. The assumptions cannot reflect real-world
scenarios, in which multiple miners generate blocks at a fixed
interval and propagate them with certain delay. Therefore, it
is unknown how the practical factors, i.e., multiple miners and
propagation delay, can affect selfish mining.

In this paper, we explore the impact of multiple miners and
propagation delay on selfish mining. First, we propose a new
selfish mining strategy that can handle these factors. Second, we
design a simulation approach to analyze the performance of the
new selfish mining strategy. From our empirical study we observe
many interesting findings that can be utilized in combating selfish
mining. For example, the blockchain system with a higher orphan
rate is more vulnerable to the selfish mining attack.

Index Terms—Blockchain, consensus protocol, selfish mining,
propagation delay

I. INTRODUCTION

Blockchain is a novel ledger-sharing technology that is used
as the core component in Bitcoin [1]. In blockchain, each
participant maintains a continuously-growing ledger, which
consists of a list of blocks. In the ledger, each block contains
a cryptographic hash pointer to its previous block. Since
any modification to a block will invalidate all its subsequent
blocks, blockchain can provide immutability and traceability.
Therefore, blockchain is regarded as a promising technology
for building multi-party trusted distributed systems. Nowadays,
blockchain has been widely applied in various domains, e.g.,
government management, cross-border remittances and supply
chain tracing.

Nakamoto consensus [1] is one of the most widely-used pro-
tocols to guarantee the consistency and security of blockchain.
Nakamoto consensus regards the longest chain as the main
chain. Honest miners try to solve a cryptographic hash puzzle
after the most recent block in their local longest chain. Once
successful, honest miners broadcast the newly-generated block
immediately to extend the longest chain. When multiple blocks
refer to the same parent block, i.e., fork blocks, are generated,
the branches with equal length occur. In this case, honest

miners work on the first arrived branch temporarily until one
branch becomes the longest. Only the longest chain block
is accepted, and other fork blocks are discarded as orphan
blocks. The blockchain system provides a fixed amount of
cryptocurrency as reward to the miner of an accepted block.

In blockchain, the possibility to generate a block is pro-
portional to a miner’s mining power. Therefore, a miner’s
reward is generally considered to be proportional to its mining
power. However, a miner can adopt the selfish mining strategy
[2] to obtain a higher reward than its fair share. Instead of
broadcasting a newly-generated block immediately, the selfish
miner withholds the new block first and reveals it later. By
intentionally creating equal branches with the hidden blocks,
the selfish miner forces honest miners to waste their mining
power on the stale longest branch and hence improves its
reward. Existing study shows that a selfish miner with more
than 33% of the total mining power can gain a higher reward
[2], which significantly destroys confidence in the blockchain.

The original selfish mining strategy [2] and its variants
[3]–[7] usually adopt the Markov chain model to analyze the
performance of selfish mining. In this model, they divide the
total mining power into two parts, i.e., honest and selfish,
and ignore dynamically-changing propagation delay among
miners. The model involves three assumptions. First, all miners
hold the same blockchain view at the same time. Second, a
fixed fraction of honest power always mines on the selfish
branch when there is an equal branch. Third, it is impossible
that multiple miners can generate multiple branches with their
fork blocks. Specifically, the branches can only occur when the
selfish miner creates them intentionally. These assumptions are
required for the numerical simulation based on the Markov
chain model, but do not hold in the real-world blockchain
system. Therefore, the Markov-based strategies [2]–[7] cannot
work in the real-world scenarios, and it is still unknown how
the practical factors, i.e., multiple miners and propagation
delay, affect the performance of selfish mining.

In this paper, we first propose a new selfish mining strategy
that can handle the practical factors. Second, we design a
simulation approach by analyzing the blockchain execution
process to simulate the blockchain scenarios. We then apply
the new strategy into the simulation system and obtain many
interesting findings from our empirical study. The main find-



TABLE I
THE STUDIES RELATED TO SELFISH MINING EVALUATION.

Related work Factors Findings
Same New Diff

Chang [8] multiple honest miners - 1, 3 2
Liu et al. [6],
Bai et al. [7] multiple selfish miners 4 - -

Göbel et al. [9] propagation delay 6, 9 5, 7, 8 -

ings are shown as follows. (1) A miner with sufficient mining
power has an inherent mining advantage even under honest
mining. For example, in the 10-miner system, the honest
miner with 45% of the mining power can obtain 46.83% of
the total reward. (2) Selfish mining performs better in the
blockchain system with more miners and a larger propagation
delay. For example, the profit threshold for launching selfish
mining attacks decreases from 31% to 29% when the number
of miners increases from 5 to 100. (3) The blockchain system
with a higher orphan rate is more vulnerable to selfish mining.
For example, the profit threshold is reduced to 21% when
the system orphan rate reaches to 40.37%. These findings are
useful for combating selfish mining attacks.

We summarize the main contributions as follows.
• We propose a new selfish mining strategy to handle

blockchain scenarios with multiple miners and propaga-
tion delay.

• We propose a simulation approach to simulate the real-
world blockchain scenarios.

• We evaluate the performance of the selfish mining strat-
egy on the simulation system and obtain many interesting
findings from our empirical study.

II. RELATED WORK

In this section, we discuss related work that is close to our
findings.

Table I compares the studies on selfish mining evaluation.
Chang [8] considered the influence of multiple honest miners,
whose main finding is contrary to our finding 2. The reason
has been discussed in Section VI-B. Besides, finding 1 and 3
are our new findings. Liu et al. [6] and Bai et al. [7] considered
multiple selfish miners, whose main finding is similar to our
finding 4. Göbel et al. [9] investigated how propagation delay
affect selfish miner’s network advantage, whose main findings
are similar to finding 6 and 9. Besides, finding 5, 7, 8 are our
new findings. Different from Göbel et al. [9], we also consider
different block intervals in the RPD parameters.

Some research efforts have been put on exploring the new
selfish mining strategies. Nayak et al. [3] proposed stubborn
mining, in which the miner insists on its private selfish
branch despite losing the lead advantage. Sapirshtein et al. [5]
optimized selfish mining in different parameter space. Negy
et al. [4] proposed intermittent selfish mining when facing
difficulty adjustment. Niu and Feng [10], Ritz and Zugenmaier
[11] evaluated the impact of uncle reward in Ethereum on
selfish mining, and found Ethereum is more vulnerable to
selfish mining than Bitcoin. However, these strategies cannot

𝑆𝐻𝐴–256(𝑃𝑎𝑟𝑒𝑛𝑡𝐻𝑎𝑠ℎ ∥ 𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 ∥ 𝑵𝒐𝒏𝒄𝒆) ≤ 𝑇𝑎𝑟𝑔𝑒𝑡

0 2256 − 1

target space

output space

Target

Fig. 1. Proof of Work (PoW) in Blockchain.

work in the real-world blockchain scenarios with multiple
miners and propagation delay. In this paper, our proposed
new strategy can handle the real-world situations. We can also
improve these new strategies to make them work in the real-
world scenarios, and analyze the impact of practical factors.
We leave them in the further work.

III. BACKGROUND

In this section, we briefly introduce Nakamoto consensus
and the selfish mining strategy.

A. Nakamoto Consensus

Nakamoto consensus [1] is one of the most widely-used
protocols to reach the agreement on the blockchain ledger.
Nakamoto consensus utilizes Proof of Work (PoW) to deter-
mine who can generate the new block. A new block must
contain a valid solution to the cryptographic hash puzzle,
i.e., PoW puzzle. Miners compete against each other to find
the valid solution. The PoW puzzle is shown as Fig. 1.
ParentHash denotes the hash pointer of the parent block.
Metadata includes the necessary information of the block,
e.g., version, timestamp, Merkle root of the transaction list.
Nonce denotes a random number. Target is an integer from
0 to 2256−1, representing the puzzle’s difficulty. Target is
dynamically adjusted to ensure that blocks are generated at
a fixed interval, e.g., 10 minutes in Bitcoin. Output space
contains all possible results of the SHA-256 hash function,
while target space only contains results below the Target.
A valid PoW puzzle solution means a Nonce satisfies the
inequation in Fig. 1, i.e., the block’s hash value calculated by
the SHA-256 function falls into the target space.

Since multiple miners compete on solving the same PoW
puzzle independently, they may generate fork blocks that
refer to the same parent block. Thus, the branches occur.
To guarantee consistency, Nakamoto consensus regards the
longest chain as the main chain. Blocks in the longest chain
are valid and accepted. Blocks outside the longest chain are
discarded as orphan blocks, whose transactions are returned
to miners’ transaction pool and wait for re-processing. When
facing branches, honest miners work on the first arrived one
temporarily until the longest chain is determined.

Due to the collision-resistance property of hash functions
[12], a miner’s best choice to find the valid PoW solution is
to randomly try Nonce in Fig. 1. Therefore, the probability
of finding the PoW solution is proportional to the miner’s
mining power. To compensate for miners’ computing cost, the
blockchain system provides a fixed amount of cryptocurrency



miner1

miner3

miner2

timeG

Genesis

G b1

timeGG

G

generate block

G

b2

b1 b3

G

b1

b2

b3

time

b2 G

b2

b1

Fig. 2. Blockchain execution process in the system with three miners.

to the miners of the main chain blocks. While orphan blocks
are not rewarded.

Fig. 2 shows a simplified blockchain execution process with
three miners. Initially, the blockchain is initialized with only
the genesis block. Once a miner, e.g., miner1, generates a new
block b1 by solving the PoW puzzle, it immediately broadcasts
b1 through the peer-to-peer (P2P) network. It will take some
time, i.e., propagation delay, for other miners to receive the
block. Once the miner receives a new block, it will update its
blockchain and work on the longest chain. Since miner2 has
generated the block b2 before receiving b1, a branch occurs.
After block b3 is generated, the branch problem is solved and
block list (G, b1, b3) is regarded as the main chain.

In blockchain, three factors can affect its execution process.
• Block generation time: The time required for a miner

to generate a block.
• Block propagation delay: The time to propagate a block

to another miner.
• Mining strategy: A miner’s actions when generating and

receiving blocks.
As discussed earlier, block generation time is proportional to

a miner’s mining power and is affected by the difficulty of the
PoW puzzle. Block propagation delay can be affected by mul-
tiple factors, e.g., network topology, propagation mechanism,
and block size [13]. For the mining strategy, honest miners
follow the Nakamoto consensus mentioned before. However,
a miner can adopt different strategies, e.g., selfish mining [2].

B. Selfish Mining Strategy

Selfish mining was proposed by Eyal and Sirer [2]. In
selfish mining, instead of releasing newly-generated blocks
immediately, a selfish miner can intentionally withhold its
new blocks, and works on its private branch. In the same
time, honest miners work on the stale public branch and waste
their mining power. Thus, the selfish miner can obtain higher
revenue.

To analyze the performance of selfish mining, original
selfish mining (SM) [2] and its variants [3]–[7] usually divide
the total mining power into two parts, i.e., honest and selfish.
Thus, there are only two mining groups in the analysis model.
We use α to denote the fraction of mining power controlled
by the selfish miner, and β to denote the power controlled
by the honest miner. We assume the selfish miner’s network
advantage γ as the fraction of honest mining power that works
on the selfish branch when two branches are equal.

TABLE II
THE SELFISH MINER’S ACTIONS.

lead Generate block b1 Receive block b2
0 withhold b1 add b2 to blockchain
0’ release b1 add b2 to blockchain
1 withhold b1 release its hidden block
2 withhold b1 release its two hidden blocks
≥ 3 withhold b1 release its first hidden block

The selfish miner takes different actions according to its
lead advantage lead, which is described as follows.

lead = len(private branch)− len(public branch) (1)
Table II summarizes the selfish miner’s detailed actions in

SM. Note that, both lead = 0 and lead = 0′ denotes the
selfish miner has no private block. The difference is that at
lead = 0, there is a unique longest chain shared by all miners.
And at lead = 0′, there are two branches in the public chain
that are created by the honest miner and the selfish miner. In
this case, γ fraction of honest power will mine on the selfish
miner’s branch. When lead = 0, the selfish miner withholds its
new block. If it receives the honest miner’s new block, it will
update its blockchain and keep up-to-date. When lead = 0′,
there are two branches, so the selfish miner always releases its
new block, and tries to become the longest chain. If it receives
the honest miner’s new block, it will update its blockchain.

When lead ≥ 1, the selfish miner continues to withhold its
new block. At lead = 1, if it receives the honest miner’s new
block, it immediately releases its hidden block, and creates a
branch, thus lead becomes 0’. So, a fraction of honest miners
(γ·β) will work on the selfish miner’s branch, and only (1−γ)·
β of honest power works on the honest branch. At lead = 2,
if it receives a new block, it immediately releases two hidden
blocks. So, its private chain becomes the longest, and lead
becomes 0. When lead ≥ 3, if it receives a new block, it will
release its first hidden block. In this case, the selfish miner
can always hold the longest chain.

When there is no honest power mines on the selfish branch,
i.e., γ = 0, a miner requires at least 33% of mining power
to launch the selfish mining attack [2]. The required mining
power further decreases as γ increases.

IV. SELFISH MINING STRATEGY WITH MULTIPLE MINERS
AND PROPAGATION DELAY

The real-world blockchain system usually contains multiple
miners. For example, in Bitcoin, there are ten large mining
pools accounted for more than 98% of mining power and
lots of other miners [14]. Once a miner broadcasts its new
block, other miners may receive the block at different timings
due to the propagation delay, which is dynamically-changing
as the network environment changes. Since miners may hold
different blockchain views at the same time, the blockchain
forks occasionally [15].

However, existing studies [2]–[7] usually adopt the Markov
chain model to analyze selfish mining, whose key assumptions
do not hold in the real-world blockchain scenarios.



TABLE III
THE SELFISH MINER’S ACTIONS IN REAL-WORLD SCENARIOS.

lead Generate block b1 Receive new block(s)
0 withhold b1 add block(s) to blockchain
0’ release b1 add block(s) to blockchain

1 withhold b1
lead = 1, keep its hidden block
lead = 1′, release its hidden block
lead ≤ 0, release its hidden block

2 withhold b1 lead = 2, keep its two hidden
blocks
lead ≤ 1, release its two hidden
blocks

N(N ≥ 3) withhold b1 2 ≤ lead ≤ N , release its first
(N − lead) hidden blocks
lead ≤ 1, release its N hidden
blocks

3 𝑙𝑒𝑎𝑑 = 0′2 𝑙𝑒𝑎𝑑 = 1′ 4 𝑙𝑒𝑎𝑑 < 01 𝑙𝑒𝑎𝑑 = 1𝑙𝑒𝑎𝑑 = 1
keep release release release

Fig. 3. Actions taken by the selfish miner at lead = 1. Blocks with the solid
lines, dotted lines represent public blocks and selfish miner’s hidden blocks,
respectively. Blocks with the blue diagonal lines represent the received blocks.

• Assumption 1. All miners hold the same blockchain view
at the same time. In the system with the propagation
delay, miners may have different blockchain views as
discussed earlier.

• Assumption 2. A fixed fraction of the honest power, i.e.,
γ, always works on the selfish branch when there is an
equal branch. In the blockchain system, γ is dynamically-
changing and unknown.

• Assumption 3. It is impossible that multiple miners can
generate multiple branches, and the branches can only
occur when the selfish miner creates them intentionally.
However, due to propagation delay among multiple min-
ers, branches among all miners can occur.

To overcome the above limitations, we propose an improved
selfish mining strategy (ISM), the first practical mining strat-
egy that can work in real-world blockchain scenarios. Table III
shows the selfish miner’s actions in ISM, according to its lead
advantage lead. Different from SM in Table II, the selfish
miner must handle the stale block and multiple blocks due to
the delay. We describe the details of ISM as follows.

When lead = 0 or lead = 0′, the selfish miner has no
hidden block and hence takes the same action as in SM
discussed in Section III-B. Specifically, When lead = 0, the
selfish miner withholds the new block. When lead = 0′,
the selfish miner releases its new block. When lead = 0 or
lead = 0′, it updates the blockchain after receiving the new
block.

3 𝑙𝑒𝑎𝑑 = 0′2 𝑙𝑒𝑎𝑑 = 1lead = 2 1 𝑙𝑒𝑎𝑑 = 2 4 𝑙𝑒𝑎𝑑 < 0
keep both release both release both release both

Fig. 4. Actions taken by the selfish miner at lead = 2.

3 𝑙𝑒𝑎𝑑 = 1 4 𝑙𝑒𝑎𝑑 = 0′2 𝑙𝑒𝑎𝑑 = 2lead = 3 1 𝑙𝑒𝑎𝑑 = 3

keep all release first block release all release all

Fig. 5. Actions taken by the selfish miner at lead = 3.

When lead = 1, the selfish miner continues to withhold
the new block and extends its private chain. Fig. 3 shows
the cases when the selfish miner receives blocks. In case 1,
the selfish miner receives a stale block, and still has the lead
advantage. Therefore, it still keeps the hidden block. In case
2, the selfish miner receives a new block with the same height
as the hidden block’s parent block. This case is denoted as
lead = 1′, in which the selfish miner has one lead block
but the public blockchain forks. To become the longest chain,
the selfish miner releases its hidden block. In case 3 and 4,
the selfish miner loses its lead advantage. Thus it releases the
hidden block, and keeps up-to-date with the public blockchain.

When lead = 2, the selfish miner still withholds its
new block. Fig. 4 shows the cases when the selfish miner
receives blocks. In case 1, the selfish miner maintains the lead
advantage, e.g., receiving a new block with the same height
as its parent block. In this case, it keeps its hidden blocks. In
case 2, the selfish miner receives new blocks with the same
height as its first hidden block, and its lead decreases to 1. In
this case, it releases both hidden blocks and tries to become
the longest chain. In case 3 and 4, the selfish miner loses its
lead advantage, i.e., lead ≤ 0. Thus, it releases both hidden
blocks and keeps up-to-date.

When lead = 3, the selfish miner still withholds its new
block. Fig. 5 shows the cases when the selfish miner receives
blocks. In case 1, the selfish miner receives a new block with
the same height as its parent block. In this case, it keeps the
hidden blocks. In case 2, the selfish miner receives a new
block with the same height as its first hidden block, and its
lead decreases to 2. In this case, it releases the first hidden
blocks to catch the public branch. In case 3, the selfish miner
receives two blocks with the same height as its first two hidden



blocks, and its lead decreases to 1. In this case, it releases all
hidden blocks and tries to become the longest chain. In case 4
and even worse case, the selfish miner loses its lead advantage,
i.e., lead ≤ 0. Thus, it releases all hidden blocks, and keeps
up-to-date.

Without loss of generality, we can infer the selfish miner’s
actions at lead = N(N ≥ 3) with the analysis at lead = 3.
When lead = N , the selfish miner continues to withhold its
new blocks. After receiving blocks from other miners, if the
selfish miner’s lead decreases but at least 2, i.e., 2 ≤ lead ≤
N , it releases the first N − lead hidden blocks. However, if
the selfish miner’s lead decreases to less than 2, i.e., lead ≤ 1,
it releases all hidden blocks.

V. BLOCKCHAIN SIMULATION

To evaluate the performance of ISM, we propose a
blockchain simulation approach considering multiple miners
and propagation delay. As discussed in Section III-A, three
factors can affect the blockchain execution process, i.e., block
generation time, propagation delay and mining strategy. In this
section, we first discuss how we simulate block generation
time and propagation delay. Then, we explain how to imple-
ment the simulation approach.

A. Block Generation Time

The previous study [16] has demonstrated that the block
generation time is proportional to a miner’s mining power, and
is affected by the difficulty of the PoW puzzle. As Equation (2)
shows, a miner’s block generation time ti follows the shifted
geometric distribution with the probability pi.

ti ∼ Geo(pi); pi = ε · hi (2)

In Equation (2), ε denotes the success probability of a single
hash operation on the PoW puzzle that can be regarded as a
Bernoulli trial. The value of ε changes with the difficulty of
the PoW puzzle. hi denotes the number of hash operations
that a miner can perform within a second. Since miners’ hash
rate hi is hard to be controlled, the equation is not available
for the blockchain simulation. Therefore, we make the further
derivation.

First, we introduce an intermediate variable H denoting
the total mining power. Hence, the probability pi can be
transformed into Equation (3).

pi = ε ·H · ri (3)

In Equation (3), ri denotes the fraction of mining power
controlled by the miner, i.e., hi/H . Since ε is the success
probability of a single hash operation, 1/ε represents the ex-
pected hash operations until finding a PoW solution. Assuming
that blocks are generated at a fixed interval G, the total mining

power H equals to
1/ε

G
[17]. Therefore, the probability pi can

be transformed into Equation (4).

pi =
ri
G

(4)

Equation (4) shows that the probability pi in the shifted
geometric distribution is the ratio of miner’s mining power
ratio to the block interval. The two parameters can be set
flexibly to simulate different blockchain systems.

B. Block Propagation Delay

Blockchain systems usually adopt the gossip protocol for
communication as Bitcoin [18]. Decker and Wattenhofer found
that the propagation delay in the Bitcoin system fits the
exponential curve with the median time of 12.6 seconds, and
the median time changes with the block size [13]. Thus,
different blockchain systems may have different median time
for propagation delay [19]. In our simulation system, we
divide the continuous time into discrete one, i.e., seconds.
So, the exponential distribution is discretized into the shifted
geometric distribution as follows, in which miners can take
varied time to receive the same block.

delay ∼ Geo(medianT ime) (5)

C. Simulation Algorithm

In the simulation system, each miner runs the blockchain
simulation algorithm and all miners form a distributed
blockchain system. In the following, we describe the simula-
tion algorithm for the selfish miner, as shown in Algorithm 1.
Note that, the simulation algorithm for the honest miner is
similar to Algorithm 1, but uses different mining strategy.

At first, the selfish miner’s blockchain is initialized with
only the genesis block (Line 1). The miner works on the
genesis block, i.e., curChain = genesis (Line 4). Its next
block generation time genT ime is calculated by the shifted
geometric distribution randomly discussed in Section V-A
(Line 5). The miner keeps generating and receiving new blocks
until totalBlock blocks are included in its blockchain (Line
6−23). For each iteration, it checks whether the new block can
be generated based on genT ime (Line 7). If yes, it generates
a new block, and adds into the blockchain (Line 8−9). Based
on ISM, the selfish miner can decide whether the new block
can be released to other miners or not (Line 10−13). If the
miner decides to withhold the block, it puts the block into
hiddenBlocks and does not release. Otherwise, it broadcasts
the block immediately, which will be added into other miners’
incomingBlocks. The propagation delay is calculated by the
shifted geometric distribution as discussed in Section V-B
(Line 25−28).

The selfish miner further checks its incomingBlocks. If a
block in incomingBlocks can be received, the selfish miner
adds the block into its blockchain (Line 14−17). Then, based
on ISM, the miner decides which hidden blocks should be
released to compete with the incoming block (Line 18−20).
Finally, the miner checks whether the chain it works on, i.e.,
curChain, has changed (Line 21). If yes, the miner updates
curChain to start a new iteration (Line 22−23).



Algorithm 1: Blockchain simulation algorithm for a
selfish miner.

1 blockchain← genesis
2 incomingBlocks← NULL
3 hiddenBlocks← NULL
4 curChain← genesis
5 genT ime← curT ime() + random(Geo(ri/G))
6 while blockchain.size() < totalBlock do
7 if curT ime() ≥ genT ime then
8 block ← generateBlock(curChain)
9 blockchain.add(block)

10 if shouldBeReleased(blockchain, block) then
11 broadcast(block)

12 else
13 hiddenBlocks.add(block)

14 for block ∈ incomingBlocks do
15 if curT ime() ≥ block.incomingT ime then
16 incomingBlocks.remove(block)
17 blockchain.add(block)

18 for block ∈ hiddenBlocks do
19 if shouldBeReleased(blockchain, block) then
20 broadcast(block)

21 if curChain 6= blockchain.getCurChain() then
22 curChain← blockchain.getCurChain()
23 genT ime←

curT ime() + random(Geo(ri/G))

24

25 Function broadcast(block) do
26 for miner ∈ otherMiners do
27 block.incomingT ime←

curT ime() + random(Geo(medianT ime))
28 miner.incomingBlocks.add(block)

VI. EMPIRICAL STUDY ON SELFISH MINING

We evaluate the improved selfish mining strategy (ISM) and
study the following three research questions.

RQ1: How can multiple miners affect selfish mining?
RQ2: How can propagation delay affect selfish mining?
RQ3: How can orphan rate affect selfish mining?
We choose different settings for the block generation time

and propagation delay, and describe the performance mea-
surement of selfish mining (Section VI-A). To answer RQ1,
we evaluate the performance of ISM on the simulation sys-
tems with multiple honest miners and selfish miners. (Sec-
tion VI-B). To answer RQ2, we evaluate the performance
of ISM on the simulation systems with different propagation
delays (Section VI-C). To answer RQ3, we analyze the impact
of orphan rate on ISM (Section VI-D).

TABLE IV
RELATIVE PROPAGATION DELAY.

Bitcoin Other settings
propagation delay (second) 12.6 15 6
block interval (second) 600 300 60
ratio 1/48 1/20 1/10

A. Experimental Setup

The blockchain simulation algorithm (Algorithm 1) involves
three parameters, i.e., propagation delay1, block interval and
miners’ mining power ratios. In our experiment, we use the
relative propagation delay, i.e., the ratio of propagation delay
to block interval, to replace these two parameters, which
denotes the relative synchronization speed among miners.

Relative propagation delay. Table IV shows the setting for
relative propagation delay (RPD) in our simulation system. In
the Bitcoin simulation system, we set the block interval to 600
seconds as that in the real system [1], and the propagation
delay to 12.6 seconds based on the experimental result [13].
Thus, the RPD of Bitcoin simulation system is 1/48. To
improve throughput, recent blockchain systems tend to reduce
the block interval and increase the block size. For example,
Litecoin [20] reduces its block interval to 150 seconds, and
Dogecoin [21] reduces to 60 seconds. Besides, multiple Bit-
coin’s fork blockchains, e.g., Bitcoin Cash [22], Bitcoin SV
[23] increases their block size, which also results in a larger
propagation delay [13]. Therefore, we pay more attention to
the blockchain system with a larger RPD, i.e., 1/20 and 1/10.

Since the selected ratio parameters come from existing stud-
ies [13] and the trend of blockchain systems [24], [25]. There-
fore, these parameters can reflect the real-world situations. The
propagation delay may change dynamically with changes in
block size and network environment. Our experiment does
not take the dynamic change of the propagation delay into
consideration. We believe that the influence of its dynamic
change can be negligible to our findings.

Mining power distribution. To understand the mining
power distribution, we investigate two popular PoW-based
blockchain systems, i.e., Bitcoin and Ethereum [14]. As Fig. 6
shows, the top 10 mining pools of Bitcoin and Ethereum ac-
count for 98% and 96% of the total mining power, respectively.
The power distribution in Ethereum is more centralized than
that in Bitcoin, i.e., the top 5 mining pools of Bitcoin and
Ethereum account for 69% and 88% of the total mining power.

In the centralized mining pool, a pool manager assigns
tasks to miners, and miners submit their solutions. The miners
stay connected with the pool manager through specifically-
designed protocols, e.g., Stratum [26], which is much faster
than the Gossip protocol in the blockchain network. Therefore,
we regard a mining pool as a virtual miner. To reflect real-
world blockchain systems, we regard 10 miners (mining
pools), as the general situation, and 5 or 20 miners as the
more centralized or decentralized situation. Without loss of

1In the following, propagation delay refers to the meantime of propagation
delay.



Sparkpool, 
34.9%

Ethermine, 
26.0%

F2Pool, 
11.1%

Nanopool, 
9.0%

SpiderPool, 
6.5%

Miningpoolhub, 
3.4%

hiveon, 
2.6%

Btc.com, 
1.3%

Othes, 
5.2%

(b) Ethereum power distribution

BTC.com, 
16.5%

F2Pool, 
15.6%

AntPool, 
15.4%Poolin, 

13.5%Huobi.pool, 
7.7%

ViaBTC, 
7.5%

OKExPool, 
7.3%

58COIN&1T
Hash, 6.6%

SlushPool, 
6.2%

BTC.TOP, 
1.9%

Others, 
1.7%

(a) Bitcoin power distribution

Fig. 6. Mining power distribution in Bitcoin and Ethereum.

generality, we also consider 100 miners. For clarity, the selfish
miner is denoted as Alice who owns Alice α fraction of the
total mining power, ranging from 1% to 50% 2. And the
remaining miners equally share the rest mining power.

Experimental measurement. In each simulation, all miners
generate totalBlocks blocks, and finally validBlocks blocks
will be included in the longest chain. Specifically, we set
totalBlocks as 1,000 and iterate each simulation 200 times
to avoid potential randomness. Thus, the system orphan rate
can be calculated as follows.

orphanRate = 1− validBlocks/totalBlocks (6)

Suppose that a miner mi generates Blocksi blocks, in
which validBlocksi blocks are included in the longest chain.
Its mining revenue and individual orphan rate are calculated
as follows.

revenuemi = validBlocksi/validBlocks (7)
orphanRatemi = 1− validBlocksi/Blocksi (8)

Equation (9) shows the selfish miner’s profitability, which
is the revenue difference between selfish mining and honest
mining. We use profit threshold to denote the minimum mining
power required for a miner to make its profitability positive.

profitISM = revenueSM − revenueHM (9)

B. RQ1: How can multiple miners affect selfish mining?

In this experiment, we first change the number of honest
miners to observe its impact on honest mining and selfish
mining. Then, we change the number of selfish miners to
observe its impact on selfish mining.

Alice’s revenue in the honest mode. Fig. 7(a) shows
Alice’s honest mining revenue in the blockchain system with
the same RPD (1/10) but different honest miners (5, 10,
20, 100). More miners means a more decentralized system.
Compared with its mining power ratio (black line), Alice earns
more than its power ratio with sufficient mining power. We
call the difference between the honest mining revenue and the
power ratio as miner’s inherent advantage. Fig. 7(b) shows
Alice’s inherent advantage, which increases with more miners.
For example, with 45% of mining power, Alice’s mining
revenue is 46.50%, 46.83%, 47.20% and 47.30% with 5, 10,

2When α exceeds 50%, the miner can subvert the blockchain history.

20 and 100 miners, respectively. The revenue is impressive
considering the market capitalization of blockchain systems.
At the time of writing, a 1% increase in mining revenue
means an extra 297,000 USD per day in Bitcoin system. As
the number of miners increases, the number of branches also
increases. Hence, the strong miner can gain more as it can
extends its branch faster.

Finding 1: A miner with sufficient mining power has an
inherent advantage in the honest mode, especially in a
decentralized environment.

Implication 1. The inherent advantage partially explains
the evolution of mining power centralization in the PoW-
based blockchain systems [14]. Joining a large pool, miners
can obtain a higher revenue. Therefore, the mining power
centralization is inevitable without external supervision.

Alice’s revenue in the selfish mode. Fig. 7(c) shows
Alice’s selfish mining revenue in the system with the same
RPD (1/10) but different honest miners (5 and 100). It shows
that Alice’s selfish mining revenue increases and the profit
threshold decreases in the more decentralized environment.
For example, its profit threshold is 31% and 29% with 5 and
100 miners, respectively.

We notice that the observation is different from the existing
study [8], which shows that the number of honest miners
has no impact on the performance of selfish mining. The
reason is that the theoretical analysis taken by [8] ignores the
possibility of branches among these honest miners. However,
the possibility can not be ignored when there are a large
number of honest miners and propagation delays.

Finding 2: Selfish mining performs better in the decentral-
ized environment with more honest miners.

Comparison of honest mining and selfish mining. In
selfish mining, the selfish miner is more likely to succeed with
a longer private chain. Intuitively, this can cause that multiple
consecutive blocks in the longest chain are generated by the
same miner. Fig. 8 compares the distribution of consecutive
blocks in different mining modes when Alice owns 35% min-
ing power. Compared with honest mining, Alice’s probability
of generating more than three consecutive blocks increases,
which means it holds a longer private chain more often.

Finding 3: Selfish mining results in more consecutive
blocks generated by the selfish miner.

Implication 2. The finding 3 indicates that we can combat
selfish mining through adjusting the mining reward mecha-
nism, e.g., when the same miner generates multiple blocks
continuously, the block reward decreases.

Equation (10) is a simple improved mining reward mech-
anism, in which blockReward denotes the fixed reward for
the main chain block, and Conti denotes the number of
consecutive blocks. The preliminary analysis shows that the



0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

in
in

g 
R

ev
en

ue

(a) Honest mining revenue

5 miners
10 miners
20 miners
100 miners

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.000

0.005

0.010

0.015

0.020

0.025

Ea
rn

ed
 R

ev
en

ue

(b) Honest mining earned revenue

5 miners
10 miners
20 miners
100 miners

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.2

0.4

0.6

0.8

M
in

in
g 

R
ev

en
ue

(c) Selfish mining revenue

5 miners, HM
5 miners, SM
100 miners, HM
100 miners, SM

Fig. 7. Alice’s mining revenue with different honest miners.

1 2 3 4 5 6 7 8 9 10
Number of continuous blocks

0.0

2.5

5.0

7.5

10.0

12.5

Fr
eq

ue
nc

y 
(%

)

Honest
Selfish

Fig. 8. The distribution of continuous blocks in different mining modes with
the same RPD (1/10) and miners (10).

mechanism can effectively reduce the selfish miner’s revenue.
Under the same condition as in Finding 3, Alice’s revenue
decreases by 14% in the selfish mode. Even if a miner
has nearly 50% of mining power, it cannot benefit from
selfish mining. The mechanism can have some impact on the
honest miners’ absolute revenue, e.g., Alice’s honest revenue
decreases by 1.5%. However, the honest miners’ revenue share
increases without selfish mining. The implementation of this
new mechanism is technically feasible since miners’ addresses
are available in the blockchain. blockReward(Conti = 1, ..., 4)

blockReward

Conti− 2
(Conti ≥ 5)

(10)

Alice’s revenue in the selfish mode with multiple selfish
miners. We change the number of selfish miners from 0 to 4
in the 5-miner system. Specifically, when there are M selfish
miners, the miners from miner1 to minerM act selfish. We
exclude the situation of 5 selfish miners because selfish mining
cannot work without honest miners. As mentioned before,
miner1, i.e., Alice, owns α fraction of mining power, ranging
from 1% to 50%, and other miners equally share the rest
power. Therefore, we compute the mining revenue of Alice,
and the unit mining revenue, i.e., mining revenue divided by
mining power, of miner2 and miner5.

Fig. 9(a) shows Alice’s mining revenue, which raises signif-
icantly with more selfish miners. For example, when there are

1, 2, 3 and 4 selfish miners, its revenue is 29.55%, 33.65%,
39.88% and 58.02% with 30% of mining power.

Fig. 9(b), (c) shows the unit mining revenue of miner2
and miner5. The line with symbol star(*) means the miner
acts honest in this case. It shows that both the small honest
miner and small selfish miner lose their revenue when there is
a large selfish miner with more mining power. For example,
when Alice owns 30% of mining power, i.e., miner2 and
miner5 own 17.5% of mining power, miner2’ unit mining
revenue is 0.76, 0.77 and 0.60, and miner5’ unit revenue is
1.01, 0.94 and 0.60 corresponding to 2, 3 and 4 selfish miners.
Besides, it also shows the small selfish miner (miner2) loses
more than the small honest miner(miner5). The observation
indicates that the smaller miner’s best choice is to be honest.

Finding 4: When there are multiple selfish miners, the large
selfish miner with more mining power can benefit from
selfish mining, while other smaller miners cannot.

C. RQ2: How can propagation delay affect selfish mining?

Alice’s revenue in the honest mode. Fig. 10(a) shows
Alice’s honest mining revenue in the 10-miner system with dif-
ferent relative propagation delays (RPDs) and Fig. 10(b) shows
its earned revenue. We can see that Alice obtains the similar
inherent mining advantage, which becomes greater with a
larger RPD. For example, with 45% of mining power, Alice’s
mining revenue is 45.37%, 46.00% and 46.83% corresponding
to the RPD of 1/48, 1/20 and 1/10. A larger delay leads to a
greater inconsistency among miners’ blockchain views, which
benefits the strong miner who can extends its blockchain faster.
Therefore, it indicates that a faster communication mechanism
contributes to the fairness of the mining process.

Finding 5: A miner with sufficient mining power has an
inherent advantage in honest mining, especially in the
system with a larger propagation delay.

Alice’s revenue in the selfish mode. Fig. 10(c) shows
Alice’s selfish mining revenue in the 10-miner system with
different RPDs, i.e., 1/48 and 1/10. We can see that Alice’s
selfish mining revenue also increases with a larger RPD. For



0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.2

0.4

0.6

0.8

1.0

M
in

in
g 

R
ev

en
ue

(a) Mining revenue of Alice

0 selfish miner*
1 selfish miner
2 selfish miners
3 selfish miners
4 selfish miners

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
ni

t M
in

in
g 

Po
w

er
 R

ev
en

ue

(b) Unit mining power revenue of miner2

0 selfish miner*
1 selfish miner*
2 selfish miners
3 selfish miners
4 selfish miners

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.2

0.4

0.6

0.8

1.0

U
ni

t M
in

in
g 

Po
w

er
 R

ev
en

ue

(c) Unit mining power revenue of miner5

0 selfish miner*
1 selfish miner*
2 selfish miners*
3 selfish miners*
4 selfish miners*

Fig. 9. Miners’ mining revenue in the blockchain system with multiple selfish miners. Star(*) denotes the miner acts honest.

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
on

es
t M

in
in

g 
R

ev
en

ue

(a) Honest mining revenue

RPD=1/48
RPD=1/20
RPD=1/10

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.000

0.005

0.010

0.015

0.020
Ea

rn
ed

 R
ev

en
ue

(b) Honest mining earned revenue

RPD=1/48
RPD=1/20
RPD=1/10

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

0.2

0.4

0.6

0.8

M
in

in
g 

R
ev

en
ue

(c) Selfish mining revenue

RPD=1/48, HM
RPD=1/48, SM
RPD=1/10, HM
RPD=1/10, SM

Fig. 10. Alice’s mining revenue with different relative propagation delays (RPDs).

example, with 30% of mining power, Alice’s selfish mining
revenue is 29.60% and 31.12% respectively.

Finding 6: Selfish mining performs better in the system
with a larger propagation delay.

D. RQ3: How can orphan rate affect selfish mining?

Fig. 11(a) shows the system orphan rates of different
blockchain systems without selfish mining, which increase
with a larger RPD and more miners. Since the orphan rate
measures the number of discarded blocks, it reflects the
consensus efficiency of the blockchain system. More miners
or a larger RPD increases the cost of reaching consensus, thus
increasing the orphan rate.

Fig. 11(b) shows the system and miners’ orphan rates under
honest mining with different RPDs, which explains Alice’s
inherent advantage. With more mining power, Alice’s orphan
rate decreases, while other miners’ orphan rates increase. The
reason is that, with the propagation delay, when the blockchain
forks, the longest rule favors the larger miner who can extend
its blockchain faster. With more frequent forks, the larger
miner’s inherent advantage becomes more obvious.

Finding 7: The large miner’s inherent advantage comes
from its lower orphan rate.

Fig. 11(c) shows the profit threshold of selfish mining in
different blockchain systems. The X-axis represents the sys-

tem’s orphan rate without selfish mining, and Y-axis represents
the selfish miner’s profit threshold under selfish mining. With
a larger orphan rate, selfish mining performs better and the
profit threshold decreases, e.g., in the 10-miner system, the
profit threshold decreases from 31% to 21% when the orphan
rate increases from 1.67% to 40.37%. This indicates selfish
mining performs better in a slow synchronization system.

Finding 8: Profit threshold of selfish mining decreases in
the system with a higher orphan rate.

We also investigate how the orphan rate changes with
selfish mining. Fig. 12 shows the orphan rates under different
mining strategies. In selfish mining, as Alice’s mining power
increases, the system and other honest miners’ orphan rates
raises significantly, while Alice’s orphan rate decreases. With
40% of mining power, Alice’s orphan rate is 12.23%, while
other honest miners’ increase to 41.76%.

Finding 9: Selfish mining can have a great impact on the
system and miners’ orphan rates.

Implication 3. This finding indicates that selfish mining
can be detected by monitoring the system orphan rate, and the
selfish miner can also be identified by its orphan rate.

VII. CONCLUSION

Blockchain serves as an immutable ledger, and has been
used to build trusts among participants in distributed systems.



1/48 1/20 1/10
Relative Propagation Delay

0

2

4

6

8
O

rp
ha

n 
R

at
e 

(%
)

(a) System Orphan rate of different blockchain systems

5 miners
10 miners
20 miners
100 miners

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

O
rp

ha
n 

R
at

e 
(%

)

(b) System and miners' orphan rate under honest mining

RPD=1/48, system
RPD=1/48, Alice
RPD=1/48, others
RPD=1/10, system
RPD=1/10, Alice
RPD=1/10, others

0 10 20 30 40
Orphan rate (%)

0

5

10

15

20

25

30

35

40

Pr
of

it 
th

re
sh

ol
d 

(%
)

(c) Profit threshold in different blockchain systems

5 miners
10 miners
20 miners
100 miners

Fig. 11. The orphan rates of different blockchain systems.

0.0 0.1 0.2 0.3 0.4 0.5
Mining Power of Alice

0

20

40

60

80

O
rp

ha
n 

R
at

e 
(%

)

HM, system
HM, Alice
HM, others
SM, system
SM, Alice
SM, others

Fig. 12. System and miners’ orphan rates in different mining modes with the
same RPD (1/48) and miners (10).

Selfish mining can affect the fairness of blockchain systems. In
this paper, we propose a new selfish mining strategy that can
work in the real-world blockchain scenarios. We then evaluate
the new strategy based on the simulation system. The empirical
results show many interesting findings, which can be used to
combat selfish mining.

ACKNOWLEDGEMENT

This work is supported by the National Key Re-
search and Development Program of China under Grant No.
2020YFC1523203, the Strategic Priority Research Program
of the Chinese Academy of Sciences (XDA20080200) and
Blockchain Technology and Application Joint Laboratory,
Guiyang Academy of Information Technology (Institute of
Software Chinese Academy of Sciences Guiyang Branch).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer online cash system,” Tech. Rep.,
2008.

[2] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in Financial Cryptography, 2014.

[3] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generaliz-
ing selfish mining and combining with an eclipse attack,” in Proceedings
of IEEE European Symposium on Security and Privacy (EuroS&P),
2016, pp. 305–320.

[4] K. A. Negy, P. Rizun, and E. G. Sirer, “Selfish mining re-examined,”
2020.

[5] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in Proceedings of International Conference on
Financial Cryptography and Data Security, 2016, pp. 515–532.

[6] H. Liu, N. Ruan, R. Du, and W. Jia, “On the strategy and behavior of
bitcoin mining with n-attackers,” in Proceedings of Asia Conference on
Computer and Communications Security (CCS), 2018, pp. 357–368.

[7] Q. Bai, X. Zhou, X. Wang, Y. Xu, X. Wang, and Q. Kong, “A deep dive
into blockchain selfish mining,” in Proceedings of IEEE International
Conference on Communications (ICC), 2019, pp. 1–6.

[8] D. Chang, “Revenue generation strategy through selfish mining focus-
ing multiple pools of honest miners,” Ph.D. dissertation, Indraprastha
Institute of Information Technology New Delhi, 2019.

[9] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor, “Bitcoin
blockchain dynamics: The selfish-mine strategy in the presence of
propagation delay,” Performance Evaluation, vol. 104, pp. 23–41, 2016.

[10] J. Niu and C. Feng, “Selfish mining in Ethereum,” Proceedings of
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), pp. 1306–1316, 2019.

[11] F. Ritz and A. Zugenmaier, “The impact of uncle rewards on selfish
mining in Ethereum,” Proceedings of IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW), pp. 50–57, 2018.

[12] A. M. Antonopoulos, Mastering bitcoin: Programming the open
blockchain, 2017.

[13] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Proceedings of IEEE International Conference on Peer-to-
Peer Computing (P2P), 2013, pp. 1–10.

[14] (2020) Mining power distribution of pow-based blockchain systems.
[Online]. Available: https://blockchair.com/bitcoin/charts/hashrate-
distribution

[15] (2020) Bitcoin orphan blocks. [Online]. Available: https://bitcoin-
chain.com/block explorer/orphaned

[16] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in Proceedings of ACM conference on Computer
and Communications Security (CCS), 2012, pp. 906–917.

[17] (2020) Bitcoin difficulty. [Online]. Available:
https://en.bitcoin.it/wiki/Difficulty

[18] L. Lao, Z. Li, S. Hou, B. Xiao, S. Guo, and Y. Yang, “A survey of IoT
applications in blockchain systems: Architecture, consensus, and traffic
modeling,” ACM Computing Surveys (CSUR), vol. 53, no. 1, pp. 1–32,
2020.

[19] M. Alharby and A. van Moorsel, “Blocksim: A simulation framework for
blockchain systems,” SIGMETRICS Perform. Evaluation Rev., vol. 46,
pp. 135–138, 2019.

[20] (2020) Litecoin block generation. [Online]. Available:
https://bitcointalk.org/index.php?topic=47417.0

[21] (2020) Dogecoin block generation. [Online]. Available:
https://github.com/dogecoin/dogecoin

[22] (2020) Bitcoin cash. [Online]. Available:
https://en.wikipedia.org/wiki/Bitcoin Cash

[23] (2020) Bitcoin sv. [Online]. Available:
https://bitcoinsv.io/2018/10/21/bitcoin-sv-version-0-1-goes-live/

[24] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2016, pp. 3–16.

[25] (2020) Block size limit controversy. [Online]. Available:
https://en.bitcoin.it/wiki/Block size limit controversy

[26] (2020) Stratum mining protocol. [Online]. Available:
https://en.bitcoinwiki.org/wiki/Stratum mining protocol


