
Semantic Table Structure Identification in Spreadsheets
Yakun Zhang

State Key Lab of Computer Sciences,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences, Beijing, China
zhangyakun18@otcaix.iscas.ac.cn

Xiao Lv
Microsoft Research

Beijing, China
xilv@microsoft.com

Haoyu Dong
Microsoft Research

Beijing, China
hadong@microsoft.com

Wensheng Dou∗
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wsdou@otcaix.iscas.ac.cn

Shi Han
Microsoft Research

Beijing, China
shihan@microsoft.com

Dongmei Zhang
Microsoft Research

Beijing, China
dongmeiz@microsoft.com

Jun Wei
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wj@otcaix.iscas.ac.cn

Dan Ye
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
yedan@otcaix.iscas.ac.cn

ABSTRACT
Spreadsheets are widely used in various business tasks, and contain
amounts of valuable data. However, spreadsheet tables are usually
organized in a semi-structured way, and contain complicated se-
mantic structures, e.g., header types and relations among headers.
Lack of documented semantic table structures, existing data anal-
ysis and error detection tools can hardly understand spreadsheet
tables. Therefore, identifying semantic table structures in spread-
sheet tables is of great importance, and can greatly promote various
analysis tasks on spreadsheets.

In this paper, we propose Tasi (Table structure identification) to
automatically identify semantic table structures in spreadsheets.
Based on the contents, styles, and spatial locations in table headers,
Tasi adopts a multi-classifier to predict potential header types and
relations, and then integrates all header types and relations into
consistent semantic table structures. We further propose TasiError,
to detect spreadsheet errors based on the identified semantic table

∗Wensheng Dou is also affiliated with Institute of Software Technology, Chinese
Academy of Sciences, Nanjing, China. Wensheng Dou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464812

structures by Tasi. Our experiments on real-world spreadsheets
show that, Tasi can precisely identify semantic table structures
in spreadsheets, and TasiError can detect real-world spreadsheet
errors with higher precision (75.2%) and recall (82.9%) than existing
approaches.

CCS CONCEPTS
• Applied computing→ Spreadsheets; • Software and its en-
gineering→ Software testing and debugging.

KEYWORDS
Spreadsheet, table structure, error detection

ACM Reference Format:
Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei
Zhang, Jun Wei, and Dan Ye. 2021. Semantic Table Structure Identification
in Spreadsheets. In Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’21), July 11–17, 2021,
Virtual, Denmark. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3460319.3464812

1 INTRODUCTION
Spreadsheets contain amounts of valuable data, and have been
widely used in various business tasks, e.g., data storage, data analy-
sis, and financial reporting [36]. Existing studies show that there
were over 55 million users working with spreadsheets in America
in 2012 [43], and more than 50% businesses use spreadsheets [5].

In spreadsheets, data and formulas are organized in a two-dimen-
sional structure. Spreadsheet systems, e.g., Microsoft Excel, provide

https://doi.org/10.1145/3460319.3464812
https://doi.org/10.1145/3460319.3464812
https://doi.org/10.1145/3460319.3464812

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

flexible methods for users to prepare their spreadsheets. This causes
spreadsheet data are usually organized in a semi-structured way.

In a spreadsheet table, headers are used to describe other cells,
and contain the table’s key structure information. For example,
in Figure 1a, “January” in header C2, “Cost” in header C3 and
“America” in header B4 together indicate that cell C4 shows the
cost in America in January. Note that, headers are usually used
for different purposes, thus having different types. For example,
header C3 in Figure 1a indicates that cells [C4:C10] show the costs,
and headers [C2:E2] index the costs for different months. Further,
there exist various relations among headers, e.g., header C1 is the
index name of header C2, and header A4 is the parent of header B4.
More details about header types and header relations can be found
in Section 2.1. In a spreadsheet table, the header types and header
relations can represent its semantic table structure.

Given a spreadsheet table, human users can easily understand the
semantic table structure behind spreadsheet data. However, there
are no records documenting the semantic table structures in spread-
sheet systems, e.g., Microsoft Excel. It is also challenging to auto-
matically identify semantic table structures from semi-structure
spreadsheet data. Existing approaches [15, 18, 21, 22, 28, 29, 34] can
only detect certain coarse-grained spreadsheet structures, e.g., table
regions in TableSense [18], cell types (i.e., header, data, attribute,
derived, metadata) in Koci et al. [34], and expandable groups (i.e.,
similar data and computations) in ExpCheck [21]. These approaches
cannot identify the purposes of headers, i.e., fine-grained header
types in Section 2.1. Further, various header relations are rarely
addressed by existing approaches. Chen et al. [15] can only extract
one relation among headers, i.e., parent-child relation.

Identifying semantic table structures in spreadsheets is the funda-
mental step to many spreadsheet analysis tasks. First, spreadsheets
contain various errors [39, 40]. We can use semantic table struc-
tures in spreadsheets to identify spreadsheet errors. For example,
if some cells’ computational semantics are inconsistent with their
semantic table structures, they may contain errors [8, 19, 22]. Sec-
ond, by understanding semantic table structures, we can transform
the semi-structured data in spreadsheets into relational data. Thus,
intelligent data analysis tools, e.g., PowerBI [4] and Ideas in Excel
[3] can work well on the relational form of spreadsheet data.

In this paper, we propose Tasi (Table structure identification) to
identify semantic table structures in spreadsheets. We observe that
the contents, styles and spatial locations in spreadsheet headers
can help us precisely identify semantic table structures. In Tasi,
we group each two headers in a header pair, and carefully craft
46 features from the contents, styles and spatial locations for each
header pair, which can reflect its header types and relation. We
adopt a multi-classifier to predict the header types and relation for
each header pair. Finally, Tasi integrates the structures of all header
pairs into a consistent semantic table structure.

We train Tasi on 2,651 spreadsheet tables and evaluate it on
639 real-world spreadsheet tables. The experimental results show
that Tasi can identify semantic table structures effectively. Tasi
can correctly identify 75.2% of header types and relations among
headers. Specially, for 639 spreadsheet tables, Tasi can identify their
semantic table structures in 282 (44.1%) tables without errors.

In order to demonstrate the usefulness of semantic table struc-
tures, we further propose TasiError, which can utilize the semantic

(a) A real-world spreadsheet table.

Department

(A1)

Sales

(A4)

Market

(A7)

Japan

(B5)

America

(B4)

Total

(B6)
Total

(B10)

Japan

(B8)

America

(B7)

Aggregation Aggregation

Index name

First-level

index

Second-level

index &

Aggregation

Country

(B1)

Index name

England

(B9)

(b) The structure hierarchy in the left header region.

January

(C2)

Cost

(C3)

Index name

First-level

index &

Aggregation

Value name

Month

(C1)

February

(D2)

Cost

(D3)

March

(E2)

Cost

(E3)

Total

(F2)

Cost

(F3)

Aggregation

(c) The structure hierarchy in the top header region.

Figure 1: A spreadsheet table extracted from real-world
spreadsheets. In Figure 1a, the cells marked by a red right-
cornered triangle contain errors.

table structures, and automatically detect two kinds of spreadsheet
errors, i.e., missing formulas and formula errors.We evaluate TasiEr-
ror on the 70 real-world spreadsheets in the CUSTODES dataset
[16] with 3,702 errors. TasiError can detect 3,068 (82.9%) errors
with a precision of 75.2%, from which 1,172 (31.7%) errors cannot
be detected by existing approaches [1, 8, 11, 14, 16, 20, 22].

In summary, we make the following contributions in this paper.

• We propose a learning-based approach, Tasi, to identify se-
mantic table structures in spreadsheets, including header
types and header relations.
• We propose TasiError, which can utilize semantic table struc-
tures to effectively and precisely detect spreadsheet errors.
• We implement Tasi and TasiError, and evaluate them on
real-world spreadsheets. The experimental results show that
our approaches perform well in practice.

2 SEMANTIC TABLE STRUCTURE AND ITS
APPLICATIONS

A spreadsheet table is a rectangular block of cells, which prescribes
certain business task [18]. For example, cells [A1:F11] in Figure 1a
form a table for storing and analyzing the costs of two departments
in a company, i.e., Sales and Market.

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

A spreadsheet table usually contains two parts [45, 47]. (1)Header
cells describe other cells in a table. In table [A1:F11] in Figure 1a,
cells [A1:B11] and cells [C1:F3] are header cells. Through header
A41, B4, C1, C2 and C3, we can know 376,589 means the cost of the
Sales department in America in January. (2) Data cells describe the
business data in a table. For example, in Figure 1a, cells [C4:F10]
are data cells.

In a spreadsheet table, headers are usually located in the left
columns and on the top rows, e.g., cells [A1:B11] in the left columns
and cells [C1:F3] on the top rows2. We use top header region to
denote the headers on the top, and left header region to denote the
headers in the left, and data region to denote the data in the table3.

In this section, we first explain semantic table structures for a
spreadsheet table, and then discuss the importance of identifying
semantic table structures.

2.1 Semantic Table Structure
Given a spreadsheet table, its semantic table structure describes
the purposes of its headers and the relations among headers. By
inspecting the spreadsheet programming model and amounts of
real-world spreadsheets, we summarize five header types and eight
header relations as follows.

2.1.1 Header Types. In spreadsheet tables, headers are used to
describe other cells and have different purposes. We divide headers
into five types, i.e., value name, aggregation, index, index name and
other, according to their purposes.

Value name (T1). A value name is the summary term of related
data cells in the data region. A value name can be a measure, such
as number, percent and amount, and can also be a unit of measure,
such as meter and mL. For example, in Figure 1c, header C3 is a
value name.

Index (T2). An index is a header for indexing data cells in the
data region. For example, in Figure 1a, A4, A7, B4, and B5 are indexes.
Indexes can have hierarchical structures inside. Take Figure 1b as
an example. A4 and A7 are the first-level index headers, and B4 and
B5 are second-level index headers in left header region.

Index name (T3).An index name is a summary term to describe
indexes in the header region. For example, in Figure 1b, header B1
is the index name for indexes [B4:B5] and [B7:B9].

Aggregation (T4). An aggregation indicates some values are
calculated from other values. A total is a special aggregation indi-
cating the sum operation. For example, in Figure 1b, B6 and B10
are aggregations.

Other (T5). Some headers in the header regions are not used to
describe other cells, e.g., the comment in header A11 in Figure 1a.
We categorize these headers as others, since they usually do not
reflect a table’s semantic structure.

2.1.2 Relations among Headers. Given a header pair < h1,h2 >,
we summarize eight relations between h1 and h2. Note that, in a
1We use the upper left cell address to denote a merged cell throughout this paper.
2The headers in the left columns and on the top rows may overlap, e.g., A1 and B1 in
Figure 1a. In this paper, we only consider the overlapping headers to be included in
the left header regions.
3Spreadsheets may have weird header layouts, e.g., headers in the right or in the
bottom. But, in practice, these weird header layouts are very rare. In our study, we find
that almost all (>99%) tables only have headers in the left and on the top. Therefore,
we mainly focus on the left and top headers, and ignore other weird header layouts.

header pair < h1,h2 >, we require that, h1 is located in the left of
h2, otherwise, h1 is located on the top of h2. In this paper, we have
this requirement for all header pairs.

h1 is the parent of h2 (R1). Headers in a top or left header re-
gion can be organized into a hierarchy, e.g., Figure 1b and Figure 1c.
If h1 and h2 are both index headers, and h1 is the parent node of
h2 in the hierarchy, then h1 is the parent of h2. For example, in Fig-
ure 1b, index header A4 is the parent of index header B4. Similarly,
h2 can be the parent of h1 (R2).

Some index headers can form an index set, in which all index
headers are located in the same level in the hierarchy, and have
the same parent if the parent exists. In the left header region in
Figure 1b, index header A4 and A7 form an index set {A4, A7}. Index
header B4 and B5 have the same parent A4, and form an index set
{B4, B5}. In the top header region in Figure 1c, index header C2, D2
and E2 form an index set {C2, D2, E2}.

h1 and h2 are siblings (R3). If h1 and h2 belong to the same
index set, they are siblings. For example, in Figure 1b, header B4
and B5 belong to index set {B4, B5}, thus they are siblings.

h1 is the index name of h2 (R4). If h1 is an index name, h2 is
an index header, and h1 is used to describe h2, then h1 is the index
name of h2. For example, in Figure 1c, header C1 is the index name
of header C2. Similarly, h2 can be the index name of h1 (R5).

h1 is the aggregation of h2’s index set (R6). For example, in
Figure 1a, each cell (e.g., C6) with header B6 is calculated from the
corresponding cells with header B4 and B5 (e.g., C4 and C5). B6 is
an aggregation header, and B4 and B5 form an index set. So, header
B6 is an aggregation of header B4’s index set. Similarly, h2 can be
the aggregation of h1’s index set (R7).

No relation of h1 and h2 (R8). It means h1 and h2 do not have
any of the above 7 relations. For example, in Figure 1a, header A1
and B1 do not have any of the above 7 relations.

Note that, the headers in the left and top header regions jointly
describe relevant data cells in spreadsheets. For example, data cell
C4 in Figure 1a is described by its left headers (i.e., A4 and B4) and
top headers (i.e., C1, C2, and C3). This relation is different from the
above relations. By combining Tasi’s semantic structures and data
cells’ spatial locations, it is straightforward to infer this relation.
Therefore, we do not discuss this relation in this paper.

2.2 Applications of Semantic Table Structures
Semantic table structures can be applied on some important spread-
sheet analysis scenarios. e.g., error detection, table transformation
and data analysis. This motivates us to effectively identify semantic
table structures in spreadsheets. We explain some potential appli-
cations of semantic table structures as follows.

Error detection in spreadsheets. Spreadsheets contain vari-
ous errors [13, 32, 40]. Specially, two common errors, i.e., missing
formulas and formula errors, can greatly degrade the quality of
spreadsheets, causing financial losses [2, 38]. In Figure 1a, C10, D10
and E10 contain three formula errors, since their computations
contain the data from Sales department. D6 and E6 in Figure 1a
contain two missing formula errors, in which a cell is supposed to
contain a formula, but it does not. These errors can lead to wrong
data, e.g., C10, D10, E10 and F9 in Figure 1a. These wrong data may
cause severe consequences.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

Figure 2: Relational table transformed from Figure 1a.

These kinds of spreadsheet errors are hard to be detected since
they usually involve the knowledge of intended spreadsheet table
semantics, which often requires human judgments or specifications.
Note that, the Excel internal error detector [1] only reports F9 as an
error correctly, but D10 and E10 as errors with wrong repair sug-
gestions. Some approaches [16, 19, 22] identify equivalence classes
based on the R1C1 format4 and treat outliers as errors in equiva-
lence classes. But they cannot detect errors in C10, D10 and E10,
since they contain the same formula in the R1C1 format. However,
these errors can be detected by analyzing semantic table structures.
We further explain how to utilize semantic table structures to detect
these errors in Section 4.

Table transformation. Spreadsheet data are usually organized
in a semi-structured format, e.g., Figure 1a. Although human users
can easily understand the structures behind spreadsheet data, data
analysis tools, e.g., PowerBI [4] and Ideas in Excel [3], cannot under-
stand the precise table structures. Based on the identified semantic
table structures, e.g., header types and header relations, we can
easily transform semi-structured spreadsheet data into relational
data, e.g., the data in Figure 2, which these data analysis tools are
good at. Thus, various intelligent analyses can be promoted on
spreadsheets.

3 SEMANTIC TABLE STRUCTURE
IDENTIFICATION

Figure 3 shows an overview of Tasi. Given a spreadsheet table and
its header regions, e.g., left header region and top header region,
Tasi first enumerates all its header pairs in each header region
(Section 3.1). For a header pair < h1,h2 >, Tasi extracts 46 features
from its contents, styles and spatial locations (Section 3.2). Then,
Tasi predicts their header types and relations together by leveraging
a multi-classifier, and obtains the probability of each category for
each header pair < h1,h2 > (Section 3.3). Finally, Tasi integrates all
header pairs’ prediction results, and forms a consistent semantic
table structure (Section 3.4).

Note that, instead of predicting header types and header relations
independently, we predict them in a header pair together. For two
headers in a spreadsheet table, their header types and relations are
usually correlated. For example, in Figure 1a, the type of header B1
is an index name, the type of header B4 is an index, and header B1
is the index name of header B4. Since header types and relations
4Spreadsheet systems usually have two built-in formats to represent a cell reference,
A1 and R1C1 formats. In the A1 format, a cell at the x -th column and y-th row is
denoted as xy , e.g., B2. In the R1C1 format, a cell atm rows below and n columns
right to the current cell is denoted as R[m]C[n].

should be consistent, it is impossible that header B4 has another
header type, e.g., value name.

For a header pair < h1,h2 >, we use < h1.type , h2.type , relation
(h1,h2) > as its category. As discussed in Section 2.1.1, we have
5 header types. For each header pair < h1,h2 >, we have 8 possi-
ble relations between h1 and h2 (Section 2.1.2). Therefore, we can
obtain 200 (5*5*8) possible combinations for each header pair. How-
ever, not all combinations are valid in real-world spreadsheets. For
example, an index header and an aggregation header cannot have
the sibling relation. After we remove these invalid combinations,
we finally obtain 32 valid prediction categories. That said, we have
32 prediction categories for each header pair.

3.1 Header Pair Enumeration
As discussed in Section 2, a spreadsheet table usually contains at
most one top header region and at most one left header region.
Given a spreadsheet table and its top and left header regions, Tasi
first extracts all headers in each header region. Note that, empty
cells in a header region are not considered as headers, e.g., cell F1
in Figure 1a.

For every two headers h1 and h2 (e.g., header B1 and B4 in
Figure 1a) in a header region, if h1.row < h2.row || (h1.row =
h2.row && h1.column < h2.column), then Tasi forms a header pair
< h1,h2 >, otherwise, Tasi forms a header pair < h2,h1 >. That
said, each two headers can only form one pair. If there areN headers
in a header region, we can obtain N ∗ (N − 1)/2 header pairs. Note
that, we only enumerate header pairs in each header region, and do
not enumerate header pairs between the left header region and the
top header region. For example, header B4 in the left header region
and header C2 in the top header region do not form a header pair.

3.2 Feature Extraction
We observe that a table’s semantic structure can be characterized by
its headers’ contents, styles and spatial locations. We incorporate
and extend the features proposed by existing works [9, 24, 34], and
design the features used in Tasi by trial and error. For each designed
feature, if we find that it can contribute to the final result, then we
select it, otherwise, we exclude it from consideration. For example,
we have tried some style features, e.g., font colors and font types
used in existing works [34]. However, we find that they are not
helpful for Tasi. Therefore, we exclude them from consideration.
Finally, for each header pair < h1,h2 >, we extract 38 intra-header
features for h1 and h2, and 8 inter-header features between h1 and
h2. For these 46 features, 36 features are newly designed for Tasi.

Note that, the feature extraction in the top header regions is
similar to that in the left header regions. For clarity, we only use
headers in the top header regions to explain our feature extract
algorithm when possible.

3.2.1 Intra-Header Features. For a header pair < h1,h2 >, we
extract in total 38 intra-header features from contents, styles and
spatial locations, including 2 common features (F#1 and F#2), and
18 features (F#3 - F#20) for each header (36 features in total).

Common features. These features relate to the header region
and the table t that header pair < h1,h2 > belongs to. If < h1,h2 >
comes from a top header region, we obtain two features: the number
of rows occupied by the top header region (F#1), and whether table

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Feature extraction

Multi
classifier

Train

Intra-
header

features

Inter-
header

features

Predict

Integrate

<A1, B1> → <T3, T3, R8>
<A1, A4> → <T3, T2, R4>
… …

<B9, B10> → <T2, T4, R7>

<T1, T1, R1>: 0.1
<T3, T3, R8>: 0.8
… …
<T5, T5, R8>: 0.0

<T1, T1, R1>: 0.05
<T2, T4, R7>: 0.9
… …
<T5, T5, R8>: 0.0

… …
Table headers

Enumerate <A1, B1>
<A1, A4>
… …
<B9, B10>

Header pairs

Labeled header pairs
<A1, B1>

<B9, B10>

<A1, B1> → <T3, T3, R8>
<A1, A4> → <T3, T2, R4>
… …
<B9, B10> → <T2, T4, R7>

Table structureContent

Style

Spatial

Figure 3: Overview of Tasi. Ti and Ri represent header types and relations in Section 2.1, respectively.

t has a left header region (F#2). These features’ extraction is similar
to the headers in a left header region.

Content features. For each header in a header pair < h1,h2 >,
we extract 3 features from its content.
• Value name. The value names may be common among dif-
ferent spreadsheet tables, e.g., “Cost” in Figure 1a. We use a
key-frequency list of < key, count > to represent the value
name distribution from an existing spreadsheet corpus [18],
where key is a value name, and count shows the occurrence
count of value name key. We use the frequency of the value
name as one feature (F#3).
• Aggregation caption. If the text in the header contains tokens
like “total”, “sum” and “max”, this feature (F#4) is set to 1,
e.g., header F2 in Figure 1a.
• Aggregation formula. For a headerh in a top header region, if
some formula cells in the same column ash reference a range
of cells, this feature (F#5) is set to 1, e.g., F2 in Figure 1a.

Style features. The styles of a header can provide valuable
indicators for the identification process. We define 3 style features
for each header in a header pair.
• Merged cell. If a headerh is amerged cell, we use the numbers
of rows (F#6) and columns (F#7) occupied by the merged cell
as two features. If h is not a merged cell, these two features
are set to 1.
• Indents. If a header’s text contains indents, this feature (F#8)
is set to the number of indents, otherwise, 0.

Spatial features.These features include the locations of a header
and its neighbors. We define 12 spatial features for each header in
a header pair.
• Row ratio & column ratio. The row index indexr of a header
h in its table t (F#9) and the normalized row index indexr /
t .totalRow (F#10) are considered as two features. Similarly,
the column index indexc of h (F#11) and the normalized
column index indexc/t .totalColumn (F#12) are considered
as another two features.
• Header number. For top headers, the numbers of headers in
different rows can be useful to infer header hierarchy. For
example, row 1 in Figure 1a has less headers than row 2, and
this indicates that some headers in row 1 may be parents of

some headers in row 2. Let headersh be the number of head-
ers in the same row as header h in a top header region, and
loch be the index location where h is located in all headers
in the same row as header h. We consider headersh (F#13)
and loch/headersh (F#14) as two features.
We further compare the numbers of headers in rowh.row and
its neighboring rows. Let prevHeaders and nextHeaders be
the number of h.row ’s previous row (i.e., h.row −1) and next
row (i.e., h.row + 1), respectively. We consider two features,
which are (prevHeaders − headersh)/headersh (F#15) and
(nextHeaders − headersh)/headersh (F#16). If h is located
in the first row or the last row in the header region, the
corresponding feature is set to 0.
• Upper left header. For a header h, we assume its upper left
header as hul . For example, in Figure 1a, header D3’s upper
left nearest header is header C2. If hul exists and hul is a
merged cell, we use the number of rows (F#17) and the
number of columns (F#18) occupied by hul as two features.
If hul is not a merged cell, these two features are set to 1.
We use hul ’s row index (F#19) and column index (F#20) as
another two features. These features can reflect the possible
parent-child relation. Ifhul does not exist, these four features
are set to -1.

3.2.2 Inter-Header Features. For a header pair < h1,h2 >, we
extract in total 8 spatial features, which can reflect the relation
between h1 and h2.

• Index difference. For h1 and h2, we consider the differences
between their row indexes (rowd) (F#21) and column indexes
(cold) (F#22) as two features. Further, we consider the smaller
difference of rowd and cold as a feature (F#23).
• Relative location. For h1 and h2, if h1 is located in the left
and top of h2, this feature is set to 1 (F#24).
• Header number difference. Similar to feature F#21 and F#22,
the number difference in row h1.row and h2.row can help to
infer header hierarchy between h1 and h2. Let headersh1 be
the number of headers in row h1.row and headersh2 be the
number of headers in row h2.row . We consider headersh1 −
headersh2 as a feature (F#25).

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

• Thick border. If there is a thick border between h1 and h2 in
the header pair, this feature is set to 1 (F#26).
• Blank row & column. If there exists a blank column (i.e., all
cells in the column are empty) between h1 and h2 in the top
header region, this feature is set to 1 (F#27).
• Aggregation relation. For < h1,h2 > in a top header region,
if some formula cells in the same column as h1 reference
a range of cells, we assume that the type of header h1 is
an aggregation. If the referenced cells contain the cells in
the same column as h2, this feature is set to 1, otherwise, 0
(F#28). For example, in Figure 1a, the type of header F2 is an
aggregation. The referenced cells in F4 contain the cells in
column E. So, header E2 is aggregated by header F2.

3.3 Training and Prediction
Training. For each labeled spreadsheet table, we extract all its
header pairs (Section 3.1). For each header pair < h1,h2 >, Tasi ex-
tracts 46 features in Section 3.2, and predicts its category < h1.type,
h2.type, relation(h1,h2) >. In the training step, we aim to correctly
predict most header pairs’ categories. We use a multi-classifier
θmodel , e.g., Random Forest [12], Logistic Regression [35] and De-
cision Tree [42], to train a multi-classifier model.

Prediction. Given a header pair < h1,h2 >, Tasi extracts 46
features from its contents, styles and spatial locations, and uses the
trained multi-classifier to predict the probability of each category
Note that, we only use 32 valid categories, and ignore other invalid
categories.

3.4 Generating Semantic Table Structure
For each header pair, we can learn the probability of each category.
If we simply use the category with the highest probability for each
header pair, we may obtain inconsistent semantic table structure.
For example, two header pairs < h1,h2 > and < h2,h3 > may
have different header types for header h2. Therefore, we need to
generate a consistent semantic table structure which has the highest
potential to be the correct one.

Algorithm 1 presents how to generate the consistent semantic
table structure. Basically, we iteratively add a header pair hp into
the current structure (curStructure). For each header pair hp, we
evaluate all its possible predict results (Line 18−24). We choose its
predicted result, which has the highest probability and is compatible
with curStructure (Line 19−20), and add it into the current structure
(curStructure in Line 21). To speed up this process, if the current
structure has bad performance, we prune a non-optimal solution
(Line 15−16). For all consistent semantic table structures, we keep
the best one (Line 10−13).

The predication result of a header pair < h1,h2 > is compatible
with the current solution curStructure if it satisfies the following
two conditions. (1) h1 and h2 have the same header types as ones in
curStructure . (2) The relation of < h1,h2 > does not conflict with
other relations in curStructure . For example, if h1 is a parent of h2
and h2 is a parent of h1, then these two relations conflict.

A semantic table structure is better if it can satisfy the following
conditions. (1) The possibility of each header pair’s prediction result
is as high as possible. (2) There are as many relations among headers
as possible. Let N be the number of headers in a header region,HPr

Algorithm 1: Generating consistent table structure.
Input: headerPairs (Header pair list)
Output: structure

1 curStructure ← Stack();
2 bestStructure ← NULL;
3 bestEval ← MAX_VALUE;
4 getStructure(1);
5 return bestStructure;
6

7 Function getStructure(i) do
8 eval ← eval(curStructure);
9 if i > headerPairs .lenдth then
10 if eval < bestEval then
11 bestStructure ← curStructure;
12 bestEval ← eval ;
13 return;
14 else
15 if eval > bestEval then
16 return;
17 hp = headerPairs .дet(i);
18 for j ← 1; j ≤ θmaxResult ; j + + do
19 predictResult ← hp.дetBestPredictResult(j);
20 if compatible(curStructure,predictResult) then
21 curStructure .push(predictResult);
22 getStructure(i + 1);
23 curStructure .pop();
24 end
25 end

be all header pairs with certain relations in the current solution,
HPn be all header pairs with no relation in the current solution,
hp.pr .prob denotes the probability of a header pair hp’s prediction
result (hp.pr). We use the following function to evaluate a semantic
table structure.

eval =
∑

hp∈HPr

−loд(hp.pr .prob) + θw ∗
(HPn .size)

2

N ∗ (N − 1)/2

If there are N headers in a left or top header region, we can
obtain N ∗ (N − 1)/2 header pairs. The evaluation function eval is
divided into two parts. In the first part, we intend to maximize the
probabilities of header pairs with certain relations. Note that, the
value range for hp.pr .prob is [0, 1]. Thus, the greater the prediction
result of a header pair is, the smaller the evaluation is. In the second
part, we intend to reduce the number of header pairs with no
relation, since no relation can only provide limited information for
semantic table structure. Thus, we punish the pairs with no relation.
We use θw to balance these two parts.

Note that, in Algorithm 1, we only select the top θmaxResult
prediction results for each header pair (Line 18), instead of all 32
valid prediction results. The reasons are as follows. (1) It is potential
that all header pairs can be predicted correctly with higher predict
probabilities for each header pair. (2) It is time-consuming to search
all possible solutions in Algorithm 1, and return a good solution
in a limited time (1s in our experiment). (3) If θmaxResult is too

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

large, it increases the possibility of selecting a prediction result with
smaller prediction probability, which can increase the probability
of generating a wrong semantic table structure.

3.5 Parameters
Our algorithm takes three parameters as input. (1)Multi-classifier
model (θmodel): θmodel represents the classifier adopted in Sec-
tion 3.3. We adopt Random Forest [12], Logistic Regression [35] and
Decision Tree [42] in scikit-learn [6] for θmodel in our experiment.
(2) Selectedmax predication results (θmaxResult): In Algorithm
1, we select the top θmaxResult prediction results for each header
pair. (3) The weight in evaluation function (θw): We use θw to
balance the two parts in the evaluation function.

In the experiment in Section 5.1.2, we evaluate the combinations
of these parameters using 5-fold cross validation on the training set,
and obtain the best performance. The experimental result shows
that Tasi can obtain the best performance when θmodel = Random
Forest, θmaxResult = 3, and θw = 0.8.

4 STRUCTURE-BASED ERROR DETECTION
As discussed in Section 2.2, spreadsheets contain many missing
formulas and formula errors. In this section, we discuss two com-
mon error patterns, range errors and inconsistent errors among
indexes, which are the common cases of missing formulas and
formula errors. We propose, TasiError, which can utilize semantic
table structures to detect these two error patterns.

Note that, we only explore two error patterns about missing for-
mulas and formula errors to present the usefulness of semantic table
structures. Based on semantic table structures, readers can explore
more error patterns about missing formulas and formula errors. For
example, in Figure 1a, header B6 is an aggregation, which indicates
that D6 should have a formula. The index set {A4, A7} indicates that
[C4:F6] and [C7:F10] should have similar computations. These can
help detecting the formula error in C10.

4.1 Range Errors
Error description. Spreadsheet formulas usually use a range of
cells as input. For example, cell F4 in Figure 1a references a cell
range [C4:E4]. Since the cells in a cell range are computed together,
they should share the similar computational semantics. For example,
C4, D4 and E4 represent the costs of Sales department in America
in each month. These kinds of cells are usually indexed by an index
set, e.g., index set {C2, D2, E2}. We observe two error scenarios in
real-world spreadsheets. (1) Some cells in a cell range are indexed
by an index set, while other cells in it are not indexed by the same
index set. For example, in the cell range [C6:C9] used by C10 in
Figure 1a, C7, C8 and C9 are indexed by the index set {B7, B8, B9},
whereas C6 is not indexed by this index set. We infer that the cell
range contains more cells than expected, thus introducing a formula
error. (2) A cell range only contains partial cells indexed by an index
set. For example, in the cell range [C9:D9] used by F9 in Figure 1a,
C9 and D9 are indexed by the index set {C2, D2, E2}. However, E9
is also indexed by the index set, but not included. We infer that the
cell range misses a cell, thus introducing a formula error.

Error detection.Given a spreadsheet formula, we extract its cell
ranges. If a formula uses more than one cell range, e.g., SUM(A1:A10,

B1:B10), we check them one by one. We only check cell ranges that
contain one row of cells (i.e., row-based cell range), e.g., [C4:E4]
in F4, or one column of cells (i.e., column-based cell range), e.g.,
[C6:C9] in C10. The only difference between row-based cell ranges
and column-based cell ranges is their directions. Thus, for clarity, we
only use row-based cell ranges to explain our detection algorithm.

We use index sets identified by Tasi to detect range errors. Given
a row-based cell range, we first identify the index sets in the top
header region that indexes cells in the cell range. For example, for
the cell range [C9:D9] in F9, we can find that C9 and D9 are indexed
by index set {C2, D2, E2} in the top header region. Then, we extract
all cells in row 9 (in which the cell range [C9:D9] locates) indexed
by this index set, and obtain a cell set, i.e., {C9, D9, E9}. If there is
a difference between this cell set and the cell range, we detect a
formula error. For this example, cell range [C9:D9] does not contain
E9, thus introducing a formula error.

4.2 Inconsistent Errors among Indexes
Error description. The cells indexed by an index set usually share
the similar computational semantics. For example, in Figure 1a,
header C2, D2 and E2 form an index set, which indexes the costs in
each month. For each row (in row 4−10), the cells indexed by the
index set {C2, D2, E2} share the similar computational semantics.
For example, in row 6, C6, D6 and E6 are used to compute the total
costs of Sales department for each month. If their computational
semantics are different, some cells may contain errors. For example,
D6 and E6 do not have a formula like C6, thus introducing two
missing formula errors. Similarly, F9 introduces a formula error
since it does not have a formula like F7 and F8, which are indexed
by the index set {B7, B8, B9}.

Error detection. Since the detection algorithms on row-based
index sets (e.g., {C2, D2, E2}) and column-based index sets (e.g., {B7,
B8, B9}) are similar, we take row-based index sets as an example.
Note that, our algorithm can only handle row (column)-based index
sets in which each index can only index one column (row) of cells,
e.g., row-based index set {C2, D2, E2} and column-based index set
{B7, B8, B9}. We cannot handle other types of index sets, e.g., {A4,
A7}.

Given a row-based index set is , we put cells indexed by is in each
row of the table into a cell group. Take row-based index set {C2, D2,
E2} as an example. We can obtain a cell group {C4, D4, E4} in row
4, and a cell group {C6, D6, E6} in row 6, etc. The cells in each cell
group should share the similar computational semantics.

Note that, these cell groups are similar to cell arrays in AmCheck
[20] & CACheck [22], and cell clusters in CUSTODES [16]. Different
from them, we use index sets to obtain these cell groups. Further-
more, Koci et al. [34] classify cells into five cell types, i.e., header,
data, attribute, metadata and derived, but cannot infer header types
and header relations. Chen et al. [15] can identify parent-child re-
lation, but cannot infer header types. Therefore, these approaches
cannot correctly infer index sets.

We adapt the basic idea in CACheck and CUSTODES to detect
inconsistent errors in cell groups. We describe it as follows.

(1) If there are not any formula cells in a cell group, e.g., {C4, D4,
E4}, we ignore the cell group, since we cannot infer its computa-
tional semantics.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

Table 1: The statistics of spreadsheets in the ground truth.

Item Total Train Test

Spreadsheet 3,110 2,488 622
Rows on average 75 72 85
Columns on average 19 19 19
Cells on average 649 639 691
Formulas on average 137 138 133

Table 3,290 2,651 639
Left header region 2,648 2,130 518
Top header region 3,204 2,579 625
Left header pair 1,188,364 929,617 258,747
Top header pair 235,185 190,859 44,326

(2) As errors normally occur in minority, they can be detected as
outliers in a cell group. We first count the number of cells that use
the same formula pattern in the R1C1 format. Then, we choose the
formula pattern that can cover most cells as the formula pattern of
the cell group (f p). If we identify more than one formula pattern,
we select the first one as f p. For example, in the cell group {C6, D6,
E6}, its formula pattern is SUM(R[-2]C:R[-1]C). In the cell group
{F7, F8, F9}, its formula pattern SUM(RC[-3]:RC[-1]).

(3) If a formula in a cell group is different from f p, it contains
a formula error. For example, in the cell group {F7, F8, F9}, F9’s
formula is different from the formula pattern SUM(RC[-3]:RC[-1]),
and thus contains a formula error.

(4) For a data cell in the cell group, we apply the formula pattern
f p on the cell, and then check whether the value can be computed
by the formula pattern f p. If yes, we consider the data cell contains
a missing formula error. For example, in the cell group {C6, D6, E6},
D6 and E6 can be computed by the formula pattern SUM(R[-2]C:R[-
1]C). Thus, D6 and E6 contain two missing formulas.

5 EVALUATION
Our evaluation studies the following three research questions.

RQ1: How effective is Tasi in identifying semantic table structures
in spreadsheets?

RQ2: How effective is TasiError in detecting spreadsheet errors?
RQ3: How is TasiError compared with existing techniques, e.g.,

CUSTODES [16], CACheck [19], and ExceLint [11]?
To answer RQ1, we evaluate Tasi on our built ground truth and

analyze its performance (Section 5.1). To answer RQ2 and RQ3,
we evaluate TasiError on the CUSTODES dataset [16], and further
compare TasiError with existing approaches (Section 5.2). We have
made our datasets and experimental results available online at
https://github.com/tcse-iscas/Tasi.

5.1 Evaluation on Tasi
5.1.1 Dataset Construction. To the best of our knowledge, no spread-
sheet corpora have documented their semantic table structures. The
commonly-used corpora, EUSES [25], Enron [27] and FUSE [10], do
not provide their semantic table structures. During collaborating
with Microsoft, we have the opportunity to collect a larger and

Table 2: The statistics of table structures in the ground truth.

Item Total Train Test Cor. Acc.

Type

T1 11,570 9,300 2,270 1,546 68.1%
T2 73,815 58,994 14,821 12,715 85.8%
T3 333 275 58 15 25.9%
T4 770 597 173 53 30.6%
T5 3,195 2,486 709 226 31.9%

Relation

R1 12,460 9,547 2,913 1,119 38.4%
R2 0 0 0 0 -
R3 1,011,892 803,040 208,852 174,633 83.6%
R4 3,784 3,134 650 293 45.1%
R5 61 56 5 0 0.0%
R6 1,243 968 275 17 6.2%
R7 6,558 5,274 1,284 627 48.8%
R8 387,551 298,457 89,094 51,300 57.6%

newer spreadsheet dataset compared with existing ones, e.g., EU-
SES (created before 2005, 4,498 spreadsheets), Enron (created before
2001, 15,770 spreadsheets) and FUSE (created before 2015, 249,376
spreadsheets). To obtain recently-used real-world spreadsheets, we
crawl spreadsheet files from the Internet through a web crawler de-
veloped by the Bing search engine team, and obtain all spreadsheet
files according to file suffixes, i.e., .xls and .xlsx. Finally, we obtain
4,290,022 spreadsheets, and use them as our experimental subject.

It is time- and cost- consuming to reconstruct semantic table
structures for all spreadsheets. So, we randomly sample 3,500 spread-
sheets from these spreadsheets, and reconstruct their semantic table
structures. In the sampling process, we do not bias the spreadsheets
in any special domains. We also exclude the spreadsheets that are
not written in English, which Tasi cannot support.

We employ nine experienced data labelers in Speechocean (a
third-party artificial intelligence data provider) [7] to label the se-
mantic table structures of the sampled spreadsheets. The entire
dataset building process includes two steps: labeling and confirma-
tion. In the labeling step, each sampled spreadsheet is labeled by one
labeler. The labeler first identifies all tables in it. If a table contains
only one row / column, we assume that it has limited information,
e.g., no headers or data, and exclude it from consideration. If the
labeler cannot fully understand a table’s semantics, we exclude it
from consideration. Thus, we ensure the accuracy of our dataset.
If the labeler confirms that a table has similar structures with an
already-labeled table, we also exclude it from consideration. Thus,
we ensure that our dataset has diverse table structures. For the
remaining tables, the labeler identifies its top header region and left
header region, and then all header types and header relations. In the
confirmation step, to avoid errors introduced by individual labelers,
the labeling results are verified and revised by another experienced
labeler until two labelers reach an agreement. The above labeling
process takes about 148 man-days.

Through the above sampling and labeling process, we obtain
3,290 tables from 3,110 spreadsheets5. The basic statistics of these
spreadsheets are shown in column Total in Table 1, and their header
types and relations are shown in column Total in Table 2. Note

5Since we have to go through a compliance and privacy certification before publishing
the whole dataset, we provide 50 spreadsheets and their related annotations for now.

https://github.com/tcse-iscas/Tasi

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

that, different header types and relations are imbalanced in Table 2,
because header types and relations should be imbalanced in practice.
For example, index types (T2) are usually more common than other
types, and we do not obtain any header pair with the relation of
“h2 is h1’s parent” (R2).

5.1.2 Training. We randomly split 3,110 spreadsheets into two
parts, 80% as training dataset and 20% as testing dataset. The sta-
tistics about two datasets are shown in column Train and Test
in Table 1 and Table 2, respectively. We use the training dataset
(column Train in Table 2) to obtain the multi-classifier model and
parameter setting in Tasi.

Parameter setting. As discussed in Section 3.5, Tasi takes three
parameters as input. For θmodel , there are the three candidates, i.e.,
Random Forest [12], Logistic Regression [35] and Decision Tree
[42]. For θmaxResult , we use four candidates, i.e., 1, 3, 5, 10. For θw ,
we use six candidates, i.e., 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

For these three parameters, we can obtain 72 (3*4*6) candidate
combinations. We use 5-fold cross-validation on the training dataset
(column Train in Table 2) for each combination and calculate the
accuracy indicator by the generated semantic table structures, ac-
cording to Section 3.4. Finally, we obtain the following best can-
didates: θmodel = Random Forest, θmaxResult = 3, θw = 0.8. For
this candidate, the accuracy of header pairs on the training dataset
(column Train in Table 2) is 77.6%.

5.1.3 Experimental Result. We use the trained Tasi to validate
Tasi’s performance on the testing dataset (column Test in Table 2).

For the 303,073 header pairs in the testing dataset, Tasi can cor-
rectly identify the structures of 227,989 header pairs. That said, the
accuracy of the structure identification of header pairs is 75.2%.
Specifically, Tasi can identify the structures of 201,797 (78.0%)
header pairs in the left header regions, and 26,192 (59.1%) header
pairs in the top header regions. Note that, for a header pair <
h1,h2 >, if h1 and h2’s types and relations are all correctly iden-
tified, we consider the structure of this header pair is correctly
identified. We further show the detailed results for header types
and relations in column Cor. (i.e., correct) and Acc. (i.e., accuracy)
in Table 2.

For all 639 tables in the testing dataset, Tasi can identify their
structures without any errors in 282 tables. That said, the accuracy
of semantic table structure identification is 44.1%. Specially, for 518
left header regions, Tasi can identify their structures without any
errors in 363 (70.1%) header regions; for 625 top header regions, Tasi
can identify their structures in 339 (54.2%) header regions. Due to
the complexity of table structures, it is challenging to fully identify
semantic table structures without any errors. The accuracy needs
to be further improved in the future.

For all 639 tables, we further compute the accuracy of header
pairs in each table. Figure 4 shows the distribution of accuracy
of header pairs for all tables, top header regions and left header
regions.We rank these tables according to their accuracies of header
pairs from low to high. We can see that, Tasi performs better on
the left header regions than the top header regions. We infer that
the left header regions are usually more well-structured than the
top header regions.

We further investigate whether our semantic table structure
evaluation function in Section 3.4 can introduce inaccuracy. That

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640

Accuracy

#

Top Left Table

Figure 4: The distribution of accuracy of header pairs for all
tables, top header regions and left header regions.

said, the incorrect semantic table structure can obtain a smaller
evaluation score than the correct one. We find that 17 left header
regions and 38 top header regions cannot be correctly generated
due to this reason. A better evaluation function could improve
Tasi’s accuracy greatly.

Based on the above analyses, we can draw the following conclu-
sion to RQ1: Tasi is effective in identifying semantic table structures
in real-world spreadsheets.

To the best of our knowledge, Tasi is the first approach to identify
the header types and relations (Section 2.1). Koci et al. [34] can
classify spreadsheet into 5 coarse-grained types, i.e., header, data,
metadata, derived and attribute. It cannot identify the different
types of headers. Chen et al. [15] can only identify the parent-child
relation among headers, and cannot identify header types and other
relations. Therefore, we do not compare with these approaches.

5.2 Evaluation on TasiError
5.2.1 Experimental Setting. To evaluate TasiError, we adopt the
CUSTODES dataset [16] as our experimental subject due to the
following reasons. First, the spreadsheets in Section 5.1 do not have
annotations for spreadsheet errors. Second, CUSTODES dataset has
been used by many error detection approaches [11, 16, 44], and
should represent real-world spreadsheet errors. Third, TasiError
and CUSTODES detect the same types of spreadsheet errors, i.e.,
missing formulas and formula errors. Thus, We can have a fair
comparison with existing approaches by using the same dataset.

The CUSTODES dataset contains 70 spreadsheets from eight
categories (Category in Table 3), 291 worksheets and 1,974 missing
formulas and formula errors. Note that, this dataset does not overlap
with the dataset in RQ1. During our study, we find that somemissing
formulas and formula errors in these spreadsheets are not marked
out in the original CUSTODES dataset. Note that, similar omission
has also been reported by ExceLint [11]. Thus, we re-label the
missing formulas and formula errors in these 70 spreadsheets. We
invite five master students, who are not the authors of this paper, to
help labeling errors. Tomake re-labeling errors accurate, fivemaster
students carefully inspect these spreadsheets, and understand their
structures and semantics, and further identify all missing formulas
and formula errors. Note that, we only explain the concepts of
missing formulas and formula errors to labelers, and do not bias to
any error patterns. For each spreadsheet, all participants carefully

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

Table 3: The comparison of spreadsheet error detection.

Category
Ground truth

TasiError
CUSTODES CACheck ExceLint ExcelRange Error Index Error Total

SS Error DT TP DT TP DT TP DT TP DT TP DT TP DT TP

cs101 1 6 0 0 1 1 1 1 3 3 6 6 4 4 1 0
database 14 1,998 91 24 1,888 1,869 1,979 1,893 1,140 1,066 882 842 62 14 563 40
financial 23 993 502 315 371 329 873 644 651 324 515 336 94 28 1,204 327
forms3 2 10 37 2 2 1 39 3 29 7 7 1 20 1 464 2
grades 7 210 41 41 81 79 122 120 316 95 176 99 11 4 322 43
homework 7 58 249 7 11 11 260 18 71 46 77 34 23 11 1,238 8
inventory 9 86 200 50 60 12 260 62 144 23 50 40 15 11 391 37
modeling 7 341 241 26 306 301 547 327 89 18 101 30 20 8 797 24

Total 70 3,702 1,361 465 2,720 2,603 4,081 3,068 2,443 1,582 1,814 1,388 249 81 4,980 481

cross-validate their labeling results. If any inconsistency occurs,
they discuss it and finally reach a consensus. Thus, we can avoid
potential errors in the labeling process. This re-labeling and cross-
checking process takes about 10 days. Note that, all newly annotated
errors belong to the two types of errors, i.e., missing formulas and
formula errors. We do not introduce new types of errors into the
CUSTODES dataset, e.g., format errors.

To use Tasi on these spreadsheets, we further label the tables,
left header regions and top header regions in them. In total, we find
506 tables in these 70 spreadsheets, 486 left header regions, and 458
top header regions. Note that, it is not difficult to mark out tables
and header regions for human users, since human users can easily
understand the functions of tables, and divide the spreadsheets into
tables according to different functions, and further divide the tables
into header regions and data regions.

The first three columns in Table 3 show the statistics of errors
in the 70 spreadsheets. Our manual inspection finds 3,702 errors
(Error), in which, 1,744 errors are omitted in the original CUSTODES
dataset. Note that, 16 cells in the original CUSTODES dataset are
wrongly labeled as faulty, thus we exclude them in our dataset. For
all 3,702 errors, 1,308 errors have lead to wrong data.

5.2.2 Detection Result. We first use Tasi to extract the semantic
table structures for all tables in these 70 spreadsheets. Then, we
run TasiError to detect spreadsheet errors based on the semantic
table structures identified by Tasi.

Table 3 shows the statistics of errors detected by TasiError
(TasiError). In total, TasiError detects 4,081 errors (TasiError/DT), of
which, 3,068 (75.2%) are true (TasiError/TP). TasiError misses 634 er-
rors, i.e., the recall of TasiError is 82.9%. Therefore, the F1-measure
of TasiError is 78.8%.

Table 3 also shows the statistics of detected range errors and
inconsistent errors among indexes. We can see that TasiError ob-
tains lower precision (34.2%) in detecting range errors, and higher
precision (95.7%) in detecting inconsistent errors among indexes.
The range error detection can be further improved in the future.

False positives. TasiError reports 1,013 false positives. We fur-
ther investigate the reasons of these false positives. (1) TasiError
works on the structures identified by Tasi. Wrongly identified se-
mantic table structures can make TasiError fail. For range errors,

this causes 474 false positives. For inconsistent errors among in-
dexes, this causes 27 false positives. (2) The rules adopted by TasiEr-
ror can introduce false positives. For range errors, TasiError intro-
duces 422 false positives. For example, a formula needs to calculate
multiple index sets according to the semantics. For inconsistent
errors among indexes, TasiError introduces 90 false positives. For
example, we may wrongly choose the formula pattern in a cell
group, when the correct formula does not cover most of its cells.

False negatives. TasiError misses 634 errors. There are four
reasons for these false negatives. (1) 156 false negatives are caused
by wrongly identified semantic table structures by Tasi. (2) Some
formulas are not supported by our implementation, e.g., If and Ref.
10 false negatives belong to this case. (3) TasiError cannot obtain the
correct formula pattern for a cell group. 343 false negatives belong
to this case. (4) TasiError cannot detect formula errors when the
formula references cells in different rows (columns) in the column-
(row-) based cell groups. 125 false negatives belong to this case.

Based on the above analyses, we can draw the following conclu-
sion to RQ2: By using semantic table structures identified by Tasi,
TasiError can effectively detect errors with a precision of 75.2% and a
recall of 82.9%.

5.2.3 Comparison with Existing Approaches. To evaluate the effec-
tiveness of TasiError in detecting spreadsheet errors, we compare
TasiError with six error detection approaches, i.e., CUSTODES
[16], CACheck [22], ExceLint [11], Excel internal error detector [1],
AmCheck [20], UCheck [8] & Dimension [14], which are publicly
available and represent the state of the art. For fair comparison, we
slightly revise these approaches and make them use our annotated
tables and header regions when necessary. The detection results of
these tools are shown in Table 3. Specially, for the 3,068 errors de-
tected by TasiError, 1,172 errors cannot be detected by CUSTODES,
CACheck, ExcelLint, Excel internal error detector, AmCheck, and
UCheck & Dimension. Note that, 463 (12.5%) errors can be detected
by existing approaches, but cannot be detected by TasiError. This is
caused by two reasons. First, Tasi wrongly identifies table structures,
causing 107 errors missed. Second, TasiError’s detection patterns
cannot detect 356 errors.

Table 3 shows their detailed comparison results. We do not show
the detailed results for AmCheck and UCheck & Dimension in

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 3 due to space limitation. For CUSTODES, its precision, re-
call, and F1-measure are 64.8%, 42.7%, and 51.5%, respectively. For
CACheck, its precision, recall, and F1-measure are 76.5%, 37.5%,
and 50.3%, respectively. For ExceLint, its precision, recall, and F1-
measure are 32.5%, 2.2%, and 4.1%, respectively. For Excel internal
error detector, its precision, recall, and F1-measure 9.7%, 13.0%, and
11.1%. For AmCheck, its precision, recall and F1-measure are 58.2%,
34.0%, and 42.9%, respectively. For UCheck & Dimension, its preci-
sion, recall, and F1-measure are 2.1%, 1.1%, and 1.4%, respectively.

We further compare TasiError with existing approaches in the
original CUSTODES dataset. From the previous experiment, we
can see that CUSTODES and CACheck have the best performance
among existing approaches. Thus we only compare TasiError with
CUSTODES and CACheck here. For the 1,974 errors in the original
CUSTODES dataset, TasiError, CUSTODES, and CACheck achieve
precisions of 38.6%, 64.8%, and 74.5%, respectively. Note that, TasiEr-
ror has the lowest precision here because 1,493 real errors detected
by TasiError are omitted in the original CUSTODES dataset, thus
wrongly considering as false positives. TasiError, CUSTODES, and
CACheck achieve recall of 79.8%, 80.2%, and 68.5%. We can see that
TasiError achieves a comparable performance with CUSTODES and
CACheck. For the 1,744 additional errors, CUSTODES and CACheck
can only detect 49 errors, whereas TasiError can detect 1,493 errors.

We further investigate why TasiError performs better than exist-
ing approaches, and summarize them as follows. First, the structures
related to some errors (e.g., range errors) are not identified by ex-
isting approaches, thus they miss these errors. Whereas, Tasi and
TasiError can detect and utilize these structures. Second, the detec-
tion rules in existing approaches can omit some errors. For example,
CUSTODES, CACheck, and AmCheck wrongly consider C10, D10
and E10 in Figure 1a as correct. However, TasiError can utilize index
sets to detect these errors.

Based on the above analyses, we can draw the following conclu-
sion to RQ3: TasiError significantly outperforms CUSTODES, CACheck,
ExceLint, AmCheck, UCheck & Dimension and Excel internal detector.
This demonstrates that semantic table structures can greatly help
error detection in spreadsheets.

6 DISCUSSION
In this section, we discuss the limitations and threats to validation.

6.1 Limitations
User-specified tables andheader regions. In this work, wemainly
focus on semantic table structure identification, and assume that
users can provide tables and header regions in spreadsheets. Note
that, there have already been some works that can automatically
identify tables and header regions in a spreadsheet, e.g., Table-
Sense [18], RAC [33], Dong et al. [17], Koci et al. [34] and Gol et al.
[26]. These approaches can be integrated into Tasi, achieving an
end-to-end solution for semantic table structure identification in
spreadsheets.

Limited language support. For now, Tasi only supports spread-
sheets written in English. We can find there are many domain-
specific vocabularies, irregular abbreviations and words in spread-
sheets, whichwe cannot handle effectively. In the future, supporting
different languages will be greatly helpful.

6.2 Threats to Validity
Representativeness of experimental subjects. One threat to
the external validity is the representativeness of our experimental
subjects used in the evaluation. To evaluate Tasi, we crawl lots of
real-world spreadsheets from the Internet. To evaluate TasiError,
we select the CUSTODES dataset, which has been widely used in
spreadsheet researches [11, 16, 44]. Thus, we believe our experimen-
tal subjects can represent the real-world spreadsheets in practice.

Dataset construction. Semantic table structures and errors in
our studied spreadsheets are not well documented. It is also im-
possible to inspect the semantic table structures and errors with
the help of their original authors. Thus, we invite expert labelers
and master students to inspect table structures and errors in our
experimental subjects. To alleviate potential mistakes, all data are
cross-checked by them.

7 RELATEDWORK
Spreadsheet structure analysis. Spreadsheets usually have flexi-
ble structures. Various approaches are proposed to identify different
kinds of spreadsheet structures. (1) Table identification: TableSense
[18] proposes an enhanced convolutional network model to de-
tect table regions. RAC [33] proposes a rule-based approach using
graph representation of spreadsheet layout to detect table regions.
These works cannot understand semantic table structures. (2) Cell
classification: some works categorize spreadsheet cells into header,
data, metadata, derived and attribute using different learning-based
approaches, e.g., Koci et al. [34], Gol et al. [26] and Sun et al. [41].
Nagy et al. [37] propose a rule-based method to divide the tables
into headers and data in web tables. Although these works can
identify headers, but they cannot distinguish different header types.
(3) Special structure identification: ExpCheck [21] inspects cell for-
mats and semantic information to identify similar cell groups. Chen
et al. [15] propose a two-phase semi-automatic system to extract
parent-child relation among headers. TableCheck [19] and LTC [48]
propose to identify table clones. Gyro [28] extracts class diagrams
based on common usage patterns. VEnron [23] analyzes structure
changes among spreadsheet evolution. These works cannot identify
fine-grained header types and their relations, whereas Tasi can.

Spreadsheet error detection. Spreadsheets contain various er-
rors [39, 40]. Many spreadsheet error detection approaches have
been proposed to detect errors in spreadsheets. Hermans et al. pro-
pose to detect inter-worksheet errors [29] and data clone related
inconsistencies [30]. Some approaches detect errors based on cer-
tain structures in spreadsheets, e.g., AmCheck [20], CACheck [22],
CUSTODES [16], Melford [44], ExcelLint [11], TableCheck [19],
EmptyCheck [46], WARDER [31], UCheck [8] and Dimension [14].
However, these approaches mostly focus on partial structures in
spreadsheets. As we discussed in Section 5.2, by using semantic
table structures, TasiError can greatly improve the capability of
detecting spreadsheet errors.

8 CONCLUSION
Understanding semantic table structures is the fundamental step to
perform various spreadsheet analysis tasks, e.g., data analysis and
error detection. In this paper, we propose Tasi, to detect semantic

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yakun Zhang, Xiao Lv, Haoyu Dong, Wensheng Dou, Shi Han, Dongmei Zhang, Jun Wei, and Dan Ye

table structures in spreadsheets, including header types and rela-
tions among headers. We further propose a structure-based error
detection approach, TasiError, to detect spreadsheet errors based
on semantic table structures identified by Tasi. Our experiments on
real-world spreadsheets show that Tasi can identify semantic table
structures effectively. By utilizing semantic table structures identi-
fied by Tasi, TasiError can detect much more errors than existing
approaches precisely.

In the future, we plan to pursue the following research direc-
tions. First, we can explore how to incorporate users’ efforts to fix
structure identification errors, achieving a more effective solution.
Second, we can utilize Tasi to transform spreadsheets into relational
data for easy data analyses. Third, TasiError can be improved by
developing more structure-based error detection patterns.

ACKNOWLEDGEMENTS
We thank Huiyu Bao, Fanzhang Peng, Jiayi Zheng, Qianwang Dai,
Tao Wang and Jiansen Song for their contributions in labeling
spreadsheet errors and validating experimental results. This work
was partially supported by National Natural Science Foundation of
China (61702490, 62072444), Microsoft Research Asia Collaborative
Research Program, Frontier Science Project of Chinese Academy of
Sciences (QYZDJ-SSW-JSC036) and Youth Innovation Promotion
Association at Chinese Academy of Sciences.

REFERENCES
[1] 2021. Error detector in Excel 2019. Retrieved May 8, 2021 from

https://www.dummies.com/software/microsoft-office/detecting-and-
correcting-errors-in-excel-2019-formulas/

[2] 2021. European Spreadsheet Risks Interest Group. Retrieved May 8, 2021 from
http://www.eusprig.org/horror-stories.htm

[3] 2021. Ideas in Excel. Retrieved May 8,2021 from https://support.office.com/en-
ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4

[4] 2021. Power BI | Interactive Data Visualization BI Tools. Retrieved May 8, 2021
from https://powerbi.microsoft.com

[5] 2021. Rethinking Spreadsheets and Performance Management. Retrieved May 8,
2021 from https://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-
performance-management/?slreturn=20200726064739

[6] 2021. scikit-learn: Machine Learning in Python. Retrieved May 8, 2021 from
https://scikit-learn.org

[7] 2021. speechocean: A company for AI data provider. Retrieved May 8, 2021 from
http://en.speechocean.com/welcome.html

[8] Robin Abraham and Martin Erwig. 2007. UCheck: A Spreadsheet Type Checker
for End Users. Journal of Visual Languages and Computing 18, 1 (2007), 71–95.

[9] Marco D Adelfio and Hanan Samet. 2013. Schema Extraction for Tabular Data
on the Web. Proceedings of the VLDB Endowment (VLDB) 6, 6 (2013), 421–432.

[10] Titus Barik, Kevin Lubick, Justin Smith, John Slankas, and Emerson Murphy-Hill.
2015. FUSE: A Reproducible, Extendable, Internet-Scale Corpus of Spreadsheets.
In Proceedings of IEEE/ACM Working Conference on Mining Software Repositories
(MSR). 486–489.

[11] Daniel W. Barowy, Emery D. Berger, and Benjamin Zorn. 2018. ExceLint: Au-
tomatically Finding Spreadsheet Formula Errors. In Proceedings of International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA). 148:1–148:26.

[12] Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001), 5–32.
[13] Jonathan P Caulkins, Erica Layne Morrison, and Timothy Weidemann. 2007.

Spreadsheet Errors and DecisionMaking: Evidence from Field Interviews. Journal
of Organizational and End User Computing 19, 3 (2007), 1–23.

[14] Chris Chambers and Martin Erwig. 2009. Automatic Detection of Dimension
Errors in Spreadsheets. Journal of Visual Languages & Computing 20, 4 (2009),
269–283.

[15] Zhe Chen and Michael Cafarella. 2014. Integrating Spreadsheet Data via Ac-
curate and Low-Effort Extraction. In Proceedings of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 1126–1135.

[16] Shing-Chi Cheung, Wanjun Chen, Yepang Liu, and Chang Xu. 2016. CUSTODES:
Automatic Spreadsheet Cell Clustering and Smell Detection Using Strong and
Weak Features. In Proceedings of International Conference on Software Engineering
(ICSE). 464–475.

[17] Haoyu Dong, Shijie Liu, Zhouyu Fu, Shi Han, and Dongmei Zhang. 2019. Se-
mantic Structure Extraction for Spreadsheet Tables with a Multi-task Learning
Architecture. In Proceedings of Workshop on Document Intelligence on Neural
Information Processing Systems (NeurIPS).

[18] Haoyu Dong, Shijie Liu, Shi Han, Zhouyu Fu, and Dongmei Zhang. 2019. Ta-
blesense: Spreadsheet Table Detection with Convolutional Neural Networks.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Vol. 33.
69–76.

[19] Wensheng Dou, Shing-Chi Cheung, Chushu Gao, Chang Xu, Liang Xu, and Jun
Wei. 2016. Detecting Table Clones and Smells in Spreadsheets. In Proceedings of
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE). 787–798.

[20] Wensheng Dou, Shing-Chi Cheung, and Jun Wei. 2014. Is Spreadsheet Ambi-
guity Harmful? Detecting and Repairing Spreadsheet Smells due to Ambiguous
Computation. In Proceedings of International Conference on Software Engineering
(ICSE). 848–858.

[21] Wensheng Dou, Shi Han, Liang Xu, Dongmei Zhang, and Jun Wei. 2018. Ex-
pandable Group Identification in Spreadsheets. In Proceedings of International
Conference on Automated Software Engineering (ASE). 498–508.

[22] Wensheng Dou, Chang Xu, Shing-Chi Cheung, and Jun Wei. 2017. CACheck:
Detecting and Repairing Cell Arrays in Spreadsheets. IEEE Transactions on
software Engineering (TSE) 43, 3 (2017), 226–251.

[23] Wensheng Dou, Liang Xu, Shing-Chi Cheung, Chushu Gao, Jun Wei, and Tao
Huang. 2016. VEnron: A Versioned Spreadsheet Corpus and Related Evolution
Analysis. In Proceedings of International Conference on Software Engineering (ICSE).
162–171.

[24] Julian Eberius, Katrin Braunschweig, Markus Hentsch, Maik Thiele, Ahmad
Ahmadov, and Wolfgang Lehner. 2015. Building the Dresden Web Table Corpus:
A Classification Approach. In Proceedings of IEEE/ACM International Symposium
on Big Data Computing. 41–50.

[25] Marc Fisher and Gregg Rothermel. 2005. The EUSES Spreadsheet Corpus: A
Shared Resource for Supporting Experimentationwith Spreadsheet Dependability
Mechanisms. In Proceedings of the Workshop on End-user Software Engineering.
1–5.

[26] Majid Ghasemi Gol, Jay Pujara, and Pedro Szekely. 2019. Tabular Cell Classifi-
cation Using Pre-Trained Cell Embeddings. In Proceedings of IEEE International
Conference on Data Mining (ICDM). 230–239.

[27] Felienne Hermans and Emerson Murphy-Hill. 2015. Enron’s Spreadsheets and
Related Emails: A Dataset and Analysis. In Proceedings of International Conference
on Software Engineering (ICSE), Vol. 2. 7–16.

[28] Felienne Hermans, Martin Pinzger, and Arie Van Deursen. 2010. Automati-
cally Extracting Class Diagrams from Spreadsheets. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP). 52–75.

[29] Felienne Hermans, Martin Pinzger, and Arie van Deursen. 2012. Detecting and Vi-
sualizing Inter-Worksheet Smells in Spreadsheets. In Proceedings of International
Conference on Software Engineering (ICSE). 441–451.

[30] Felienne Hermans, Ben Sedee, Martin Pinzger, and Arie van Deursen. 2013. Data
Clone Detection and Visualization in Spreadsheets. In Proceedings of International
Conference on Software Engineering (ICSE). 292–301.

[31] Yicheng Huang, Chang Xu, Yanyan Jiang, Huiyan Wang, and Da Li. 2020.
WARDER: Towards Effective Spreadsheet Defect Detection by Validity-Based
Cell Cluster Refinements. Journal of Systems and Software (JSS) 167 (2020), 1–19.

[32] Andrew J Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Bur-
nett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad
Myers, et al. 2011. The State of the Art in End-user Software Engineering. ACM
Computing Surveys (CSUR) 43, 3 (2011), 1–44.

[33] Elvis Koci, Maik Thiele, Wolfgang Lehner, and Oscar Romero. 2018. Table Recog-
nition in Spreadsheets via a Graph Representation. In Proceedings of IAPR Inter-
national Workshop on Document Analysis Systems (DAS). 139–144.

[34] Elvis Koci, Maik Thiele, Óscar Romero Moral, and Wolfgang Lehner. 2016. A
Machine Learning Approach for Layout Inference in Spreadsheets. In Proceedings
of International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management. 77–88.

[35] S Lee. 2005. Application of Logistic Regression Model and its Validation for Land-
slide Susceptibility Mapping using GIS and Remote Sensing Data. International
Journal of Remote Sensing 26, 7 (2005), 1477–1491.

[36] Ephraim RMcLean, Leon A Kappelman, and John P Thompson. 1993. Converging
End-user and Corporate Computing. Commun. ACM 36, 12 (1993), 78–90.

[37] George Nagy and Sharad Seth. 2016. Table Headers: An Entrance to the Data
Mine. In Proceedings of International Conference on Pattern Recognition (ICPR).
4065–4070.

[38] Ray Panko. 2006. Facing the Problem of Spreadsheet Errors. Decision Line 37, 5
(2006), 8–10.

[39] Raymond R Panko. 2008. Spreadsheet Errors: What We Know. What We Think
We can Do. arXiv preprint arXiv:0802.3457 (2008).

[40] Stephen G Powell, Kenneth R Baker, and Barry Lawson. 2008. A Critical Review
of the Literature on Spreadsheet Errors. Decision Support Systems 46, 1 (2008),
128–138.

https://www.dummies.com/software/microsoft-office/detecting-and-correcting-errors-in-excel-2019-formulas/
https://www.dummies.com/software/microsoft-office/detecting-and-correcting-errors-in-excel-2019-formulas/
http://www.eusprig.org/horror-stories.htm
https://support.office.com/en-ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://support.office.com/en-ie/article/ideas-in-excel-3223aab8-f543-4fda-85ed-76bb0295ffc4
https://powerbi.microsoft.com
https://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-performance-management/?slreturn=20200726064739
https://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-performance-management/?slreturn=20200726064739
https://scikit-learn.org
http://en.speechocean.com/welcome.html

Semantic Table Structure Identification in Spreadsheets ISSTA ’21, July 11–17, 2021, Virtual, Denmark

[41] Kexuan Sun Harsha Rayudu Jay Pujara. 2021. A Hybrid Probabilistic Approach
for Table Understanding. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI).

[42] S Rasoul Safavian andDavid Landgrebe. 1991. A Survey of Decision Tree Classifier
Methodology. IEEE transactions on Systems, Man, and Cybernetics 21, 3 (1991),
660–674.

[43] Christopher Scaffidi, Mary Shaw, and Brad Myers. 2005. Estimating the Numbers
of End Users and End User Programmers. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). 207–214.

[44] Rishabh Singh, Benjamin Livshits, and Benjamin Zorn. 2017. Melford: Using
Neural Networks to Find Spreadsheet Errors. Tech. Rep. (2017).

[45] Xinxin Wang and Derick Wood. 1993. Tabular Abstraction for Tabular Editing
and Formatting. In Proceedings of International Conference for Young Computer

Scientists. 17–29.
[46] Liang Xu, Shuo Wang, Wensheng Dou, Bo Yang, Chushu Gao, Jun Wei, and

Tao Huang. 2018. Detecting Faulty Empty Cells in Spreadsheets. In Proceedings
of International Conference on Software Analysis, Evolution and Reengineering
(SANER). 423–433.

[47] Richard Zanibbi, Dorothea Blostein, and James R Cordy. 2004. A Survey of Table
Recognition. Document Analysis and Recognition 7, 1 (2004), 1–16.

[48] Yakun Zhang, Wensheng Dou, Jiaxin Zhu, Liang Xu, Zhiyong Zhou, Jun Wei,
Dan Ye, and Bo Yang. 2020. Learning to Detect Table Clones in Spreadsheets. In
Proceedings of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA). 528–540.

	Abstract
	1 Introduction
	2 Semantic Table Structure and Its Applications
	2.1 Semantic Table Structure
	2.2 Applications of Semantic Table Structures

	3 Semantic Table Structure Identification
	3.1 Header Pair Enumeration
	3.2 Feature Extraction
	3.3 Training and Prediction
	3.4 Generating Semantic Table Structure
	3.5 Parameters

	4 Structure-Based Error Detection
	4.1 Range Errors
	4.2 Inconsistent Errors among Indexes

	5 Evaluation
	5.1 Evaluation on Tasi
	5.2 Evaluation on TasiError

	6 Discussion
	6.1 Limitations
	6.2 Threats to Validity

	7 Related Work
	8 Conclusion
	References

