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Abstract—The blockchain technology is regarded as a signifi-
cant trust-building technology and has attracted much attention
from the public. The longest chain rule has been widely applied
in blockchain systems to reach consensus on the distributed
ledger. However, the longest chain rule cannot support a higher
transaction throughput due to its lower security. As an alternative
solution to the longest chain rule, GHOST is proposed as a safer
consensus rule. Existing studies show that the longest chain rule
can suffer from selfish mining attacks. However, it is unclear how
selfish mining attacks perform on GHOST.

In this paper, we explore the performance of selfish mining on
GHOST. We first propose the original selfish mining (GHOST-
SM) and stubborn mining (GHOST-StuM) for GHOST. We then
evaluate these two selfish mining strategies on our blockchain
simulation system. The experimental result shows that GHOST
achieves better security than the longest chain rule. However,
when the block generation rate increases, the security of GHOST
is close to the longest chain rule. For example, the threshold for
selfish mining attacks of GHOST is increased by 47.55% and
0.60% compared to the longest chain rule corresponding to the
block generation interval of 1 second and 15 seconds.

Index Terms—GHOST, longest chain rule, consensus,
blockchain

I. INTRODUCTION

Bitcoin is the first fully decentralized electronic payment
system released by Satoshi Nakamoto in 2009. As the core
technology of Bitcoin, blockchain has received great attention
from both academy and industry. In the blockchain, each
participant (miner) maintains a continuously-growing list of
records, in which all transactions are put into so-called blocks.
Each block contains a cryptographic hash pointer referring to
its parent block and hence all blocks form a chain. Blockchain
is regarded as a disruptive technology for secure data sharing
among untrusted parties due to its characteristics of immutabil-
ity and traceability. In recent years, blockchain has been
successfully applied to various domains, such as financial
services, cross-border trade and supply chain management.

Nakamoto consensus [1] is one of the most widely-used pro-
tocols to guarantee the consistency and security of blockchain.
In Nakamoto consensus, all miners compete against each other
to generate new blocks through finding the solution of the
PoW (Proof of Work) puzzle. Due to the randomness of the
PoW puzzle, miners may generate conflicting blocks at the
same height. Hence, all blocks form a block tree instead of a
single chain. To guarantee consistency, Nakamoto consensus
adopts the longest chain rule that regards the longest chain
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of the block tree as the main chain. Only the blocks in the
main chain are valid and accepted by all miners. The blocks
outside of the longest chain are discarded as orphan blocks,
in which the transactions will be put back into the waiting
area, i.e., the transaction memory pool. To compensate for
miners’ computing and storage cost, the blockchain system
generally provides some cryptocurrency rewards for the miners
who generate the main chain blocks.

To improve transaction throughput, blockchain systems
usually decrease their block generation intervals to speed
up the block generation rate [2]–[5]. However, as the block
generation interval decreases, the security of the longest chain
rule against double-spend attack is also decreased below the
theoretical security boundary, i.e., 50%. To address the security
concern, GHOST [6] is proposed as an alternative solution
to the longest chain rule. GHOST selects the heaviest chain
instead of the longest chain when the blockchain forks. Since
orphan blocks still contribute to the weight of the main chain,
GHOST achieves better security. Previous study shows that
the threshold of GHOST against double-spend attack always
maintains at 50% even when the orphan rate varies [6].

Existing studies [7], [8] show that the longest chain rule can
suffer from various selfish mining attacks, e.g., original selfish
mining [6] and stubborn mining [9]. Instead of broadcasting
new blocks immediately, a selfish miner first withholds new
blocks and reveals them later based on specific strategies.
By deliberately forking the blockchain with hidden blocks,
the selfish miner forces honest miners to waste their mining
power on the stale states and hence obtains a higher revenue.
The experimental result shows that a selfish miner with 33%
fraction of mining power can gain more revenue than its fair
share. Therefore, the security boundary of the longest chain
rule is regarded as 33% under the selfish mining attacks.
However, no study has evaluated selfish mining on GHOST.
How does GHOST perform in selfish mining? Does GHOST
have better security than the longest chain rule under selfish
mining? These questions have not been answered yet.

In this paper, we present the first study to explore the per-
formance of selfish mining on GHOST. We first propose two
selfish mining strategies for GHOST, i.e., GHOST-SM (origi-
nal Selfish Mining for GHOST) and GHOST-StuM (Stubborn
Mining for GHOST). Second, we evaluate the performance
of these two mining strategies on our blockchain simulation
system. Finally, we compare the security of the GHOST rule
and the longest chain rule. From our study, we obtain some
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Fig. 1. The longest chain rule and the GHOST rule.

interesting findings. First, GHOST can also suffer from selfish
mining attacks, e.g., the security boundary of GHOST is
24.86% when the block generation interval is 15 seconds.
Second, GHOST has better security than the longest chain
rule, especially in the system with a short block generation
interval, e.g., the security boundary of the longest chain rule
and GHOST is 7.15% and 10.55% when the block generation
interval is 1 second.

We summarize the main contributions as follows.
• We propose two selfish mining strategies for GHOST.
• We evaluate the selfish mining strategies for GHOST, and

observe some interesting finding.
• We find that GHOST can still suffer from selfish mining,

and its security boundary is 24.86% when the block
generation interval is 15 seconds.

II. RELATED WORK

Some research efforts have been put on exploring new
selfish mining strategies after selfish mining for the longest
chain rule is first proposed by Eyal and Sirer [7]. Nayak
et al. [9] proposed stubborn mining. Sapirshtein et al. [10]
optimized selfish mining in a wider parameter space. Niu and
Feng [11], Ritz and Zugenmaier [12] considered the impact of
uncle reward on selfish mining in Ethereum, which shows that
Ethereum is more vulnerable to selfish mining than Bitcoin.

Some work evaluated the practical performance of selfish
mining in more complex scenarios. Liu et al. [13] and Bai
et al. [14] considered multiple selfish miners, which shows
that there exists unexpected competition among them. Göbel
et al. [15] considered the effect of propagation delay, which
shows that the selfish miner performs better in the system
with a larger delay. Xia et al. [8] evaluated the performance
of selfish mining in the practical scenarios with multiple selfish
miners, multiple honest miners and varied propagation delay.
Negy et al. [16] considered the effect of difficulty adjustment,
which found the selfish miner can adopt the intermittent selfish
mining to gain more revenue.

However, all of these works are proposed for the longest
chain rule. Currently, there is no research on selfish mining
in GHOST. In this paper, we first propose the selfish mining
strategies for the GHOST rule, including GHOST-SM and
GHOST-StuM.

III. BLOCKCHAIN CONSENSUS

In this section, we briefly introduce the longest chain rule
and the GHOST rule.

A. The Longest Chain Rule

The two most popular blockchain systems, i.e., Bitcoin and
Ethereum, both utilize the longest chain rule to guarantee
consistency and security. To achieve consistency, all miners
regard the longest chain as the main chain when the blockchain
forks. To achieve security, only the attacker with at least half
of the mining power can generate an alternative longest chain
to subvert the main chain [1]. Hence, the security boundary
of the longest chain rule is regarded as 50%.

The security boundary of the longest chain rule can be
reduced when the blockchain system scales to support a high
volume of transactions via decreasing the block generation
interval [2]–[5], i.e., from 15 seconds to 1 second. However,
a short block generation interval results in a high orphan rate
since more conflicting blocks are generated. In such a system,
the security boundary of the longest chain will not hold as
50%.

Fig. 1 shows the block tree generated in the blockchain
system with a high orphan rate. According to the longest rule,
the block list (0, 1B, 2D, 3F, 4C, 5B) is the main chain. In
this scenario, the attacker only needs less than 50% of mining
power to launch the double-spend attack to subvert the main
chain. Specifically, the attacker first constructs two transactions
from the same sender to different recipients, e.g., tx is from the
attacker’s address to the merchant’s address, while tx′ is from
the attacker’s address to the attacker’s another address. Then,
the attacker broadcasts tx, waiting for it to be included by
the main chain block, e.g., block 1B. Meanwhile, the attacker
includes tx′ in its secret block, e.g., block 1A. Finally, when
the merchant accepts tx after several confirmations in the main
chain, the attacker publishes its longer secret chain (0, 1A, 2A,
3A, 4A, 5A, 6A) to invalidate tx and gets its money back.
The attack is successful because honest miners waste their
mining power on the orphan blocks, and only a small fraction
of mining power contributes to the longest chain.

B. The GHOST Rule

As an alternative consensus rule to select the main chain,
GHOST (the Greedy Heaviest-Observed Sub-Tree) is proposed
to address the security concern of the longest chain rule. In
GHOST, each block has the weight information. When a new
block is generated, its weight is initialized to 1, and the weight
of its parent block and all ancestor blocks is added by 1.
When the blockchain forks, GHOST selects the heaviest block
at each height. All heaviest blocks form the main chain. For
example, in Fig. 1, the block list (0, 1B, 2C, 3D,4B) is regarded
as the main chain according to the GHOST rule. Note that, if
there exists multiple blocks with the same weight, miners will
randomly work after the first arriving one.

Even in the system with a high orphan rate, GHOST can
always maintain its security boundary against double-spend
attack at 50%. The reason is that, the abandoned orphan blocks
in GHOST still contribute to the weight of the main chain. For
example, when the attacker publishes its secret chain, the main
chain block 2C will not be subverted by the secret block 2A
since the orphan blocks 3E and 3C increase its weight. Due



TABLE I
THE SELFISH MINER’S ACTIONS IN THE ORIGINAL SELFISH MINING FOR

THE LONGEST CHAIN RULE.

lead Generate a block Receive new block(s)
0 withhold update
0’ release new update
1 withhold release(1)
2 withhold release(2)
≥ 3 withhold release(1)

to the security property, GHOST has been widely applied as
the main chain selection rule in various consensus protocols,
such as Fruitchains [17], Conflux [18] and Monoxide [19].

IV. SELFISH MINING

Eyal and Sirer found that the longest chain rule can suffer
from the selfish mining attack, which lowers its security
boundary to 33% [7]. Then, Nayak et al. proposed stubborn
mining, a more effective mining strategy against the longest
rule [9]. In this section, we briefly introduce two selfish mining
strategies. For clarity, we use SM to denote the original selfish
mining [7], and StuM to denote stubborn mining [9].

A. Original Selfish Mining

The selfish miner can gain more reward through deviating
from the consensus rule. In the blockchain system, honest
miners always obey the consensus rule. Specifically, when
generating a new block, they broadcast it immediately. When
receiving a new block, they update their local blockchain and
mine on the updated main chain. However, when generating
a new block, the selfish miner withholds it firstly. When
receiving a new block, the selfish miner publishes its private
blocks according to the strategy. Through forcing the honest
miners to waste their mining power on the stale main chain, the
selfish miner obtains more reward than its fair share. Simply,
we refer to the selfish miner as Bob and the group of honest
miners as Alice. Note that, Alice actually represents all honest
miners, while Bob behaves as a single selfish miner as in the
previous works [7], [9].

In selfish mining, Bob takes actions according to its lead
advantage. Under the longest chain rule, the lead advantage is
the length difference between Bob’s branch and Alice’s branch,
which is described as follows.

lead = length(Bob′s branch)−length(Alice′ branch) (1)
Table I summarizes Bob’s actions in SM, which are driven

by two events, i.e., generating a new block and receiving new
blocks. Note that, a miner can generate only one block at
a time. However, it can receive multiple blocks meanwhile
due to the propagation mechanism of the peer-to-peer protocol
[20]. Both lead = 0 and lead = 0′ denote that Bob has no
private block. The difference is that there is a unique longest
chain in lead = 0, while a fork happens in lead = 0′.
According to the lead advantage, Bob takes the following four
actions when an event happens.

Withhold. When generating a new block, Bob withholds it
and keeps working after the new block.

TABLE II
THE SELFISH MINER’S ACTIONS IN THE STUBBORN MINING FOR THE

LONGEST CHAIN RULE.

lead Generate a block Receive new block(s)
-1 release new update
0 withhold update
0’ withhold update
1 withhold release(1)
2 withhold release(1)
≥ 3 withhold release(1)

Update. When receiving the new blocks, Bob updates its
blockchain and works after the updated main chain.

Release new. When generating a new block, Bob publishes
it to win the longest chain.

Release(1). When receiving the new blocks, Bob releases
one private block to catch the length of the honest branch and
create a fork.

Release(2). When receiving the new blocks, Bob releases
two private blocks to exceed the length of the honest branch
and win the longest chain.

Fig. 2 shows an example of the original selfish mining for
the longest chain rule. The orange block denotes Alice’s public
blocks. The white block, blue block with symbols denote
Bob’s public blocks and private blocks, respectively. At first,
Bob withholds four secret blocks. When receiving Alice’s two
blocks, Bob creates a fork intentionally by releasing its first
private block S1. Hence, there are three branches. According
to the consensus rule, when there are multiple branches, honest
miners work after the first arrived one. We call Bob’s ability to
propagate its block faster than others as its network advantage,
denoted as γ. Therefore, when a fork happens, γ fraction of
honest power mines on Bob’s branch.

At lead = 3, when receiving two new blocks, Bob continues
to create branches by releasing the private block S2. At lead =
2, when a new block extends the honest branch, Bob’s lead
advantage decreases to one block. Hence, Bob releases the
rest two blocks together, i.e., block S3 and S4, to win the
longest chain. Existing study [7] shows that a miner owning
33% of mining power can benefit from the original selfish
mining when it has no network advantage, i.e., γ = 0.

B. Stubborn Mining

Stubborn mining (StuM) is a variant of the original selfish
mining (SM). Compared to the original selfish mining, the
revenue of stubborn mining can increase by up to 25% [9].
Stubborn mining consists of three sub-strategies, i.e., lead
stubborn, equal-fork stubborn and trial stubborn. Table II
summarizes Bob’s actions in StuM, in which the bold actions
denote its differences between SM. We describe the details of
three sub-strategies as follows.

Lead Stubborn. In SM, when Bob has two private blocks
(lead = 2), it will publish both blocks when the its lead
decreases to one block. However, following the idea of “catch
the length” instead of “win the length”, Bob only publishes the
first block. As Fig. 3 shows, in lead stubborn, Bob publishes
block S1 to create two branches. Instead of winning the longest
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Fig. 3. The example of stubborn mining for the longest chain rule.

chain, Bob tries to create as many forks as possible to waste
honest mining power.

Equal-fork Stubborn. In SM, when a fork happens (lead =
0′), Bob will release the newly generated block to solve the
fork and win the longest chain. However, following the idea of
“catch the length” instead of “win the length”, Bob withholds
the new block. As Fig. 3 shows, in equal-fork stubborn, Bob
withholds the new block S2 to extend the fork time. Instead
of winning the longest chain, Bob’s goal is to make the fork
last longer to waste the honest mining power.

Trial Stubborn. In SM, when the honest branch becomes
the longest chain, Bob will give up its shorter chain. However,
following the idea of “insist on the shorter selfish chain”, Bob
works on its shorter chain if it just lags behind by one block
and hopes to catch up. This situation is denoted by the negative
lead = −1. Instead of extending the longest chain, Bob’s goal
is to make more of its blocks included by the main chain.
Note that, at lead = −1, when Bob luckily generates a new
block, e.g., block S2, to catch up from behind, to create a
fork. However, there is no honest power mining on the selfish
branch, i.e., γ = 0, since all honest miners have accepted the
earlier produced branch.

All the stubborn mining strategies have their pros and cons.
For the lead stubborn and equal-fork stubborn, Bob has the
chance to create more forks while has the risk of losing the
longest chain. For the trial stubborn, Bob has the chance to
gain more reward while has the risk of doing useless work.

V. SELFISH MINING IN GHOST

The GHOST rule has been widely applied as the backbone
in various consensus protocols [17]–[19]. In this section, we
describe the original selfish mining and stubborn mining that
are specially designed for the GHOST rule, i.e., GHOST-SM
and GHOST-StuM.

A. Original Selfish Mining

As mentioned before, GHOST selects the heaviest block at
each height to form the main chain. Therefore, to waste the
honest mining power, Bob aims to create a branch, in which

TABLE III
THE SELFISH MINER’S ACTIONS IN THE ORIGINAL SELFISH MINING FOR

THE GHOST RULE.

lead Generate a block Receive new block(s)
0 withhold update
0’ release new update
1 withhold release(1)
2 withhold release(2)

≥ 3 withhold release(n), s.t., weight(Bob’s
block) ≥ weight(Alice’s block)

all blocks have the same weight as other honest blocks at the
same height. Bob takes actions according to its lead advantage.
As Equation (2) shows, the lead advantage is the minimum
weight difference between the blocks in Bob’s branch and the
blocks at the same height in Alice’s branch.

lead =Min(weight(Bi)− weight(Ai)),
Bi ∈ Bob′s branch,Ai ∈ Alice′s branch,

height(Bi) = height(Ai)

(2)

Table III summarizes Bob’s actions in GHOST-SM. At
lead = 0/0′, Bob has no private block and hence takes the
same action as in the longest chain. At lead ≥ 1, when
generating the new block, Bob withholds the blocks to extend
its private chain. At lead = 1, when receiving new blocks,
Bob only releases one block and tries to create a branch.
At lead = 2, when receiving new blocks, Bob releases both
blocks and tries to win the heaviest chain. At lead = 3, Bob
releases n blocks to ensure the weight of its block is not less
than the honest blocks.

Fig. 4 shows an example of the state transition in GHOST-
SM. At first, Bob withholds four private blocks. When re-
ceiving Alice’s two blocks, Bob releases its first private block
S1 to match the weight of honest blocks. Hence, there are
three branches and some honest miners will work after block
S1. At lead = 3, after receiving two new blocks, the weight
of block H1 increases to 3. To match the weight of block
H1, Bob releases two private blocks, i.e., S2 and S3. Hence,
the weight of the block S1, S2 and S3 changes to 3, 2, 1,
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TABLE IV
THE SELFISH MINER’S ACTIONS IN THE STUBBORN MINING FOR THE

GHOST RULE.

lead Generate a block Receive new block(s)
-1 release new update
0 withhold update
0’ withhold update
1 withhold release(1)
2 withhold release(n), s.t., weight(Bob’s

block) ≥ weight(Alice’s block)≥ 3

respectively. According to the GHOST rule, the block list
(S1, S2, S3) forms the unique main chain since the block
S2 has the maximum weight at the same height. Although
Bob aims to create more branches to waste the honest mining
power, sometimes it may solve the fork accidentally due in
GHOST. We call the situation Unexpected Fork Solving. Later,
at lead = 1, when receiving one honest block, Bob releases
the rest private block S4 and the lead changes to 0’.

B. Stubborn Mining

Similar to the longest chain rule, GHOST can also suffer
from stubborn mining, i.e., GHOST-StuM, including lead
stubborn, equal-fork stubborn and trial stubborn. Table IV
summarizes Bob’s actions in GHOST-StuM, in which bold ac-
tions denote its differences between GHOST-SM. We describe
the details of three sub-strategies and discuss its difference
between the longest chain rule as follows.

Lead Stubborn. In GHOST-SM, when Bob has two private
blocks (lead = 2), it will publish both blocks when receiving
the honest block. However, following the idea of “catch the
weight” in lead stubborn, Bob only publishes blocks to make
the weight of its branch not less than the honest branch. This
means that sometimes Bob only needs to publish one block.
Bob adopts lead stubborn to create as many forks as possible.

Equal-fork Stubborn. In GHOST-SM, when a fork hap-
pens (lead = 0′), Bob will release the newly generated block
to solve the fork and win the heaviest chain. However, fol-
lowing the idea of “catch the weight” in equal-fork stubborn,
Bob will withhold the new block. Bob adopts the equal-fork
stubborn to make the fork last longer.

Trial Stubborn. In GHOST-SM, when the honest branch
becomes the heaviest chain, Bob will give up its lighter chain.
However, following the idea of ‘insist on the lighter selfish
chain” in trial stubborn, Bob works on its lighter chain if it
just lags behind by one block weight, i.e., lead = −1. Bob
adopts the trial stubborn to make more of its blocks included
by the main chain.

S2S1S1

release(1)

S1 S2 S2S1 S3

release(1)
𝑙𝑒𝑎𝑑 = −1 𝑙𝑒𝑎𝑑 = 0′ 𝑙𝑒𝑎𝑑 = −1 𝑙𝑒𝑎𝑑 = 0

Fig. 5. Two different cases of the trial stubborn mining for the GHOST rule.

TABLE V
PARAMETERS OF THE BLOCKCHAIN SIMULATION SYSTEM.

Parameter Description Values
i Block generation interval 1 ∼ 15 seconds
α Selfish miner’s mining power 1% ∼ 40%
γ Selfish miner’s network advantage 0.5

Although the idea of trial stubborn for GHOST is similar to
that for the longest chain rule, their state transition is different.
In the longest chain rule, when Bob catches up from behind,
its lead advantage changes from -1 to 0’ since there are two
branches with the same length. However, the state transition is
undetermined in GHOST. Fig. 5 shows two different cases of
the state transition in trial stubborn for the GHOST rule, both
start from lead = −1. In the first case, after generating block
S2, the lead changes to 0’ since there are two branches with
the same weight. However, in the second case, after generating
block S3, the lead changes to 0 since there is only one heaviest
chain and Bob withholds no private block.

VI. EVALUATION

We evaluate the performance of original selfish mining and
stubborn mining for the longest chain rule and the GHOST rule
on the blockchain simulation system to study the following
two research questions.

RQ1: How does selfish mining perform in GHOST?
RQ2: Is GHOST more secure than the longest chain rule?
We simulate the blockchain system and describe perfor-

mance measurements (Section VI-A). To answer RQ1, we
evaluate the performance of GHOST-SM and GHOST-StuM
(Section VI-B). To answer RQ2, we compare the performance
of GHOST and the longest chain rule (Section VI-C).

A. Experimental Setup

We use the Monte Carlo simulator to simulate the
blockchain system, which involves three parameters. As Ta-
ble V shows, i denotes the block generation interval. To
evaluate the performance of GHOST especially in the system
with a high throughput, we change i from 1 to 15 seconds.
α denotes the selfish miner’s mining power. Since the largest



mining pool that ever appeared takes about 40% of the network
mining power [21], we change α from 1% to 40%. γ denotes
the selfish miner’s network advantage ranging from 0 to 1. In
the experiment, we fix the γ to the mean value of 0.5.

We simulate 1,000 miners equally sharing the total mining
power as previous work [7]. The block generation process
is simulated with the geometric distribution [22]. When the
selfish miner Bob owns α fraction of mining power, it actually
controls 1000 ·α miners to form a pool for selfish mining. Due
to the network advantage, When the fork happens, γ fraction
of honest mining power will mine on the selfish branch.

Experimental measurement. In each simulation, all miners
generate 100,000 main chain blocks. We iterate the simula-
tion 10 times to avoid potential randomness. Suppose miner
mi(i = 1, ..., 1000) generates MBi main chain blocks, i.e.,∑1,000
i=1 MBi = 100, 000. Hence, Bob’s selfish mining revenue

under a certain mining strategy is calculated as follows. Alice’s
honest mining revenue is calculated in the same way.

RStrategy =

1000·α∑
i=1

MBi/100, 000 (3)

When Bob behaves honest, its mining revenue equals to the
mining power. However, Bob’s selfish mining revenue deviates
from its fair share. As Equation (4) shows, the minimum
mining power required by Bob to gain more revenue than its
power is called profit threshold, which represents the security
boundary of the blockchain system.

profit threshold = min(α), s.t., RStrategy ≥ α (4)

To compare the performance between the original selfish
mining and stubborn mining, we define the relative revenue
of the stubborn mining as follows.

relative revenue = (RStuM −RSM )/RSM (5)

B. RQ1: How does selfish mining perform in GHOST?

In this experiment, we evaluate GHOST-SM and GHOST-
StuM in different blockchain systems. Fig. 6 shows the system
throughput and orphan rate with ranging block generation
intervals. A shorter block generation interval results in a higher
throughput since blocks are generated faster. However, the
orphan rate also increases as the number of conflicting blocks
increases. For example, when the block interval decreases from
15 seconds to 1 second, the throughput increases from 6.45
TPS to 63.23 TPS *, while the orphan rate increases from
3.24% to 36.77%.

Fig. 7 shows Bob’s selfish mining revenue from GHOST-
SM and GHOST-StuM in different systems. The black line
denotes Bob’s honest mining revenue. The blue line and orange
line denote Bob’s selfish mining revenue in the system whose
block interval is 1 second and 15 seconds. The experimental
result shows three interesting findings. First, GHOST can
also suffer from selfish mining since Bob always gains more

*We assume each block contains 100 transactions averagely
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Fig. 6. Throughput and orphan rate of different blockchain systems.

revenue with more mining power. Second, no matter which
mining strategy is adopted, i.e., GHOST-SM and GHOST-
StuM, Bob gains more revenue in the system with a shorter
block generation interval. For example, with 30% of mining
power, when the block generation interval decreases from 15
seconds to 1 second, Bob’s revenue increases by 9.30% and
8.60% corresponding to the GHOST-SM and GHOST-StuM.
The reason is that a shorter block generation interval causes
a higher orphan rate. Therefore, honest miners waste more
mining power on these orphan rates. Third, With more mining
power, Bob’s mining revenue from GHOST-StuM is higher
than that from GHOST-SM. For example, with 30% of mining
power, when the block generation interval is 1 second, Bob’s
revenue from GHOST-StuM improves 2% than GHOST-SM.

Fig. 8 shows Bob’s relative revenue from GHOST-StuM.
The experimental result shows two interesting findings. First,
no matter what block generation interval is, with enough
mining power, Bob can gain more revenue from GHOST-StuM
compared to GHOST-SM. The right side of the figure shows
that the revenue of GHOST-StuM generally increases by 10%
when Bob’s mining power exceeds 35%. Second, the white
space at the bottom left of the figure shows that small miners
loses a lot from GHOST-StuM, especially in the system with a
shorter interval. To understand which stubborn mining strategy
benefits most, we further analyze the frequency and success
rate of three stubborn strategies.

Fig. 9 shows the frequency and success rate of three
stubborn strategies in GHOST-StuM, i.e., lead stubborn, equal-
fork stubborn and trial stubborn. It shows that when Bob’s
mining power increases, the frequency and success rate of all
strategies increases. The left figure shows that the frequency of
equal-fork stubborn is the highest, which is much greater than
lead stubborn and trial stubborn. For example, when generating
100,000 main chain blocks, with 40% of mining power, Bob
launches stubborn mining 32,166 times averagely. Among
them, equal-fork stubborn, lead stubborn and trial stubborn
account for 74.10%, 14.24% and 11.66%. The frequency of
equal-fork stubborn is highest since Bob generally needs only
one private block to create a fork and launch the strategy. By
contrast, Bob needs two private blocks to launch lead stubborn.
The trial stubborn has the lowest frequency because it only
happens when Bob just falls behind one block weight.

The right side of Fig. 9 shows that the success rate of lead
stubborn, equal-fork stubborn and trial stubborn are highest,
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Fig. 7. Bob’s selfish mining revenue from GHOST-SM and GHOST-StuM.
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Fig. 8. Relative revenue of GHOST-StuM.

second and lowest, respectively. The reason is that Bob is more
likely to succeed with more private blocks. In lead stubborn,
Bob still withholds one private block after releasing one. In
equal-fork stubborn, Bob has no private block. However, In
trial stubborn, Bob falls behind by one block weight. There is
another reason for the lowest success rate of the trial stubborn.
That is, even if Bob succeed to generate a new block and create
a branch, there is no honest power mining on its branch since
it just catches up.

C. RQ2: Is GHOST more secure than the longest chain rule?

In this experiment, we compare the performance of selfish
mining between GHOST and the longest chain rule. A con-
sensus rule is considered more secure if it has a higher profit
threshold in selfish mining. Fig. 10 shows the profit threshold
of the original selfish mining and stubborn mining for these
two consensus rules. We observe two interesting findings.

First, in both mining strategies, GHOST is more secure
than the longest chain rule, especially in the system with
a short block generation interval. However, as the block
generation interval increases, their security gap is narrowing.
For example, when the block generation interval is 1 second,
in the original selfish mining, the profit threshold of the longest
chain rule and GHOST are 7.15% and 10.55%. The security
of GHOST is increased by 47.55%. However, when the block
generation interval increases to 15 seconds, the profit threshold
of two rules is 24.70% and 24.85%. The security of GHOST
is just increased by 0.6%. We discuss the reason as follows.

With a shorter block generation interval, the number of
conflicting blocks increases. In this scenario, the selfish miner

in GHOST frequently encounters the situation of Unexpected
Fork Solving (See Section V-A). Specifically, although the
selfish miner aims to create forks and extend the fork time,
it sometimes solves the fork unexpectedly according to the
GHOST rule. Therefore, the selfish miner needs more mining
power to benefit from GHOST than the longest chain rule.
As the block generation interval increases, the frequency
of Unexpected Fork Solving decreases. Therefore, the profit
threshold of two rules becomes close.

The second observation is that, in both consensus rules, the
profit threshold of stubborn mining is higher than the original
selfish mining. For example, when the block generation inter-
val is 1 second, the profit threshold is 10.55% and 20.90%
corresponding to GHOST-SM and GHOST-StuM, and it is
7.15% and 17.30% for SM and StuM. The reason is that the
selfish miner in stubborn mining gives up many chances to
win the chain. Fig. 11 shows the selfish mining revenue of
two consensus rules, which confirms the observation. Since the
longest chain rule has a lower profit threshold than GHOST,
no matter what strategy is adopted, it brings more reward to
the selfish miner than GHOST.

VII. CONCLUSION

As an alternative to the longest chain rule in Nakamoto
consensus, GHOST is regarded as a safer consensus rule.
In this paper, we propose two selfish mining strategies for
GHOST, and evaluate them on the simulation system. The
experimental result shows that GHOST can still suffer from
selfish mining. Compared with the longest chain rule, GHOST
has better security in the system with a short block generation
interval.
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Fig. 9. Frequency and the success rate of three stubborn strategies in GHOST-StuM
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Fig. 10. The profit threshold of two consensus rules.
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