Differentially Testing Database Transactions for Fun and Profit

Ziyu Cui
State Key Lab of Computer Science at
ISCAS, University of CAS
China
cuiziyu20@otcaix.iscas.ac.cn

Wensheng Dou”

State Key Lab of Computer Science at
ISCAS, University of CAS, University
of CAS Nanjing College
China

Qianwang Dai
State Key Lab of Computer Science at
ISCAS, University of CAS
China
daiqianwangl19@otcaix.iscas.ac.cn

wsdou@otcaix.iscas.ac.cn

Jiansen Song
State Key Lab of Computer Science at
ISCAS, University of CAS
China
songjiansen20@otcaix.iscas.ac.cn

Wei Wang

Jun Wei"
State Key Lab of Computer Science at
ISCAS, University of CAS, Nanjing
Institute of Software Technology

Dan Ye
State Key Lab of Computer Science at
ISCAS, University of CAS
China
yedan@otcaix.iscas.ac.cn

China
{wangwei,wj}@otcaix.iscas.ac.cn

ABSTRACT

Database Management Systems (DBMSs) utilize transactions to
ensure the consistency and integrity of data. Incorrect transaction
implementations in DBMSs can lead to severe consequences, e.g.,
incorrect database states and query results. Therefore, it is critical
to ensure the reliability of transaction implementations.

In this paper, we propose DTZ, an approach for automatically test-
ing transaction implementations in DBMSs. We first randomly gen-
erate a database and a group of concurrent transactions operating
the database, which can support complex features in DBMSs, e.g.,
various database schemas and cross-table queries. We then lever-
age differential testing to compare transaction execution results
on multiple DBMSs to find discrepancies. The non-determinism of
concurrent transactions can affect the effectiveness of our method.
Therefore, we propose a transaction test protocol to ensure the
deterministic execution of concurrent transactions.

We evaluate DT? on three widely-used MySQL-compatible DBMSs:
MySQL, MariaDB and TiDB. In total, we have detected 10 unique
transaction bugs and 88 transaction-related compatibility issues
from the observed discrepancies. Our empirical study on these com-
patibility issues shows that DBMSs suffer from various transaction-
related compatibility issues, although they claim that they are com-
patible. These compatibility issues can also lead to serious conse-
quences, e.g., inconsistent database states among DBMSs.

“Wensheng Dou and Jun Wei are the corresponding authors. CAS is the abbreviation
of Chinese Academy of Sciences. ISCAS is the abbreviation of Institute of Software,
Chinese Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE °22, October 1014, 2022, Rochester, MI, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9475-8/22/10...$15.00
https://doi.org/10.1145/3551349.3556924

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; - General and reference — Empirical studies.

KEYWORDS

Database transaction, differential testing, isolation level, compati-
bility issue

ACM Reference Format:

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei,
and Dan Ye. 2022. Differentially Testing Database Transactions for Fun and
Profit. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE °22), October 10-14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3551349.3556924

1 INTRODUCTION

Database Management Systems (DBMSs) play an essential role in
storing and retrieving data. Specially, relational DBMSs, e.g., MySQL
[13], PostgreSQL [14], SQLite [17], and TiDB [21], utilize Structured
Query Language (SQL) [43] to create, modify and query data, and
have been widely used in many applications, e.g., e-commerce
applications and mobile applications.

Relational DBMSs utilize transactions to guarantee data consis-
tency and integrity. Transactions have ACID properties, i.e., Atomic-
ity, Consistency, Isolation, and Durability. A transaction is a logical
unit that consists of a group of SQL statements to retrieve and ma-
nipulate data. DBMSs execute these SQL statements atomically, and
ensure that they are executed as a whole in spite of concurrency
and system failures.

In DBMSs, multiple transactions should be executed in isolation
from each other. However, if a DBMS adopts a stronger isolation
level, its performance will degrade more. Therefore, academia and
industry have proposed dozens of isolation levels [1, 28-31, 34, 41].
DBMSs usually provide several common isolation levels for de-
velopers, e.g., Read Uncommitted, Read Committed, Repeatable
Read, and Serializable in MySQL [22] and MariaDB [15].

DBMSs usually adopt complex mechanisms to support trans-
actions, e.g., multi-version concurrency control [35, 57, 62], and
optimistic concurrency control [54, 66]. On the one hand, buggy

https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3551349.3556924

ASE 22, October 10-14, 2022, Rochester, MI, USA

transaction implementations in DBMSs, i.e., transactions bugs, can
violate their claimed ACID properties. Transaction bugs can lead
to serious consequences, e.g., incorrect query results and database
states. On the other hand, some DBMSs claim that they are com-
patible, but their transaction implementations suffer from subtle
discrepancies for the same isolation level, e.g., compatibility issues.
However, these compatibility issues are not well documented and
studied, and can introduce challenges for database migration.

To improve the correctness of transaction implementations, exist-
ing approaches mainly focus on verifying whether DBMSs provide
the transaction isolation guarantees that they claim [37, 41, 42, 53,
64]. These approaches utilize simplified database structure (e.g.,
key — value model in Elle [53] and Cobra [64]), and analyze the
read / write history of one row indexed by a key to find transaction
bugs. However, relational DBMSs usually support many complex
features, e.g., data structures (e.g., data types and indexes), and
SQL statements (e.g., cross-table queries). Therefore, existing ap-
proaches cannot detect transaction bugs that utilize these features.
Some approaches, e.g., PQS [60], NoREC [58], TLP [59] and RAGS
[61], can detect DBMS bugs that involve these complex features in
single SELECT statements. However, they cannot detect transaction
bugs that involve multiple SQL statements and isolation levels.

To effectively detect transaction bugs and compatibility issues
in DBMSs, we propose a general transaction testing approach,
Differentially Testing Database Transactions (DT?). We leverage dif-
ferential testing to build a test oracle for transaction implemen-
tations in DBMSs. Specially, we first generate a random database,
and then generate a group of concurrent transactions that interact
with the database. We then execute these transactions on DBMSs
under test, and compare the transaction execution results to find dis-
crepancies. To leverage differential testing for database transaction
testing, we need to address the following technical issues.

o Different SQL execution semantics. Relational DBMSs usu-
ally support standardized SQL to manipulate data. However,
DBMSs may exhibit different SQL execution semantics. For ex-
ample, MySQL and PostgreSQL adopt different mechanisms for
data type constraints and implicit data type conversions. This can
greatly affect the effectiveness of differential testing. We observe
that some DBMSs claim that they are designed to be compatible
with other popular DBMSs, and adopt the same SQL execution
semantics. For example, MariaDB [12] is forked from MySQL and
maintains a high level of compatibility with MySQL, and TiDB
is claimed to be compatible with MySQL, and CockroachDB [2]
is compatible with PostgreSQL. Therefore, we choose compat-
ible DBMSs as target DBMSs, e.g., MySQL-compatible DBMSs
(MySQL, MariaDB, TiDB, etc).

e SQL dialects. Although compatible DBMSs support common
SQL execution semantics, each DBMS can provide some extra
extensions, i.e., dialects. For example, TiDB does not support
the SPATIAL data type in MySQL [3-5]. To handle this issue, we
generate transaction test cases that only involve common SQL
features that all DBMSs support, e.g., JOIN, GROUP BY, and rich
WHERE expressions.

o Non-determinism transaction execution. Given a group of
concurrent transactions, their execution will be affected by non-
deterministic schedule and transaction modes in a DBMS, and

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

their execution results will be non-deterministic. To handle this
issue, we propose a transaction test protocol under the pessimistic
transaction mode, in which we can control the execution order
of each statement in transactions, and can obtain deterministic
transaction execution results.

To demonstrate the effectiveness of DT?, we evaluate it on three
widely-used MySQL-compatible DBMSs under their pessimistic
transaction mode, i.e., MySQL, MariaDB, and TiDB. DT? has de-
tected 146 discrepancies among the three DBMSs. From these dis-
crepancies, we have identified 16 unique bugs, including 4 bugs in
MySQL, 7 bugs in MariaDB, and 5 bugs in TiDB. Among these 16
bugs, 10 bugs are transaction-related bugs while the remaining 6
bugs are transaction-unrelated bugs (i.e., a single SQL statement
can trigger a bug). We have submitted these bugs to developers,
and they have confirmed 6 bugs as new bugs. These 6 new bugs
have caused serious consequences, e.g., incorrect database states (2
bugs), incorrect query results (1 bug), missing expected errors (2
bugs), and reporting unexpected errors (1 bug). Our newly-detected
transaction bugs arouse some interesting discussions. For example,
in a MariaDB bug [7], developers state that “For fixing this bug, I
can offer a wild idea that I do not think can be implemented easily”.
Since there is no better solution at the moment, developers reverted
an earlier fix to prevent this bug.

From the remaining discrepancies among the three DBMSs, we
reveal 88 compatibility issues among these DBMSs’ transaction im-
plementations. These compatibility issues are caused by different
design choices of these DBMSs. We further conduct an empirical
study on these observed compatibility issues. For each compatibility
issue, we analyze and summarize its triggering scenario, root cause,
and consequence. Our study shows that these MySQL-compatible
DBMSs suffer from various compatibility issues on transaction im-
plementations, even though they claim they are compatible. For
example, TiDB and MySQL create snapshots for SELECT statements
at different locations under Repeatable Read isolation level. These
compatible issues can cause inconsistencies among DBMSs, e.g.,
inconsistent database states, inconsistent query results, and incon-
sistent deadlock.

In summary, we make the following contributions.

e We propose the first differential testing approach for transaction
implementations of DBMSs.

e We implement the approach as DT? and use it to test three widely-
used MySQL-compatible DBMSs, i.e., MySQL, MariaDB and TiDB.
DT? finds 10 unique transaction bugs and 88 transaction-related
compatibility issues among these DBMSs. DT? is publicly avail-
able at https://github.com/tcse-iscas/DT2.

e We conduct the first empirical study on transaction-related com-
patibility issues in MySQL, MariaDB and TiDB, and reveal their
triggering scenarios, root causes, and consequences. We hope our
study can shed light on the transaction behavior specification,
and facilitate database migration among DBMSs.

2 PRELIMINARIES

2.1 Relational DBMSs and SQL

Relational DBMSs, e.g., MySQL [13], PostgreSQL [14], SQLite [17]
and TiDB [21], are widely used in many applications, e.g., e-commerce
applications and mobile applications. Relational DBMSs organize

https://github.com/tcse-iscas/DT2

Differentially Testing Database Transactions for Fun and Profit

Table 1: Tested DBMSs in our evaluation.

DB-Engines Isolation
DBMS Rankgi,ng Stars Levels
MySQL 2 7.6K | RU, RC, RR, SER
MariaDB 13 4.2K | RU, RC, RR, SER
TiDB 112 30.9K RC, RR

data based on the relational data model proposed by Codd [47]
and store data as tables. A database can contain multiple tables.
Users utilize Structured Query Language (SQL) [43] to interact with
DBMSs, and perform data query, insertion, deletion, and modifica-
tion.

MySQL [13] and PostgreSQL [14] are two mature DBMSs with
well transaction support. As they are widely-used open-source
DBMSs, many DBMSs claim to be compatible with them and can
be classified into MySQL-compatible and PostgreSQL-compatible,
respectively. For example, MariaDB is compatible with MySQL,
while CockroachDB is a PostgreSQL-compatible commercial DBMS.
Although both MySQL and PostgreSQL provide SQL to retrieve
data and have many things in common, there are some significant
differences between them. For example, PostgreSQL offers more
complex data types, and supports different implicit data type con-
versions. The data type constraints in PostgreSQL are stricter than
that in MySQL.

2.2 Tested DBMSs

Since PostgreSQL and MySQL have largely different SQL execu-
tion semantics (e.g., different implicit data type conversions), it
would involve large implementation efforts to identify discrepancies
between PostgreSQL-compatible DBMSs and MySQL-compatible
DBMSs. In our work, we choose MySQL-compatible DBMSs as
our research targets. Note that, our approach can be potentially
extended to test PostgreSQL-compatible DBMSs.

Based on the DB-Engines Ranking [6] and Github stars [9], we
finally choose three widely-used MySQL-compatible DBMSs, i.e.,
MySQL, MariaDB and TiDB, as shown in Table 1. MySQL and
MariaDB are traditional relational DBMSs, and TiDB is a NewSQL
DBMS that combines the relational model with distributed support.

Transaction modes. DBMSs usually adopt two transaction ex-
ecution modes, i.e., pessimistic and optimistic transaction modes.
In the pessimistic transaction mode, a transaction needs to acquire
locks on the accessed data. Then the later transactions will be
blocked until their accessed data are unlocked. In the optimistic
transaction mode, a transaction during running can access data
without acquiring locks on them. Before committing, each transac-
tion verifies whether other transactions have modified the data it
has accessed. If yes, the committing transaction is rolled back and
can be restarted.

MySQL and MariaDB only support the pessimistic transaction
mode. TiDB supports both pessimistic and optimistic transaction
modes [19, 20], and uses the pessimistic transaction mode by default.
To perform differential testing on them, we test MySQL, MariaDB
and TiDB under the pessimistic transaction mode, which all tested
DBMSs support.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

Isolation levels. In DBMSs, multiple transactions should be
executed in isolation from each other. However, if a DBMS adopts
a stronger isolation level among transactions, its performance will
degrade more. To make a tradeoff between consistency and perfor-
mance, DBMSs usually provide multiple isolation levels for devel-
opers [1, 28-31, 34, 41].

The isolation levels supported by our tested DBMSs are shown in
Table 1. Basically, MySQL and MariaDB support four isolation levels,
i.e., Read Uncommitted, Read Committed, Repeatable Read, and
Serializable [1, 28, 34], while TiDB only supports two isolation
levels, i.e., Read Committed and Repeatable Read. We test these
DBMSs at all the four isolation levels and compare test results at
the same isolation level.

Here we briefly explain these four isolation levels. Note that, all
the four isolation levels prevent other transactions from overwriting
data modified by uncommitted transactions.

e Read Uncommitted (RU). RU allows a transaction to read data
updated by uncommitted transactions.

e Read Committed (RC). RC only allows a transaction to read
data already committed by other transactions and their own
modifications.

e Repeatable Read (RR). RR allows a transaction to read data
committed by other transactions before the transaction started,
as well as data modified by the transaction itself.

e Serializable (SER). SERis the strictest isolation level among
the four isolation levels. At Serializable, the execution of con-
current transactions is equivalent to an execution in their certain
sequential order.

3 MOTIVATING EXAMPLES

Transaction bug. Figure 1 shows a test case that triggers a real-
world transaction bug in MariaDB [11] at Repeatable Read and
Serializable. We find this bug by differentially testing MySQL
and MariaDB, and developers have confirmed this transaction bug,
and classified it as a critical bug.

The initial table contains one column c1 (primary key) and a
record 3. Two transactions t1 and t2 are executed concurrently
on this table. t1 first updates c1 to 5 (Line 4), and then ¢2 tries
to delete all data in the table (Line 6), and is blocked under the
pessimistic transaction mode. Then, t1 inserts a value 2 into c1
(Line 7). However, both MySQL and MariaDB encounter a conflict
at the INSERT statement, resulting in a deadlock! that occurs in
t2. In this case, t2 is rolled back. ¢1 then is committed (Line 8). We
pass the remaining statements in ¢2 to DBMSs. ¢2 inserts a value
1 into c1 (Line 9) and executes ROLLBACK statement (Line 10). We
finally retrieve the table, and observe that the results in two DBMSs
are different. The database state in MySQL is {1, 2, 5}, while that in
MariaDB is {2, 5}.

The root cause behind this bug is that the implementation of
MariaDB for handling rolled back transactions in which a deadlock

!MySQL and MariaDB utilize gap lock at Repeatable Read and Serializable to
prevent other transactions from inserting new records between two records. Because
column c1 is a primary key, ¢1 executes UPDATE by deleting the original value 3 with a
gap lock and an exclusive lock, and inserting the new value 5 (Line 4). £2 also requires
a gap lock and an exclusive lock on value 3 for DELETE but sets these locks as waiting
states because of lock conflict (Line 6). The INSERT operation in ¢1 (Line 7) tries to
insert 2 but is blocked by the #2’s gap lock on value 3. Thus a deadlock occurs.

ASE 22, October 10-14, 2022, Rochester, MI, USA

1. /*init*/ CREATE TABLE t(cl INT PRIMARY KEY);

2. /*init*/ INSERT INTO t(cl) VALUES (3); My
t1 t2
3. BEGIN;
4. UPDATE t SET cl1 = 5;
(5. _BE_Gﬁ ___________ \

|6. DELETE FROM t;
| /*t2 is blocked*/

| ERROR: Deadlock found when trying to
lget lock; try restarting transactlon

7. INSERT INTO t(cl) VALUES (2);

8. COMMIT;
10 ROLLBACK;

-- Database state: {1, 2,

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

1. /*init*/ CREATE TABLE t(cl INT PRIMARY KEY); MariaDB
2. /*init*/ INSERT INTO t(cl) VALUES (3); Foundation
t1 t2

3. BEGIN;
4. UPDATE t SET cl = 5;
/5. seen; ™

6. DELETE FROM t;
/*t2 is blocked*/

PR —

7. INSERT INTO t(cl) VALUES (2); get lock; try restarting transaction |

|
9. INSERT INTO t(cl) VALUES (1); |

|
|
: ERROR: Deadlock found when trying to |
|
8. COMMIT; |
|
|

\1e. ROLLBACK;

-- Database state: {2, 5}°

Figure 1: A motivating example that triggers a critical MariaDB transaction bug [11] at Repeatable Read and Serializable
isolation levels under the pessimistic transaction mode. This bug leads to incorrect database state when a deadlock happens
in transaction ¢2. The dotted rectangles show the real transaction scopes of transaction ¢2 in MySQL and MariaDB.

\ re——————_———
[Test Case | | Blocked: True |
| —— b ——>|s;,: Report Error: False L
| 11-
Database : rF----- I m Tl D B : Return Result: 0 : %
N | :
Generation [~ | B ' d
I I o ————— Compatibility
I : : Blocked: False I N Issue
l : 1 —5|sy1: Report Error: True _><¢)_>
| . ! My | Retum Result: 1,2 :
I L S11, S : .
2 Transaction ! b ! bt I Discrepancy
- L 1s . I e
Generation | 82’ 215 S22 ! | Blocked: False : ﬁ
I : I — MariaDB ——ss;,: Report Error: False |
l | 3’ S31: 532 : Foundation I Return Result: L2 | Bug
| | lL. [D |
3 | |
Submitted Order : S§11—S21 S22 | Transaction Result Discrepancy
? Generation _:’531_,512_>s3z : — Execution — Comparison — Classification
(|

Figure 2: The workflow of DT?.

occurs is problematic. In MySQL, if a transaction encounters a
deadlock at statement s1, this transaction will be rolled back and
terminated. The statements after s1 will be executed without the
original transaction. As shown in Figure 1, the statements (Line 9-
10) after the statement that reports the deadlock (Line 6) are treated
as individual transactions, which are automatically committed after
execution. Therefore, the ROLLBACK operation in Line 10 does not
take effect.

However, MariaDB aborts a transaction that encounters a dead-
lock without terminating this transaction. Thus, subsequent state-
ments are still executed within the original transaction. In this test
case, t2 can roll back the operation in Line 9. MariaDB developers
state that “the error is that the second INSERT statement is being
accepted for execution”. Their advice on how to fix the bug is when
t2 inserts the value 1, “the SQL layer must return an error that the
transaction was aborted”.

Compatibility issue example. The test case above triggers a
deadlock in MySQL, but it does not trigger a deadlock in MariaDB
version 10.7.3 or later at Repeatable Read and Serializable.
That is, t2 remains blocked after ¢1 executes INSERT statement in
MariaDB (Line 7). After t1 is committed (Line 8), ¢2 is resumed,
completes DELETE operation, and is committed. DT? reports this dis-
crepancy between MySQL and MariaDB with inconsistent deadlock,
and we recognize it as a compatibility issue.

The impact of this compatibility issue is serious. First, it is in-
consistent whether a deadlock occurs. This test case cannot be
completed due to the deadlock in MySQL, while it is executed suc-
cessfully in MariaDB. Moreover, this issue leaves database into
an inconsistent state. After a deadlock occurs in the transaction,
the remaining statements are executed in individual transactions
that contain only one statement. Thus, the INSERT statement in ¢2
cannot be rolled back, causing the database final state is {1, 2, 5} in

Differentially Testing Database Transactions for Fun and Profit

MySQL. However, MariaDB rolls back the INSERT statement in ¢2,
so the database final state is {2, 5}. As existing DBMS differential
testing approaches [50, 61, 63, 67] cannot perform on transactions,
this compatibility issue cannot be detected.

4 APPROACH

We propose DT? to detect discrepancies in transaction execution be-
haviors among different DBMSs under the pessimistic transaction
mode. DT? generates test cases, and performs differential testing
that executes the same test cases on all target DBMSs. If the re-
sults of a test case executed by any two DBMSs are different, DT?
generates a test report for subsequent analysis.

Figure 2 shows the overview of DT?. First, we randomly create
tables that contain some random data ((D)). Based on these tables,
we generate several transactions with random SQL statements ((2)).
We then generate a submitted order in which we expect the DBMS
to execute the generated transactions concurrently (). The gener-
ated tables, transactions, submitted order, and an isolation level that
target DBMSs support form a test case. At the tested isolation level,
we submit the statements in the the submitted order one by one
to each DBMS for execution (®). Then, we compare the execution
results of different DBMSs at the same isolation level, including
whether the statement is blocked, whether the statement triggers
a warning, error or deadlock, the results of query statements, and
the database’s final state ((5). If the execution results are different,
we generate a test report. In the last step, we manually simplify the
test case in the test report, and analyze whether it is a bug. If not,
the simplified test case is classified as a compatibility issue (®).

4.1 Transaction Test Case Generation

A test case consists of a database, a group of concurrent transactions,
a submitted order and a tested isolation level. Three steps (i.e., D,
@), and) in Figure 2) are required in randomly test case generation.
Since SQL statements are the basis for generating test cases, we will
describe SQL statement generation and the first two steps of our
approach in details as follows. Note that, there have been a lot of
approaches about random generation of databases [36, 39, 52] and
SQL statements [18, 40, 50, 61]. We generate them mainly based on
SQLancer [16], and slightly revise the approach for our target. We
briefly describe random database and SQL statement generation
for completeness.

Database Generation. As we focus on transactions, we cre-
ate initial database using only the simplest table creating state-
ments, i.e., CREATE and INSERT, of which CREATE statement includes
CREATE TABLE and CREATE INDEX. We observe that discrepancies
can usually be triggered on simple databases, so we build at most
maxTable (3 by default) tables containing at most maxColumn (4
by default) for each table. To find the largest common subset of
data types covered by DBMSs, we investigate and support all their
data types. For example, since TiDB does not support Spatial data
type, columns in the tables are randomly assigned data types except
Spatial types, including Numeric, String, etc. To cover as many table
structures as possible, we randomly add constraints on columns,
e.g., PRIMARY KEY, UNIQUE, CHECK and NOT NULL, and column at-
tributes like DEFAULT and AUTO_INCREMENT. Finally, we populate

ASE ’22, October 10-14, 2022, Rochester, MI, USA

each table with at most 5 rows by executing randomly generated
INSERT statements.

SQL statement generation. We generate SQL statements based
on SQL syntax supported by tested DBMSs. SQL statements usually
require some parameters. For example, the parameters of SELECT
statements include the selected tables, columns and constants. We
randomly select some generated tables and columns to populate
the statement parameters. For constant parameters, we adopt two
strategies. First, we randomly generate constant values. Second, we
randomly pick the existing data in generated tables. We randomly
choose one strategy at a time to generate constant values.

Differential testing should use the same semantic input, but
different DBMSs have slightly different SQL dialects. For exam-
ple, MySQL and MariaDB support SELECT FOR SHARE statements,
while TiDB does not. Therefore, we support the largest common
SQL subset supported by our tested DBMSs. We will not generate
SQL statements that our tested DBMSs cannot execute. Even so,
since we treat DBMSs as a black box, we can support testing many
complex features of DBMSs with little effort. DT? can support SQL
statements implemented by more than one DBMS, e.g., SELECT,
SELECT FOR SHARE, SELECT FOR UPDATE, INSERT, UPDATE and
DELETE, many SQL features, e.g., JOIN, GROUP BY, and rich expres-
sions, e.g., various WHERE predicates and functions.

Transaction generation. Our transaction test case explicitly
starts a transaction using a BEGIN statement and randomly ends it
with a COMMIT statement (apply all changes in the transaction) or a
ROLLBACK statement (roll back all changes in the transaction). Other
generated SQL statement types include SELECT, SELECT FOR SHARE,
SELECT FOR UPDATE, INSERT, UPDATE, and DELETE. A transaction
that we generate consists of one to maxStmt SQL statements. In
our experiment, we observe that using a small number of SQL
statements can trigger discrepant transaction execution behaviors
among DBMSs. Therefore, maxStmt is set to 7 by default.

4.2 Deterministic Transaction Execution

In differential testing, the same input is sent to the tested DBMSs
for execution. Therefore, the execution orders of the statements in
transactions, which are part of the testing inputs, need to be unified
when DBMSs execute the same concurrent transactions. However,
it is not easy to determine their execution orders. Generally, the
submitted order of statements in transactions is enumerable. As
such, if statements in transactions are executed one by one on a
DBMS following certain submitted order, their execution order is
determined by the transaction implementation and the given isola-
tion level in the DBMS. Inspired by this observation, we propose a
deterministic transaction test protocol, which submits transaction
statements in our generated transaction test cases to a DBMS one
by one in a randomly generated submitted order.

Submitted order generation. The submitted order indicates
the initial order in which a DBMS accepts statements in concur-
rent transactions. Concurrent transactions should not violate their
isolation level in any execution order, thus we can enumerate all
submitted orders for a group of transactions. Because the large
number of transactions and their statements would lead to many
submitted orders, we randomly select some of all submitted orders
and test them for target DBMSs.

ASE 22, October 10-14, 2022, Rochester, MI, USA

Algorithm 1: Deterministic transaction execution protocol
under the pessimistic transaction mode.

Input: subOrder
Output: execResult
1 while !subOrder.isAllStmtsSubmitted() do

2 for i « 1;i < subOrder.length;i + + do

3 stmt « subOrder|i]

4 if stmt.submitted then

5 L continue

6 curTx « stmt.transaction

7 if curTx.blocked then

8 L continue

9 execState < curTx.submit(stmt)

10 stmt.submitted <« True

11 if execState.blocked then

12 curTx.blocked « True

13 execResult.execOrder.add(BlockPoint(stmt))
14 continue

15 stmt.result « execState.getResult()

16 execResult.execOrder.add(stmt)

17 rStmts «— getResumedStmts()

18 foreach rStmt € rStmts do

19 rStmt.transaction.blocked < False
20 rStmt.result < rStmt.execState.getResult()
21 execResult.execOrder.add(rStmt)
22 if rStmts # () then

23 L break

24 execResult.databaseState «— getDatabaseState()

Transaction testing protocol. Given a submitted order for
a group of transactions and their isolation level, the transaction
execution process is shown in Algorithm 1. For a submitted order
subOrder, we submit each statement in subOrder one by one (Line
2) to the target DBMS for execution and marks them as submitted
to prevent them from being executed repeatedly (Line 9-10 and Line
4-5). For each submitted statement stmt, we set up an individual
thread to execute stmt. To judge whether stmt is blocked, we wait
for at most 2 seconds? for stmt’s execution result. If stmt does not
return its result within 2 seconds, we determine that stmt is blocked,
and mark stmt and its transaction curTX as blocked, and place this
block point in the execution order execOrder (Line 11-13). We then
skip the blocked statement (Line 14) and its following statements
that are in the same transaction as stmt (Line 7-8) until stmt is
unblocked and its transaction is resumed (Line 17-21).

If statement stmt is successfully executed, i.e., we can obtain its
execution result within 2 seconds, we record stmt’s execution result
and add stmt into execOrder (Line 15-16). stmt’s execution result
can be query results for a SELECT statement, and reported dead-
locks, warnings or errors. Note that, to thoroughly test transaction

2This threshold can be adjusted. However, 2 seconds are enough to judge whether
stmt is blocked.

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

implementations, we will still submit subsequent SQL statements
of a transaction even if it has reported a deadlock or error.

Once stmt is successfully executed, it may resume other blocked
transactions. This can occur in two scenarios. First, stmt’s trans-
action has been committed or aborted, then other transactions
blocked by stmt’s transaction can be resumed. Second, stmt can
cause a deadlock in another transaction tx, and tx reports a dead-
lock and returns. Therefore, we obtain these resumed transactions,
mark them as unblocked (Line 17-19), and fetch their correspond-
ing blocked statements’ execution results (Line 20-21). Then, we
scan subOrder from the beginning and submit the un-submitted
statements of transactions to the DBMS (Line 22-23 and Line 1).

Following the above test protocol, we can obtain a deterministic
execution process for a group of transactions. After all transactions
complete, we retrieve the database state (Line 26), and store it in the
execution result execResult. The final transaction execution result
contains all statements’ execution order execResult.execOrder, ex-
ecution status (i.e., successful, warned, blocked or failed), query
results of SELECT statements, and the final state of the database.

4.3 Comparing Transaction Execution Results

We first execute a group of transactions for each DBMS under a
certain submitted order following the protocol in Section 4.2, and
then compare their execution results to find discrepancies.

Basically, we first compare the execution results for each state-
ment in execResult.execOrder from beginning to end. Given two
execution results of a group of transactions on two DBMSs, we
fetch their i-th elements stmt1 and stmt2 in their execution order
execResult.execOrder, respectively. We then compare these two
statements’ execution results. Note that, once we find a discrepancy,
we will not continue to compare the following statements.

Inconsistent blocking. For stmt1 and stmt2, if one of them is
a blocking point, while the other is not, we report a discrepancy
with inconsistent blocked statements.

Inconsistent errors. If stmt1 or stmt2 reports a deadlock, while
the other statement does not, we report a discrepancy with incon-
sistent deadlock. If one of them reports a warning or an error, but
they do not report a warning or an error consistently, we report a
discrepancy with inconsistent error. Note that, we only compare
whether a warning or an error is reported, and do not compare error
message, since different DBMSs can throw different error message.

Inconsistent query results. For query statements, i.e., SELECT,
SELECT FOR SHARE and SELECT FOR UPDATE, we further compare
their query results and report inconsistent query results if they
are different. Note that DBMSs may return the data in query results
in different order. We ignore the order when we compare them.

Inconsistent database final states. Regardless of whether the
statement comparison results are consistent, we compare the data-
base final state among DBMSs, i.e., whether the tables among
DBMSs are consistent. If not, we report a discrepancy with in-
consistent database final state.

5 EVALUATION

We evaluate DT? on three widely-used MySQL-compatible DBMSs
i.e., MySQL, MariaDB and TiDB. We first explain DT?’s detection

Differentially Testing Database Transactions for Fun and Profit

result in this section, and then perform an empirical study on the
detected compatibility issues in Section 6.

5.1 Experimental Methodology

Tested DBMSs. We select MySQL, and two MySQL-compatible
DBMSs, i.e., MariaDB and TiDB as our research subjects. Table 1 lists
the details about them. The three DBMSs support the pessimistic
transaction mode, and some common isolation levels. All target
DBMSs are tested on the latest release versions when we started
this experiment, i.e., MySQL 8.0.27, MariaDB 10.7.1, and TiDB 5.4.0.

Testing setup. Our experiment is performed on Ubuntu-20.04
with 8 CPU cores and 32 GB RAM. We build a Docker container
for MySQL and MariaDB, respectively, and create a instance in it.
We deploy TiDB with 2 TiDB instances, 3 TiKV instances and 3 PD
instances.

Testing methodology. We run DT? on the three DBMSs for
about one week. If a transaction test triggers a discrepancy among
any two DBMSs at an isolation level, we will rerun the test under
all supported isolation levels, and validate whether the discrep-
ancy can occur under other isolation levels. Finally, we obtain 146
discrepancies in our experiment.

For each detected discrepancy, we first manually simplify its
test case, e.g., removing unnecessary SQL statements, columns and
data in the database, and simplifying WHERE expressions. Finally, we
generate a simplified test case that can lead to the same discrepancy.
After this process, we further remove the duplicate test cases that
trigger the same discrepancies under the same isolation levels.

For each remaining discrepancy, we further investigate whether
it is a bug or a compatibility issue. We investigate these discrep-
ancies by utilizing the following process. First, we investigate the
transaction implementations and user manuals provided by related
DBMSs [10, 15, 23]. If a discrepancy caused by DBMSs’ design
choices, we classify it as a compatibility issue. Second, once we
find that a discrepancy violates related DBMSs’ design choices, we
report it to developers as a potential bug. Note that, if we cannot
fully confirm that a discrepancy is a compatibility issue, we also
report it to developers for suggestions. If developers confirm that
the discrepancy is a compatibility issue, we will re-classify it as a
compatibility issue, otherwise, we re-classify it as a bug.

Finally, we obtain 28 bugs, and 92 compatibility issues. We discuss
them in details in Section 5.2 and Section 6, respectively.

5.2 Bug Results

In total, DT? has detected 28 bugs as shown in Table 2. Since a bug
may be triggered at more than one isolation levels, we consider the
bugs with the same test cases and bug manifestation at different
isolation levels as the same bug. In total, we detect 16 unique bugs.

Among the 16 unique bugs, 10 bugs are transaction bugs that
can only be triggered by concurrent transactions. The remaining 6
bugs are transaction-unrelated, which can be triggered by a single
SQL statement. DT? can detect both types of bugs, but the latter is
not our focus.

Among the 10 transaction bugs, 5 bugs are revealed at Read
Uncommitted, 7 bugs are revealed at Read Committed, 6 bugs are
found at Repeatable Read, and 4 bugs are revealed at Serializable.
Note that, a bug may be revealed at multiple isolation levels.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

1. /*init*/ CREATE TABLE t(cl INT PRIMARY KEY);
2. /*init*/ INSERT INTO t(cl) VALUES (3);
3. /*t1*/ BEGIN;
4. /*t1*/ UPDATE t SET cl = 2;
5. /*t2*/ BEGIN;
6. /*t2*/ DELETE FROM t; -- t2 blocked
7. /*t1*/ UPDATE t SET cl = 1;
8. /*tl*/ COMMIT; -- t2 released
9. /*t2*/ SELECT * FROM t FOR UPDATE;
10. /*t2*/ COMMIT;
cl cl cl
3 =] ©
initial table MariaDB result in TiDE_ resglt in
ine

Figure 3: MariaDB#27992 reported at Read Uncommitted, Read
Committed, Repeatable Read and Serializable.

We report these 16 bugs to DBMS developers, among which
6 bugs have been verified as previously-unknown bugs, one bug
has been fixed (classified as verified bug), 6 bugs are duplicate, 2
bugs are false positive, and the remaining 2 bugs have not been
confirmed yet. 4 newly found bugs are of high priority. In MariaDB,
2 transaction bugs are marked as critical and 2 transaction-unrelated
bugs are marked as major. In TiDB, 2 bugs are marked as moderate.

For the 6 newly detected bugs, 2 bugs leave the database in an
incorrect state, one bug causes the query result to be incorrect, 2
bugs lead to miss expected errors, and the remaining bug reports
an unexpected error.

5.3 Interesting Bugs

MariaDB#MDEV-27992 [7]. Figure 3 shows the simplified test
case that triggers a new transaction bug in MariaDB at all isolation
levels. The initial table is shown in the table on the left, where c1
is the primary key. ¢1 first updates value in c1 to 2 (Line 4), while
t2 simultaneously deletes all rows in the table and is blocked (Line
6). t1 then updates value in c1 to 1 and is committed (Line 7-8).
After that, t2 is resumed and queries the database state (Line 9).
The database states of MariaDB and TiDB are different, as shown
in the two tables on the right. MariaDB returns [(1)], while TiDB
returns the empty table due to the DELETE operation in 2 Line
6. DT? detects this inconsistent query results. The states of the
two databases after ¢2 is committed are the same as the results
queried in Line 9. Therefore this discrepancy causes inconsistent
database final states. The root cause of this bug is that MariaDB
does not UPDATE primary keys atomically. This bug will be fixed in
the upcoming release MariaDB 10.8.3.

1. /*init*/ CREATE TABLE t(c1 INT PRIMARY KEY, c2
INT);

2. /*init*/ INSERT INTO t(cl, c2) VALUES (1, 1);
3. /xt1%/ BEGIN;

4. /*t1%/ UPDATE t SET ¢l = 2, c2 = 2;

5. /xt2%/ BEGIN;

6. /xt2%/ DELETE FROM t; -- t2 blocked

7. /xt1%/ COMMIT;

8. /xt2x/ SELECT * FROM t; -- [(1, 1)1 in TiDB
9.

/*t2%/ COMMIT;
Listing 1: TiDB#33315 reported at Repeatable Read.

ASE 22, October 10-14, 2022, Rochester, MI, USA

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

Table 2: Bugs detected by DT?.

DBMS Transaction Related | Transaction Total Confirmed Unconfirmed False

RU | RC | RR | SER | Unrelated | (Unique*) | Verified | Duplicate Positive
MySQL | 2 | 2 | © 1 3(4) 0 2 0 2
MariaDB | 3 | 3 | 3 3 3 15(7) 4 1 2 0
TiDB - 23 - 2 7(5) 2 3 0 0
Total 5 17| 6 4 6 28(16) 6 6 2 2
* The numbers in parentheses show unique bugs.

Table 3: Compatibility issues detected by DT?.
Detected Unique
DBMS Transaction Related | Transaction Total Transaction Related | Transaction Total
RU | RC | RR | SER | Unrelated RU | RC | RR | SER | Unrelated

MySQL-MariaDB 0 0 5 5 2 12 0 0 4 4 2 10
MySQL-TiDB - 16 36 - 0 52 - 11 28 - 0 39
MariaDB-TiDB - 16 36 - 2 54 - 11 30 - 2 43
Total 0 32 77 5 4 118 0 22 62 4 4 92

TiDB#33315 [26]. Listing 1 illustrates a transaction bug detected
in TiDB at Repeatable Read. In this test case, MySQL and Mari-
aDB have the same execution results, while TiDB’s query result
is different from theirs. During database generation, c1 is set as
the primary key. 1 first updates values in c1 and c2 to 2 (Line 4).
Then ¢2 tries to delete the table and is blocked (Line 6). After ¢1 is
committed (Line 7), t2 executes DELETE successfully and retrieves
the table by SELECT statement (Line 8). MySQL and MariaDB return
an empty set, whereas TiDB returns [(1, 1)] wrongly. After two
transactions are committed, the database states are consistent in
the three DBMSs. DT? reports the discrepancy with inconsistent
query results. This bug occurs only when using clustered index
on c1. When ¢2 performs DELETE in Line 6, instead of marking (1, 1)
and (2, 2) as deleted, it only marks updated values (2, 2) as deleted.
Thus, the SELECT statement in Line 8 reads snapshot and returns [(1,
1)]. TiDB developers mark this bug as duplicate, but the scenario
that triggers the bug are different.

1. /xinit*/ CREATE TABLE t(c1 INT PRIMARY KEY, c2

INT);

2. /#init*/ INSERT INTO t(cl,

2);
/xt1%/
/xt1%/
/xt2%/
/%t2%/ DELETE
/%t1%/ DELETE

in MySQL
8. /+t1x/ COMMIT;
/xt2%/ COMMIT;

Listing 2: MySQL#106655 reported at Serializable.

c2) VALUES (1, 1), (2,
BEGIN;
SELECT
BEGIN;

* FROM t; -- [(1, 1), (2, 2)]

-- t2 blocked
-- t2 encounters deadlock

FROM t WHERE c1 = 1;
FROM t;

N o oA w

MySQL#106655 [24]. Listing 2 shows a transaction bug de-
tected in MySQL by differentially testing MySQL and MariaDB at
Serializable. When SELECT statement is executed, shared locks
are taken to prevent other transactions from modifying the data
that has been read. Thus, after ¢1 reads the initial table (Line 4), t2
is blocked since it tries to delete the rows where c1 is 1 (Line 6).
While ¢1 executes the next statement that deletes the table (Line 7),

a deadlock occurs in MySQL but does not occur in MariaDB. There-
fore, DT? reports the test report with inconsistent deadlock. This
bug is caused by a failed escalation of a lock from the shared one to
the exclusive one in MySQL. This is confirmed as a duplicate bug.
This bug is fixed in the upcoming release 8.0.29.
1. /#init*/CREATE TABLE t(c1 BLOB NOT NULL,c2 TEXT);
2. /xinit*/INSERT IGNORE INTO t VALUES(NULL, NULL),
(NULL, 'aa');
3. UPDATE t SET c2 = 'test' WHERE c1;
-- MariaDB reports an error
ERROR: Truncated incorrect DOUBLE value:

'

Listing 3: MariaDB#28140 reported as a transaction-
unrelated bug.

MariaDB#MDEV-28140 [25]. Although our purpose is to test
transactions, DT? can also detect bugs that are not related to transac-
tions, i.e., bugs are caused by one statement in transactions. Listing 3
shows a new bug detected in MariaDB. In this test case, MariaDB
reports an error when executing only the UPDATE statement (Line
3) whereas MySQL does not report an error, thus DT? reports in-
consistent error. MariaDB developers confirm it as a bug.

5.4 TFalse Positives

Two of our reported bugs to MySQL are considered as not a bug.
However, we still consider that these test cases can indicate some
issues. We simply explain them as follows.

MySQL#106629 [8]. This problem is triggered by the same test
case in Figure 3, and its manifestation is the same as that in MariaDB.
However, MySQL developers think that the behavior is expected.

1. /xinitx/ CREATE TABLE t(cl VARCHAR(10));

2. /#init#/ INSERT IGNORE INTO t(cl1) VALUES ('try');

3. UPDATE t SET c1 = 'test' WHERE (CAST(('al2') AS

DOUBLE)) IS NULL;
4. UPDATE t SET c1 = 'test' WHERE (CAST(('al2') AS

DOUBLE)) IS NOT NULL; -- MySQL reports an error
ERROR: Truncated incorrect DOUBLE value: 'al2'

Listing 4: MySQL#107125 reported as a false positive.

Differentially Testing Database Transactions for Fun and Profit

MySQL#107125 [27]. Listing 4 illustrates a problem detected in
MySQL. In this test case, UPDATE statement with IS NULL does not
return error or warning (Line 3), since the WHERE expression with
IS NULL is evaluated to be FALSE. However, UPDATE statement with
IS NOT NULL returns an error (Line 4), even if the WHERE expression
with IS NOT NULL is evaluated to be TRUE. MySQL developers think
it is not a bug. They explain that “IS NULL and IS NOT NULL have
different, non-symmetric validation functions”. But they also said
“Tt could be reasonable to treat IS NOT NULL the same as IS NULL,
though”.

6 COMPATIBILITY ISSUE STUDY

As shown in Table 3, we detect 118 test scenarios that can trigger
compatibility issues in our experiment (Detected). After remov-
ing duplicate scenarios in Section 5.1, we finally obtain 92 unique
compatibility issues (Unique), in which 88 are transaction-related
compatibility issues. In the following, we mainly study these 88
transaction-related compatibility issues.

For the 88 transaction-related compatibility issues, 8 issues are
found between MySQL and MariaDB, 39 issues are found between
MySQL and TiDB, and 41 issues are found between MariaDB and
TiDB. This distribution illustrates that TiDB has more compatibility
issues than MariaDB.

Among the 88 compatibility issues, none are found at Read
Uncommitted, 22 issues are found at Read Committed, 62 issues are
found at Repeatable Read, and 4 issues are found at Serializable.

We further investigate these transaction-related compatibility
issues, and try to answer two research questions.

* RQ1 (Root cause): What are the root causes of compatibility
issues?

e RQ2 (Consequence): What consequences do compatibility is-
sues have?

Study methodology. To reduce the subjective bias, three au-
thors independently investigate these compatibility issues, and
identify their root causes and consequences. Then, they discuss
analysis results, and reach consensus for each compatibility issue.

6.1 RQ1. Root Cause

From the 88 transaction-related compatibility issues, we identify
three root causes. We elaborate them as follows.

Inconsistent lock mechanisms in DBMSs. Different DBMSs
adopt different lock mechanisms for different SQL statements, e.g.,
INSERT, UPDATE, and DELETE, at different isolation levels. We briefly
explain some key differences as follows.

o MySQL. At Read Committed, MySQL performs semi — consistent
read, in which, when an UPDATE statement examines a row that is
already locked, MySQL first utilizes the latest committed version
to determine whether the row matches the WHERE condition. If
yes, MySQL will lock the row. Otherwise, MySQL will not lock the
row. However, at Repeatable Read and Serializable isolation
levels, MySQL will lock its examined rows regardless of the WHERE
condition’s evaluated value. MySQL further utilizes Gap Lock
at Repeatable Read and Serializable to lock a gap between
index records.

ASE ’22, October 10-14, 2022, Rochester, MI, USA

e MariaDB. MariaDB’s lock mechanism is almost the same as
MySQL. They have slightly different lock behaviors for some
cases, e.g., locks for primary keys.

e TiDB. At both Read Committed and Repeatable Read, TiDB’s
lock mechanism for all kinds of SQL statements (e.g., UPDATE
and DELETE) is similar to semi — consistent read in MySQL. TiDB
does not support Gap Lock.

./*init*/ CREATE TABLE t(c1 INT, c2 INT);

./*init*/ INSERT INTO t(cl, c2) VALUES (2, NULL);

./*t1%/ BEGIN;

./*t1%/ UPDATE t SET ¢1 =1, ¢c2 = 1;

./*t2%/ BEGIN;

./*t2%*/ UPDATE t SET c1 = 3 WHERE c2; -- t2
blocked in MySQL, not in TiDB

./*t1%/ COMMIT;

8./*t2%/ COMMIT;

o U A WN =

~

Listing 5: Inconsistent lock point at Repeatable Read.

The lock mechanism differences can lead to different execution
behaviors, which can cause compatibility issues. 78 (89%) compati-
bility issues are caused by inconsistent lock mechanisms. Listing 5
shows a compatibility issue caused by inconsistent lock mecha-
nisms at Repeatable Read for MySQL and TiDB. The initial table
contains only one row [(2, null)]. ¢1 firstly updates the values in
cl and c2 to 1 (Line 4), and ¢2 tries to update the row where c2 is
not NULL (Line 6). As a result, ¢2 is blocked in MySQL. After ¢1 is
committed (Line 7), £2 is resumed and updates the row successfully.
In TiDB, #2 first evaluates the WHERE condition (i.e., WHERE ¢2) on
the row [(2, null)] to be FALSE, so it is not blocked and executes
UPDATE without affecting any data. The database final states be-
tween MySQL and TiDB are different. In MySQL, the database state
is [(3, 1)], while it is [(1, 1)] in TiDB, which causes inconsistent
database states.

The aborted transaction is different when a deadlock oc-
curs. 4 (5%) compatibility issues are due to inconsistent aborted
transaction after a deadlock occurs. After a deadlock occurs, one of
transactions is rolled back to break the deadlock. However, DBMSs
adopt different strategies to choose the aborted transaction. There-
fore, different DBMSs can abort different transactions when a dead-
lock occurs.

/*initx/ CREATE TABLE t(cl INT, c2 INT);

/*initx/ INSERT INTO t(cl, €2) VALUES (1, 1);

/*t1%/ BEGIN;

/%t2%/ BEGIN;

/*t2%/ DELETE FROM t WHERE c1 = 1;

/*t2%/ COMMIT;

/*t1%/ SELECT * FROM t; -- [1 in MySQL and
MariaDB, [(1, 1)] in TiDB

8. /*t1x/ COMMIT;

N oA WwN =

Listing 6: Inconsistent snapshot creation.

Inconsistent snapshot creation. 6 (7%) compatibility issues
are caused by inconsistent snapshot creation location at Repeatable
Read. In TiDB, snapshot is established at the BEGIN statement by
default. However, in MySQL and MariaDB, snapshot is created by
the first SELECT by default.

Listing 6 illustrates a compatibility issue caused by inconsistent
snapshot creation at Repeatable Read. The initial table contains
one row [(1, 1)]. 1 first starts (Line 3). Then, ¢2 starts, deletes the row
where c1 is 1 and is committed (Line 4-6). Finally, ¢1 retrieves the

ASE 22, October 10-14, 2022, Rochester, MI, USA

Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

Table 4: Root causes and consequences of transaction-related compatibility issues.

Root Cause Consequence
DBMS Lock Aborted Snapshot | Database | Query No Total
mechanism | transaction | creation state result | difference
MySQL-MariaDB 8 0 0 4 0 4 8
MySQL-TiDB 34 2 3 16 9 14 39
MariaDB-TiDB 36 2 3 17 9 15 41
Total 78 4 6 37 18 33 88

database with SELECT statement (Line 7). TiDB reads the snapshot
established in Line 3, and returns [(1, 1)]. Whereas, MySQL and
MariaDB read the snapshot created by the first SELECT (i.e., Line
7), and return []. After ¢2 is committed (Line 8), the database states
are consistent, i.e., [].

6.2 RQ2. Consequence

As shown in Table 4, for the 88 transaction-related compatibility
issues, 66 (75%) can cause inconveniences among DBMSs, i.e., incon-
sistent database states and query results. The remaining 22 (25%)
compatibility issues can cause inconsistent blocked statements, but
do not affect the final execution results.

Inconsistent database state. In 37 (42%) compatibility issues,
the same transactions can result in inconsistent database states
among the tested DBMSs. Listing 5 shows such a compatibility
issue.

Inconsistent query result. For the remaining 51 compatibility
issues that cannot result in inconsistent database states, 18 (21%)
compatibility issues result in inconsistent query results for SELECT
statements. Listing 6 shows such a compatibility issue. Note that, if
a compatibility issue can cause inconsistent database state, we will
not count it as an issue with inconsistent query result.

6.3 Lessons Learned

Insufficiency over transaction behaviors. Although MariaDB
and TiDB claim to be compatible with MySQL, their different be-
haviors of transaction executions are not well documented, which
introduces many compatibility issues at different isolation levels.
Although isolation levels have been clearly specified in literatures
[1, 28, 29, 34], transaction execution behaviors can be seriously
affected by various design choices in different DBMSs, e.g., lock
mechanisms and snapshot creation. From our study, we can see
that there lacks of a specification for transaction behaviors. This
may cause confusion for DBMS developers and DBMS application
developers. We hope a transaction behavior specification can sig-
nificantly alleviate this situation.

Guidance on database migration. Transaction-related com-
patibility issues can cause inconsistent query results and inconsis-
tent database states. DBMS application developers should be aware
of these compatibility issues when migrating their applications
among DBMSs. They need to consider whether these compatibility
issues can break down their applications slightly. The compatibil-
ity issues that we revealed can be used to analyze the effect on
their applications when migrating their applications among these
DBMSs.

7 DISCUSSION

In this section, we discuss the threats and limitations in our work.

7.1 Threats to Validity

First, we evaluate DT? using three MySQL-compatible DBMSs. Our
studied MySQL-compatible DBMSs are widely-used and provide
mainstream isolation levels. We believe they are representative
for MySQL-compatible DBMSs. However, our experimental results
may not reflect the situation in other DBMSs, e.g., PostgreSQL-
compatible DBMSs and their optimistic transactions.

Second, we may introduce human errors when manually ana-
lyzing and determining whether a discrepancy is a compatibility
issue. To alleviate this threat, three authors carefully study each
discrepancy found during testing. If we cannot reach consensus for
a discrepancy, we ask DBMS developers for confirmation.

Third, DT? adopts random testing approach, and may not reveal
all compatibility issues among the tested DBMSs. Thus, our study
on compatibility issues may not be complete.

7.2 Limitations

Support for more DBMSs. Currently DT? only supports three
MySQL-compatible DBMSs, but it can be extended to support other
DBMSs. We also intend to support more MySQL-compatible DBMSs.
DT? can support other MySQL-compatible DBMSs by avoiding to
generate test cases involving features that these DBMSs do not
support. DT? can also extended to support other kinds of DBMSs,
e.g., PostgreSQL-compatible DBMSs. For supporting these DBMSs,
we have to re-implement database generation and SQL statement
generation.

Support for the optimistic transaction mode. Some DBMSs
support the optimistic transaction mode, e.g., PostgreSQL and TiDB.
In the optimistic mode, a transaction is blocked, then checks for con-
flicts and rolls back conflicting transactions before it is committed.
Testing DBMSs under this mode is similar to testing DBMSs under
the pessimistic transaction mode. To support optimistic mode, we
need to submit transaction statements to DBMS in a submitted
order, record aborted transactions and add them to the test results.

8 RELATED WORK

Differential testing. Differential testing [55] has been widely ap-
plied in many domains, such as compilers [32, 65], runtime systems
[44, 45], symbolic execution engines [51], and software libraries
[46]. For DBMSs, RAGS [61] adopts differential testing of single
query statements to find database bugs. Jung et al. [50] introduces
a tool, APOLLO, to detect performance regressions by executing

Differentially Testing Database Transactions for Fun and Profit

SQL queries on two versions of one DBMS. Sotiropoulos et al. [63]
applies differential testing on Object-Relational Mapping systems
to find ORM-specific bugs. Zheng et al. [67] proposes a differential
testing approach, Grand, for detecting logic bugs in Gremlin-based
graph database systems. Inspired by these works, we utilize dif-
ferential testing to detect transaction bugs and transaction-related
compatibility issues.

Database testing. Many approaches that automatically gener-
ate SQL queries and databases to test DBMSs have been proposed.
SQLsmith [18] generates random SQL queries to find DBMS bugs.
More recently, Rigger et al. [58-60] has proposed a series of works
to find logical bugs by generating single SQL queries. Bati et al.
[33] presents the technique of randomly generating test cases and
using the execution feedback obtained from the tested DBMS to
generate queries. These existing approaches are designed to find
DBMS-specific bugs and cannot detect transactions bugs.

Transaction testing and verification. To improve the correct-
ness of transaction implementations, many works verify whether
DBMSs violate their claimed transactional consistency and isolation.
Brutschy et al. [41] proposes an effective serializability criterion
to extend the serializability of conflicts to eventually consistency
semantics. They also present a dynamic analyzer to check whether
a given program execution conforms to the criterion. Elle [53] and
COBRA [64] verify the serializability of database based on depen-
dency graph introduced by Adya [29]. However, these works mainly
focus on designing specific key — value database models, and can
not be applied to test complex transaction features in real-world
DBMSs, e.g., database constraints and cross-table queries.

Isolation violations in database-backed applications. Some
works have been proposed to detect or debug isolation violations
and anomalies in real-world database-backed applications. Deng
et al. [48] designs AGENDA for testing database-driven applica-
tions. Rahmani et al. [56] introduces a static testing framework,
CLOTHO, to detect serializability violations in database-backed
applications running on weakly-consistent storage systems. Gan
et al. [49] presents a tool, IsoDiff, for debugging anomalies that
are caused by Read Committed and Snapshot Isolation isola-
tion levels in real-world applications. Biswas et al. [38] proposes a
mock storage system, MonkeyDB, to test the correctness of storage-
backed applications at weak isolation levels. Our compatibility issue
study among DBMSs can be used to further detect violations in
database-based applications.

9 CONCLUSION

Buggy transaction implementations in DBMSs can violate their
claimed ACID properties, and lead to severe consequences, e.g.,
incorrect database states and query results. In this paper, we pro-
pose DT?, an automated transaction testing approach to detect
transaction discrepancies among DBMSs by differential testing. We
evaluate DT? on three widely-used MySQL-compatible DBMSs, and
have detected 10 unique transaction bugs and 88 transaction-related
compatibility issues from the detected discrepancies.

ACKNOWLEDGMENTS

This work was partially supported by National Natural Science
Foundation of China (62072444, 61732019), Frontier Science Project

ASE ’22, October 10-14, 2022, Rochester, MI, USA

of Chinese Academy of Sciences (QYZD]-SSW-JSC036), and Youth
Innovation Promotion Association at Chinese Academy of Sciences
(2018142, 201924).

REFERENCES

[1] 2022. The ANSI isolation levels. http://www.adp-gmbh.ch/ora/misc/isolation_

level.html.

2022. CockroachDB. https://www.cockroachlabs.com.

2022. Data Types in MariaDB. https://mariadb.com/kb/en/data-types.

[4] 2022. Data Types in MySQL. https://dev.mysql.com/doc/refman/8.0/en/data-
types.html.

[5] 2022. Data Types in TiDB. https://docs.pingcap.com/tidb/stable/data-type-
overview.

[6] 2022. DB-Engines. https://db-engines.com/en/ranking.

[7] 2022. DELETE fails to delete record after blocking is released. https://jira.mariadb.
org/browse/MDEV-27992.

[8] 2022. DELETE fails to delete record after blocking is released. https://bugs.mysql.
com/106629.

[9] 2022. GitHub. https://github.com.

[10] 2022. InnoDB Transaction Model. https://dev.mysql.com/doc/refman/8.0/en/
innodb-transaction-model.html.

[11] 2022. INSERT fails to return an error after transaction abort. https://jira.mariadb.

org/browse/MDEV-27922.

] 2022. MariaDB. https://mariadb.org.

] 2022. MySQL. https://www.mysql.com.

] 2022. PostgreSQL. https://www.postgresql.org.

] 2022. Set Transaction in MariaDB. https://mariadb.com/kb/en/set-transaction.

] 2022. SQLancer. https://www.manuelrigger.at/dbms-bugs.

]

]

]

[2

—_
A

2022. SQLite. https://www.sqlite.org/index.html.

2022. SQLsmith. https://jepsen.io.

2022. TiDB Optimistic Transaction Model. https://docs.pingcap.com/tidb/stable/

optimistic-transaction.

[20] 2022. TiDB Pessimistic Transaction Mode. https://docs.pingcap.com/tidb/stable/
pessimistic-transaction.

[21] 2022. TiDB, PingCAP. https://pingcap.com.

[22] 2022. Transaction Isolation Levels in MySQL. https://dev.mysql.com/doc/refman/
8.0/en/innodb-transaction-isolation-levels.html.

[23] 2022. Transactions in TiDB. https://docs.pingcap.com/tidb/stable/transaction-
overview.

[24] 2022. Unexpected Deadlock Happened When Two transaction Execute Concur-
rently. https://bugs.mysql.com/106655.

[25] 2022. Unexpected error when UPDATE a NULL. https://jira.mariadb.org/browse/
MDEV-28140.

[26] 2022. Weird SELECT when table has the primary key. https://github.com/pingcap/
tidb/issues/33315.

[27] 2022. Weird statement with IS NULL and with IS NOT NULL. https://bugs.mysql.
com/107125.

[28] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Im-

plementations for Distributed Transactions. Ph.D. Dissertation. Massachusetts

Institute of Technology.

Atul Adya, Barbara Liskov, and Patrick O’Neil. 2000. Generalized Isolation Level

Definitions. In Proceedings of International Conference on Data Engineering (ICDE).

67-78.

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,

and Ion Stoica. 2013. Highly Available Transactions: Virtues and Limitations.

Proceedings of the VLDB Endowment 7, 3 (2013), 181-192.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.

2016. Scalable Atomic Visibility with RAMP Transactions. ACM Transactions on

Database Systems 41, 3 (2016).

[32] Gerg"o Barany. 2018. Finding Missed Compiler Optimizations by Differential

Testing. In Proceedings of International Conference on Compiler Construction. 82—

92.

Hardik Bati, Leo Giakoumakis, Steve Herbert, and Aleksandras Surna. 2007. A

Genetic Approach for Random Testing of Database Systems. In Proceedings of

International Conference on Very Large Data Bases (VLDB). 1243-1251.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of ACM

SIGMOD International Conference on Management of Data (SIGMOD), Vol. 24.

1-10.

Philip A. Bernstein and Nathan Goodman. 1983. Multiversion concurrency

control—theory and algorithms. ACM Transactions on Database Systems (TODS)

8, 4 (1983), 465-483.

Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Ozsu. 2007. QA-

Gen: Generating Query-Aware Test Databases. In Proceedings of ACM SIGMOD

International Conference on Management of Data (SIGMOD). 341-352.

&~
20,

[30

[31

[33

[34

[35

[36

http://www.adp-gmbh.ch/ora/misc/isolation_level.html
http://www.adp-gmbh.ch/ora/misc/isolation_level.html
https://www.cockroachlabs.com
https://mariadb.com/kb/en/data-types
https://dev.mysql.com/doc/refman/8.0/en/data-types.html
https://dev.mysql.com/doc/refman/8.0/en/data-types.html
https://docs.pingcap.com/tidb/stable/data-type-overview
https://docs.pingcap.com/tidb/stable/data-type-overview
https://db-engines.com/en/ranking
https://jira.mariadb.org/browse/MDEV-27992
https://jira.mariadb.org/browse/MDEV-27992
https://bugs.mysql.com/106629
https://bugs.mysql.com/106629
https://github.com
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-model.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-model.html
https://jira.mariadb.org/browse/MDEV-27922
https://jira.mariadb.org/browse/MDEV-27922
https://mariadb.org
https://www.mysql.com
https://www.postgresql.org
https://mariadb.com/kb/en/set-transaction
https://www.manuelrigger.at/dbms-bugs
https://www.sqlite.org/index.html
https://jepsen.io
https://docs.pingcap.com/tidb/stable/optimistic-transaction
https://docs.pingcap.com/tidb/stable/optimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://docs.pingcap.com/tidb/stable/pessimistic-transaction
https://pingcap.com
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://docs.pingcap.com/tidb/stable/transaction-overview
https://docs.pingcap.com/tidb/stable/transaction-overview
https://bugs.mysql.com/106655
https://jira.mariadb.org/browse/MDEV-28140
https://jira.mariadb.org/browse/MDEV-28140
https://github.com/pingcap/tidb/issues/33315
https://github.com/pingcap/tidb/issues/33315
https://bugs.mysql.com/107125
https://bugs.mysql.com/107125

ASE 22, October 10-14, 2022, Rochester, MI, USA Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and Dan Ye

[37] Ranadeep Biswas and Constantin Enea. 2019. On the Complexity of Checking [52] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O Laleye, and Sarfraz Khurshid. 2008.

Transactional Consistency. In Proceedings of ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA). 165:1-
165:28.

Ranadeep Biswas, Diptanshu Kakwani, Jyothi Vedurada, Constantin Enea, and
Akash Lal. 2021. MonkeyDB: Effectively Testing Correctness under Weak Iso-
lation Levels. In Proceedings of ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA). 132:1-132:27.
Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In
Proceedings of the VLDB Endowment. 1097-1107.

Nicolas Bruno, Surajit Chaudhuri, and Dilys Thomas. 2006. Generating Queries
with Cardinality Constraints for DBMS Testing. In IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 18. 1721-1725.

Lucas Brutschy, Dimitar Dimitrov, Peter Miiller, and Martin Vechev. 2017. Se-
rializability for Eventual Consistency: Criterion, Analysis, and Applications. In
Proceedings of ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), Vol. 52. 458-472.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework
for Transactional Consistency Models with Atomic Visibility. In Proceedings of
International Conference on Concurrency Theory (CONCUR). 58-71.

Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A Structured
English Query Language. In Proceedings of ACM SIGFIDET Workshop on Data
Description, Access and Control. 249-264.

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of
JVM Implementations. In Proceedings of International Conference on Software
Engineering (ICSE). 1257-1268.

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-Directed Differential Testing of JVM Implementations. In Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 85-99.

Yuting Chen and Zhendong Su. 2015. Guided Differential Testing of Certificate
Validation in SSL/TLS Implementations. In Proceedings of Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE). 793-804.

Edgar F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks.
Commun. ACM 13, 6 (1970), 377-387.

Yuetang Deng, Phyllis Frankl, and David Chays. 2005. Testing Database Trans-
actions with AGENDA. In Proceedings of International Conference on Software
Engineering (ICSE). 78-87.

Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020.
IsoDiff: Debugging Anomalies Caused by Weak Isolation. Proceedings of the
VLDB Endowment (PVLDB) 13, 12 (2020), 2773-2786.

Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proceedings of the VLDB Endowment (VLDB) 13, 1 (2019),
57-70.

Timotej Kapus and Cristian Cadar. 2017. Automatic Testing of Symbolic Exe-
cution Engines via Program Generation and Differential Testing. In Proceedings
of IEEE/ACM International Conference on Automated Software Engineering (ASE).
590-600.

Query-Aware Test Generation Using a Relational Constraint Solver. In Proceedings
of IEEE/ACM International Conference on Automated Software Engineering (ASE).
238-247.

Kyle Kingsbury and Peter Alvaro. 2020. Elle: Inferring Isolation Anomalies
from Experimental Observations. In Proceedings of the VLDB Endowment, Vol. 14.
268-280.

Hsiang-Tsung Kung and John T Robinson. 1981. On optimistic methods for
concurrency control. ACM Transactions on Database Systems (TODS) 6, 2 (1981),
213-226.

William M. McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal 10, 1 (1998), 100-107.

Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2019.
CLOTHO: Directed Test Generation for Weakly Consistent Database Systems.
In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA). 117:1-117:28.

David Patrick Reed. 1978. Naming and synchronization in a decentralized computer
system. Technical Report.

Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-Optimizing Reference Engine Construction. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 1140-1152.

Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. In Proceedings of ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA). 211:1-211:30.
Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of USENIX Symposium on Operating Systems

Design and Implementation (OSDI). 667-682.
Donald R. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of the

VLDB Endowment. 618-622.

Xiaohui Song and Jane W-S Liu. 1990. Performance of multiversion concurrency
control algorithms in maintaining temporal consistency. In Proceedings of Annual
International Computer Software and Applications Conference. 132-139.
Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis, Dimitris Mitropou-
los, and Diomidis Spinellis. 2021. Data-Oriented Differential Testing of Object-
Relational Mapping Systems. In Proceedings of IEEE/ACM International Conference
on Software Engineering (ICSE). 1535-1547.

Cheng Tan, Changgeng Zhao, Shuai Mu, and Michael Walfish. 2020. Cobra:
Making Transactional Key-Value Stores Verifiably Serializable. In Proceedings
of USENIX Symposium on Operating Systems Design and Implementation (OSDI).
63-80.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-
standing Bugs in C Compilers. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 283-294.

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of International
Conference on Management of Data (SIGMOD). 1629-1642.

Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Differential Testing. In Proceedings of
ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA).
302-313.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Relational DBMSs and SQL
	2.2 Tested DBMSs

	3 Motivating Examples
	4 Approach
	4.1 Transaction Test Case Generation
	4.2 Deterministic Transaction Execution
	4.3 Comparing Transaction Execution Results

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Bug Results
	5.3 Interesting Bugs
	5.4 False Positives

	6 Compatibility Issue Study
	6.1 RQ1. Root Cause
	6.2 RQ2. Consequence
	6.3 Lessons Learned

	7 Discussion
	7.1 Threats to Validity
	7.2 Limitations

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

