
Common Data Guided Crash Injection for Cloud Systems
Yu Gao

State Key Lab of Computer Sciences,
Institute of Software, Chinese

Academy of Sciences
University of Chinese Academy of

Sciences, Beijing, China
gaoyu15@otcaix.iscas.ac.cn

Dong Wang
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China

wangdong18@otcaix.iscas.ac.cn

Qianwang Dai
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China

daiqianwang19@otcaix.iscas.ac.cn

Wensheng Dou∗
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wsdou@otcaix.iscas.ac.cn

Jun Wei
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wj@otcaix.iscas.ac.cn

ABSTRACT
Modern distributed systems are designed to tolerate node crashes.
However, incorrect crash recovery mechanisms and implementa-
tions can still introduce crash recovery bugs, and hurt reliability
and availability of cloud systems. In this paper, we present Deminer,
a novel crash injection technique that automatically injects node
crashes/reboots to effectively expose crash recovery bugs in cloud
systems. We observe that, node crashes that interrupt the execution
of related operations, which store common data to different places
(i.e., different storage paths or nodes), are more likely to trigger
crash recovery bugs. Based on this observation, Deminer first tracks
the critical data usage in a correct run. Then Deminer identifies
related operations and predicts error-prone crash points. Finally,
Deminer tests the predicted crash points and checks whether the
target system can behave correctly. We have evaluated Deminer
on three widely-used cloud systems: ZooKeeper, HBase and HDFS.
Deminer has detected 6 crash recovery bugs. A video demonstration
of Deminer is available at https://youtu.be/jS6KBcYnTSM.

CCS CONCEPTS
• Software and its engineering→ Cloud computing; Software
reliability; Software testing and debugging.

KEYWORDS
Fault injection, crash recovery, cloud system, bug detection
∗Wensheng Dou is also affiliated with Nanjing Institute of Software Technology and
University of Chinese Academy of Sciences, Nanjing, China. Wensheng Dou is the
corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516852

ACM Reference Format:
Yu Gao, Dong Wang, Qianwang Dai, Wensheng Dou, and Jun Wei. 2022.
Common Data Guided Crash Injection for Cloud Systems. In 44th Interna-
tional Conference on Software Engineering Companion (ICSE ’22 Companion),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3510454.3516852

1 INTRODUCTION
Cloud systems are widely adopted by modern enterprises, e.g.,
Google and Alibaba, as scalable computing frameworks [12], stor-
age systems [4, 13, 16], cluster management services [2] and syn-
chronization services [9], to support reliable services for users.
Unfortunately, components in cloud systems, i.e., nodes, can in-
evitably fail [11], which can hurt the reliability and availability of
cloud systems. Although cloud systems are designed to tolerate
node crashes, it is challenging for developers to design and imple-
ment bug-free crash recovery protocols that guarantee all the node
crashes can be tolerated and recovered from. Incorrect crash recov-
ery protocols and implementations can introduce crash recovery
bugs [15], and cause severe consequences, e.g., node downtime,
data staleness and operation failures.

Among all kinds of crash scenarios, crashes that can cause incon-
sistent system states, are more likely to trigger crash recovery bugs.
We observe that a node in the cloud system can store a piece of
data (we refer it as the common data) to multiple places outside the
node, e.g., other nodes in the cluster or a storage system. Crashing
the node will remove its in-memory states, while the data stored
outside the node can still be accessed and affect system behaviors. A
node crash that interrupts the execution of those storage operations
that use common data can cause inconsistent system states, and
further fail the subsequent recovery process.

Figure 1 illustrates a buggy crash scenario that interrupts the exe-
cution of storage operations that use common data from ZooKeeper.
Here, a node follows and synchronizes with the current leader in
startup process. The follower node first gets the newest transac-
tion ID from the leader through message msg1 (Line 3). Then it
deserializes the snapshot from another message msg2 for synchro-
nization (Line 11). Both msg1 and msg2 transfer the common data,

https://youtu.be/jS6KBcYnTSM
https://doi.org/10.1145/3510454.3516852
https://doi.org/10.1145/3510454.3516852

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Yu Gao, Dong Wang, Qianwang Dai, Wensheng Dou, and Jun Wei

1. InputArchive leaderIs;

2. void followLeader() {

//receive the LEADERINFO which contains

//the new epoch value from leader

3. long newEpochZxid = registerWithLeader();

4. syncWithLeader(newEpochZxid);

5. }

6. void syncWithLeader(long newEpochZxid) {

7. QuorumPacket qp = new QuorumPacket();

8. readPacket(qp);

9. long newEpoch = getEpochFromZxid(newLeaderZxid);

10. if (qp.getType() == Leader.SNAP) {

//deserialize the snapshot that contains the

//new epoch value from leader

11. zkDatabase.deserializeSnapshot(leaderIs);

12. }

13. while (self.isRunning()) {

14. readPacket(qp);

15. switch (qp.getType()) {

16. case Leader.NEWLEADER:

//store current data state to snapshot file

17. takeSnapshot();

//CRASH

//store new epoch to currentEpoch file

18. setCurrentEpoch(newEpoch);

19. break;

20. }

21. }

22.}

𝑚𝑠𝑔1

𝑚𝑠𝑔2

Figure 1: Simplified code snippet from ZooKeeper.

i.e., the new epoch value. When receiving the UPTODATE message
from the leader (Line 16), the follower first takes a snapshot of the
current data state (Line 17), and then stores the new epoch value
to the currentEpoch file (Line 18). When the follower crashes
between Line 17 and Line 18, it will never be able to start without
human intervention due to the inconsistent epoch value stored in
the snapshot file and the currentEpoch file.

Recent research has been conducted on detecting bugs related
to node crashes. Random fault injection frameworks [3, 5] inject
crashes randomly, and hope to hit small bug-triggering time win-
dows through many tries. Distributed model checkers [7, 19, 24, 28]
that systematically permute the orderings of non-deterministic
distributed events, suffer from the state explosion problem. Bug de-
tection approaches [22, 23] based on program analysis are designed
to detect time-of-fault bugs and meta-info related bugs, respectively.

In this paper, we propose Deminer, a novel approach to expose
crash recovery bugs. Deminer works by injecting node crashes
and reboots between related operations that store the common
data to different places, i.e., different nodes and storage paths. First,
Deminer tracks how the critical data are used by observing a correct
run. Second, Deminer identifies related operations that use common
data based on the execution trace, and predicts error-prone crashes
that can interrupt the execution of these related operations. Finally,
Deminer injects the predicted crashes/reboots to the target system
and checks failure symptoms to confirm harmful crashes.

We have implemented a tool of Deminer, and applied it to the
latest versions of three popular cloud systems: ZooKeeper, HBase
and HDFS. Deminer has detected 6 crash recovery bugs. These
detected bugs can cause operation failure, data staleness, node
downtime, cluster out of service and and misleading error message.

2 DEMINER
Deminer first traces data usage of the target system at run time
(Section 2.1), and then predicts error-prone crashes based on the
execution trace (Section 2.2). Finally, Deminer injects predicted
node crashes and corresponding node reboots to the target system
and validates system behaviors (Section 2.3).

2.1 Data Usage Tracing
Deminer first tracks how the critical data flows at run time and
trace storage operations that use the critical data. The critical data
refers to the data read from a user specified storage path and the
data received from a message sent by another node in the cluster
or the client. Inconsistent cognition of these data is more likely to
cause serious consequences. Specifically, a storage operation refers
to an RPC call/socket sending operation that sends data to another
node, or a file write operation that updates data to a storage path
(e.g., a local file, an HDFS file or a ZooKeeper path).

Intra-node data tracking. Deminer tracks how the critical data
flows in a node based on Phosphor [8], a dynamic taint tracking
system for the Java Virtual Machine (JVM). Phosphor adds a shadow
variable for each variable, and a shadow field for each object to
store the corresponding taints of the data, and instruments all byte
code that runs in the JVM to track taint propagation. As Phosphor
is implemented within the JVM, we cannot track the data that pass
through between nodes and local files.

Inter-node data tracking. Deminer performs inter-node data
tracking by adding a random integer (we refer it as message ID) as
an extra parameter/field for an RPC/socket message. For example,
the LEADERINFO message received by the follower shown in Fig-
ure 1 (Line 3), is attached with a message ID msg1. The snapshot
message (Line 11) is attached with a message ID msg2. By using
the message ID, Deminer can pair a message sending point with its
corresponding message receiving point. Therefore, Deminer can
track inter-node data flows at off-line analysis stage (Section 2.2).

Once a piece of critical data is obtained by the system, Deminer
generates a unique taint to mark the data. As shown in Figure 2, a
taint contains three parts: (1) taint ID, we simply use a volatile long
type number; (2) node ID, which uniquely identifies every node
in the cloud system. We use a combination of server IP and the
process identifier (PID); (3) data source, which specifies where the
data comes from. We use the path string for the data read from a
storage system, and use the node IP and the message ID for the
data received from a message.

When a storage operation uses the critical data, Deminer gener-
ates a record. As shown in Figure 2, a record mainly consists of four
pars: (1) the destination ID. We use the path string for the operation
written to a storage system, and use the destination node IP and
the message ID for an RPC call/socket sending operation; (2) taints,
specifying the critical data used by the operation; (3) call stack; (4)
local time stamp counter obtained by RDTSCP, which provides an

Common Data Guided Crash Injection for Cloud Systems ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

node1 (leader):

send_LEADERINFO record:{

“DEST_ID”: “node2:𝑚𝑠𝑔1”

“TAINTS”: [

{

“TAINT_ID”: 1L

“NODE”: “node1”

“SOURCE”: “acceptedEpoch”

}

]}

send_snapshot record:{

“DEST_ID”: “node2:𝑚𝑠𝑔2”

“TAINTS”: [

{

“TAINT_ID”: 1L

“NODE”: “node1”

“SOURCE”: “acceptedEpoch”

}

]}

1

2

node2 (follower):

takeSnapshot record:{

“DEST_ID”: “snapshot.200000003”

“TAINTS”: [

{

“TAINT_ID”: 3L

“NODE”: “node2”

“SOURCE”: “node1:𝑚𝑠𝑔2”

}

]}

setCurrentEpoch record:{

“DEST_ID”: “currentEpoch”

“TAINTS”: [

{

“TAINT_ID”: 2L

“NODE”: “node2”

“SOURCE”: “node1:𝑚𝑠𝑔1”

}

]}

3

4

Figure 2: Simplified execution trace for Figure 1.

approximate nano-second level ordering among operations in one
machine.

2.2 Crash Prediction
Deminer identifies related storage operation pairs that use common
data based on the execution trace collected in Section 2.1, and
generates crashes that interrupt the execution of related pairs.

Identifying related operation pairs.Deminer decides whether
two storage operations are related through two steps. For two
operations that are performed by the same node and have different
destination ID, Deminer first checks whether their corresponding
records have nonempty common taints. For example, in Figure 2,
the record 1 and 2 have a common taint whose taint ID is 1L,
which denotes that the two operations use the common data. Thus,
1 and 2 are a pair of related operations.
If two records have empty common taints, e.g., the record 3 and

4 , Deminer further checks if they use the common data obtained
in another remote node. For record 3 , it contains a taint whose
source is node1:msg2, which means the taint is propagated from
node1 through message msg2. Based on the message ID msg2,
Deminer can easily identify an internode data flow from record 2
to record 3 . Similarly, there also exists a data flow from record
1 to record 4 . Record 1 and 2 are related. Therefore, record
3 and 4 are also related since they both use the common data
propagated from node1.

Predicting crashes. For a pair of related operations (𝑟𝑒𝑐𝑖 , 𝑟𝑒𝑐 𝑗),
in which 𝑟𝑒𝑐 𝑗 ’s time stamp is larger than 𝑟𝑒𝑐𝑖 , Deminer generates
a crash [𝑟𝑒𝑐𝑖 ,𝐶, 𝑟𝑒𝑐 𝑗], which denotes a crash 𝐶 after the execution
of the previous operation 𝑟𝑒𝑐𝑖 and right before the execution of
the latter operation 𝑟𝑒𝑐 𝑗 . For a group of crashes that have same
latter operation 𝑟𝑒𝑐 𝑗 , Deminer only keeps the crash whose previous
operation 𝑟𝑒𝑐𝑖 has the largest time stamp.

2.3 Crash Injection Testing
In order to confirm real harmful crashes, Deminer automatically
runs the workload used in the tracing phase under a triggering
mode, tests the predicted crashes and checks failure symptoms to
find real issues.

In a test run, only one crash is tested. Take the crash [𝑟𝑒𝑐𝑖 ,𝐶, 𝑟𝑒𝑐 𝑗]
as an example. When the target system runs under triggering mode,
Deminer collects the system runtime information at every storage
operation point and checks whether the current node runs into the
crash point. When the previous operation 𝑟𝑒𝑐𝑖 has been performed
and the latter operation 𝑟𝑒𝑐 𝑗 is about to execute, the node reports
to the fault injection engine and waits for the engine’s decision. For
the first report received by the fault injection engine, it will directly
kill the reporting node. After waiting for random time within one
minute, Deminer reboots the node. For latter reports received by
the fault injection engine, it will ignore them and inform the report-
ing node to continue execution. To combat the non-determinacy of
the system execution, for every tested crash, Deminer tries to test
it at most five times until the corresponding crash/reboot can be
triggered.

For every tested workload, we implement specific checkers to
detect failure symptoms. Specifically, our checkers check for both
general failures (i.e., FATAL entries, ERROR entries, and exceptions
in execution logs, as well as node crashes) and operation-specific
failures (e.g., returning error code and reading stale data). Once a
failure symptom manifests, Deminer will generate the correspond-
ing bug report for further inspection. Uses can easily implement
checkers for other workloads based on our checkers.

3 IMPLEMENTATION
Deminer uses ASM [1], a byte code manipulation library, to in-
strument the target system. Deminer supports three storage sys-
tems: local file system, HDFS distributed file system, and the key-
value store ZooKeeper. For local file read/write operations, Deminer
tracks the use of native JDKmethods in class FileInputStream,
FileOutputStream and RandomAccessFile that are used
for accessing local files. For HDFS and ZooKeeper, Deminer tracks
the use of their corresponding read/write client APIs.

For RPC, the latest versions of Hadoop and HBase implement
RPC based on Protocol buffer. Deminer first obtains predefined
Hadoop RPC library interfaces, and identifies HBase RPC library
interfaces by checking whether the name of an interface is ended
with "Service$BlockingInterface". Then Deminer can
easily identify RPC functions based on the RPC library interfaces.
For socket, ZooKeeper uses a super-class Record for all socket
messages. Deminer identifies socket sending and receiving based
on how Record objects are used.

4 DEMINER USAGE
Deminer is implemented as a command line tool and supports JVM
1.8. Four main steps are needed when using Deminer:
1) Generating an instrumented version of the runtime en-

vironment. We can run the command "java -jar Dem-
iner.jar -forJava <jre_path> <output_path>"
to prepare an instrumented JRE.
• -forJava: Specify the instrumentation for JRE.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Yu Gao, Dong Wang, Qianwang Dai, Wensheng Dou, and Jun Wei

• jre_path: Path for the input JRE.
• output_path: Path for the instrumented JRE.

2) Run a workload at tracing mode. We can configure every
node of the target system to use the instrumented JRE and
include the Deminer as the Java agent with a JVM argument.
Take ZooKeeper as an example. We can modify zkEnv.sh file
and add following configuration:

JAVA = <instrumented_jre_path>/bin/java
Deminer_JVMFLAGS =
-Xbootclasspath/a:<Deminer_path>/Deminer.jar
-javaagent:<Deminer_path>/Deminer.jar
=useTool=true,recordPhase=true,forZk=true,
jdkFile=true,recordPath=<trace_path>

The parameters are explained as follows:
• useTool: true for using Deminer.
• recordPhase: true for running system under tracing
mode, and false for running system under triggering
mode.

• forZk: true for tracking ZooKeeper socket messages.
• jdkFile: true for tracking reads/writes to local files.

Then we can use docker to deploy a target system cluster with
the above configuration, and run a workload.

3) Perform off-line analysis. We can collect execution traces
from every node to the directory <trace_path>, and use
node_ip to specify the IPs of the nodes of the cluster (split
with :). Then we can run the following command:

java -cp Deminer.jar <analysis_main_class>
<trace_path> <node_ip> <output_path>

Deminer will generate identified related pairs and predicted
crashes under <output_path>.

4) Test crash points. Now we can configure the target system
to run under the triggering mode, and specify corresponding
scripts, e.g., crash/reboot script and checker script, at a file
<cfg_file_path>. We can run the following command on
the host machine to start the testing process:

java -cp Deminer.jar <triggering_main_class>
<listening_port> <cfg_file_path>

Finally, Deminer will generate a crash report for the crashes that
do not pass checkers. Checkers used in our experiments con-
tain at most 70 lines of code. Developers can easily implement
checkers for other workloads based on our checkers.

5 EVALUATION
5.1 Methodology
To evaluate Deminer’s effectiveness in detecting crash recovery
bugs, We implement seven workloads and evaluate Deminer on
the latest versions of three widely-used open-source distributed
systems (shown in Table 1): ZooKeeper distributed synchronization
service, HDFS distributed file system and HBase distributed key-
value stores. These three systems can represent different kinds of
cloud systems and implement different crash recovery mechanisms.
The workloads involve the startup process of the target system,
common admin operations (e.g., NameNode failover in HDFS) and
user operations (e.g., file movement in HDFS). The workloads are
running on the clusters with minimal nodes that are expected to
tolerate a node crash and a node reboot without fault.

Table 1: Experimental settings for target systems

System Workload

HDFS-3.3.1 1. Put/move file, read/write file
2. Read/write file + failover NameNode

HBase-2.4.8/
HBase-1.7.1

1. Create/read/update/truncate/delete table
2. Create/read/delete table + failover HMaster
3. Create/read table + failover meta HRegionServer

ZooKeeper-
3.6.3

1. Create/read/update/delete znodes
2. Create/update znode + failover leader node

Table 2: Bugs triggered by Deminer.

Bug ID Failure Symptom Reboot
hb26370 Misleading error message ✗

hb26391 Data staleness ✗

hb26420 Cluster out of service ✗

zk4283 Node downtime ✓

zk4416 Node downtime ✓

hd16381 Operation failure ✗

We deploy the target systems in several virtual machines with
Docker 19.03.3. The guest OS in VM uses Ubuntu 20.04 and JVM 1.8.
The host machine is equipped with a 64-bit CentOS Linux release
7.3.1611, JVM 1.8, two 16-core 2.10GHz Intel(R) Xeon(R) Gold 6130
CPUs, and 125 GB of RAM.

5.2 Bug Detection Results
As shown in Table 2, Deminer has identified six crash recovery
bugs, including three bugs from HBase, one bug from HDFS and
two bugs from ZooKeeper. We can also see that two bugs require
node reboot to expose. All the bugs have been reported to the
developers. These detected bugs can cause operation failure, data
staleness, node downtime, cluster out of service and misleading
error message. Among these bugs, the bug zk4283 is a previous
known bug, however, the fix of it was not merged to the master
and the latest 3.6 branch. The bug hb26420 was not reported before,
but it has been fixed in the latest version of HBase 2.4.8.

False positives reported by Deminer are mainly caused by im-
proper checkers, expected failures or failures that can be tolerated
by the system. For example, in one of the false positives in HBase,
Deminer crashes the meta region server. When the workload is
completed, Deminer starts to check the target system. However,
at that time, the recovery process for the killed node has not been
finished yet, and then the test fails to pass the checker due to non-
available meta region. In another false positive from ZooKeeper, the
test fails to pass checkers due to a "NullPointerException" thrown
during the synchronization process when a follower node follows
the leader. However, this exception can be tolerated by restarting
the synchronization process with the leader.

5.3 Overhead Analysis
Deminer imposes 1.8x – 5.7x slowdowns in tracing stage, generated
290 to 2108 crash points for each workload, and took 56 to 264
hours for testing generated crashes. The off-line trace analysis is
mostly fast and can be finished within one minute. The main factor

https://issues.apache.org/jira/browse/HBASE-26370
https://issues.apache.org/jira/browse/HBASE-26391
https://issues.apache.org/jira/browse/HBASE-26420
https://issues.apache.org/jira/browse/ZOOKEEPER-4283
https://issues.apache.org/jira/browse/ZOOKEEPER-4416
https://issues.apache.org/jira/browse/HDFS-16381
https://issues.apache.org/jira/browse/ZOOKEEPER-4283
https://issues.apache.org/jira/browse/HBASE-26420

Common Data Guided Crash Injection for Cloud Systems ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

that contributes to the tracing overhead is the taint propagation.
Another key factor is that we instrument the application code at run
time. The performance would be better if we statically transform
the target systems. The test time can be shortened by configuring
the Deminer to reduce the number of max retries and configuring
the target system to use a smaller timeout value for crash detec-
tion. Given that cloud systems are complicated, the above result
demonstrates that Deminer is efficient to be used for real world
cloud system testing.

6 RELATEDWORK
Fault injection is a commonly used technique for exposing bugs.
Chaos Monkey [3] and Jepsen[5] randomly inject node crashes and
other types of faults. NEAT [6] provide simple APIs for developers
to create and heal network partitions. PreFail [17] allows testers
to write failure injection policies to reduce fault injection space.
Recent works have also been proposed to use protocol-aware or
domain knowledge to conduct fault injections. CORDS [14] system-
atically injects a single fault to a single file-system block in a single
node at a time. CoFI [10] injects network partitions at inconsistent
system states. CrashTuner [23] injects node crashes when a node is
accessing meta-info variables. These works focus on different fault
scenarios from Deminer.

Distributed system model checkers can also be used to expose
crash-related bugs. These works intercept non-deterministic dis-
tributed events including node crashes and permute their ordering
[18, 19, 24, 27, 28]. However, these distributed model checkers do
not only focus on crash-related bugs. Therefore, they have to ex-
plore a lot of crash-unrelated states until exposing a crash recovery
bug. All of them suffer from state space explosion problems for
real-world cloud systems.

For bug detection tools for cloud systems, FCatch [22] predicts
time-of-fault bugs by observing possible conflicting operations un-
der crashes. ALICE [25] finds crash vulnerabilities of an application
by modeling all crash states that can occur on a specific file sys-
tem. And much previous work has been conducted on detection of
other crash-unrelated bugs, including distributed concurrency bugs
[21], performance cascading bugs [20], incorrectly-implemented
exception handler or missing exception handlers [26, 29], and so
on. These works solve an orthogonal problem from Deminer.

7 CONCLUSION
We present Deminer, a novel crash injection approach to test cloud
systems. Deminer automatically injects crashes/reboots that inter-
rupt the execution of related operations, by dynamically tracking
how data are used at run time and identifying related operation
pairs that write common data to different places. Our experiment
shows that Deminer has detected six crash recovery bugs on three
widely-used cloud systems.

ACKNOWLEDGEMENTS
This work was partially supported by National Natural Science
Foundation of China (62072444, 61732019), Frontier Science Project
of Chinese Academy of Sciences (QYZDJ-SSW-JSC036), and Youth
Innovation Promotion Association at Chinese Academy of Sciences
(2018142).

REFERENCES
[1] 2005. ASM. https://asm.ow2.io/
[2] 2008. Apache Hadoop Yarn. https://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html/
[3] 2012. Chaos Monkey. https://netflix.github.io/chaosmonkey/
[4] 2016. Apache Cassandra. https://cassandra.apache.org/
[5] 2016. Jepsen. https://github.com/jepsen-io/jepsen
[6] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany.

2018. An Analysis of Network-Partitioning Failures in Cloud Systems. In OSDI.
51–68.

[7] Vaastav Anand. 2018. Dara: Hybrid Model Checking of Distributed Systems. In
ESEC/FSE. 977–979.

[8] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow
in Commodity Jvms. In OOPSLA. 83–101.

[9] Mike Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed
Systems. In OSDI. 335–350.

[10] Haicheng Chen, Wensheng Dou, Dong Wang, and Feng Qin. 2020. CoFI:
Consistency-Guided Fault Injection for Cloud Systems. In ASE. 536–547.

[11] Jeff Dean. 2009. Designs, Lessons and Advice from Building Large Distributed
Systems. Keynote from LADIS.

[12] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI. 137–149.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-Value Store.
In SOSP. 205–220.

[14] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. 2017. Redundancy Does Not Imply Fault Tolerance:
Analysis of Distributed Storage Reactions to Single Errors and Corruptions. In
FAST. 149–165.

[15] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and YongmingWu. 2018. An Empirical Study on Crash Recovery
Bugs in Large-Scale Distributed Systems. In ESEC/FSE. 539–550.

[16] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google File
System. In SOSP. 29–43.

[17] Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen. 2011. PREFAIL: A Pro-
grammable Tool for Multiple-Failure Injection. In OOPSLA. 171–188.

[18] Charles Killian, James W. Anderson, Ranjit Jhala, and Amin Vahdat. 2007. Life,
Death, and the Critical Transition: Finding Liveness Bugs in Systems Code. In
NSDI. 243–256.

[19] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F. Lukman,
and Haryadi S. Gunawi. 2014. SAMC: Semantic-Aware Model Checking for Fast
Discovery of Deep Bugs in Cloud Systems. In OSDI. 399–414.

[20] Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S. Gunawi,
Xiaohui Gu, Xicheng Lu, and Dongsheng Li. 2018. Pcatch: Automatically Detect-
ing Performance Cascading Bugs in Cloud Systems. In EuroSys. 1–14.

[21] Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu, Haryadi S Gunawi,
and Chen Tian. 2017. DCatch: Automatically Detecting Distributed Concurrency
Bugs in Cloud Systems. In ASPLOS. 677–691.

[22] Haopeng Liu, Xu Wang, Guangpu Li, Shan Lu, Feng Ye, and Chen Tian. 2018.
FCatch: Automatically Detecting Time-of-Fault Bugs in Cloud Systems. In ASP-
LOS. 419–431.

[23] Jie Lu, Chen Liu, Lian Li, Xiaobing Feng, Feng Tan, Jun Ynag, and Liang You. 2019.
CrashTuner: Detecting Crash-Recovery Bugs in Cloud Systems via Meta-Info
Analysis. In SOSP. 114–130.

[24] Jeffrey F Lukman, Huan Ke, Cesar A Stuardo, Riza O Suminto, Daniar H Kurni-
awan, Dikaimin Simon, Satria Priambada, Chen Tian, Feng Ye, Tanakorn Leesata-
pornwongsa, Aarti Gupta, Shan Lu, and Haryadi S Gunawi. 2019. FlyMC: Highly
Scalable Testing of Complex Interleavings in Distributed Systems. In EuroSys.
1–16.

[25] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan Ala-
gappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. 2014. All File Systems Are Not Created Equal: On the Complexity of
Crafting Crash-Consistent Applications. In OSDI. 433–448.

[26] Suman Saha, Jean-Pierre Lozi, Gael Thomas, Julia L. Lawall, and Gilles Muller.
2013. Hector: Detecting Resource-Release Omission Faults in Error-Handling
Code for Systems Software. In DSN. 1–12.

[27] Jiri Simsa, Randy Bryant, and Garth Gibson. 2010. dBug: Systematic Evaluation
of Distributed Systems. In SSV. 1–9.

[28] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. 2009. MODIST: Transparent
Model Checking of Unmodified Distributed Systems. In NSDI. 213–228.

[29] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple Testing Can Prevent
Most Critical Failures: An Analysis of Production Failures in Distributed Data-
Intensive Systems. In OSDI. 249–265.

https://asm.ow2.io/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html/
https://netflix.github.io/chaosmonkey/
https://cassandra.apache.org/
https://github.com/jepsen-io/jepsen

	Abstract
	1 Introduction
	2 Deminer
	2.1 Data Usage Tracing
	2.2 Crash Prediction
	2.3 Crash Injection Testing

	3 Implementation
	4 Deminer Usage
	5 Evaluation
	5.1 Methodology
	5.2 Bug Detection Results
	5.3 Overhead Analysis

	6 Related Work
	7 Conclusion
	References

