
Knowledge-Based Environment Dependency Inference for
Python Programs

Hongjie Ye
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China

yehongjie19@otcaix.iscas.ac.cn

Wei Chen∗†
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wchen@otcaix.iscas.ac.cn

Wensheng Dou†
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wsdou@otcaix.iscas.ac.cn

Guoquan Wu†
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
gqwu@otcaix.iscas.ac.cn

Jun Wei
State Key Lab of Computer Sciences,

Institute of Software, Chinese
Academy of Sciences

University of Chinese Academy of
Sciences, Beijing, China
wj@otcaix.iscas.ac.cn

ABSTRACT
Besides third-party packages, the Python interpreter and system
libraries are also critical dependencies of a Python program. In our
empirical study, 34% programs are only compatible with specific
Python interpreter versions, and 24% programs require specific
system libraries. However, existing techniques mainly focus on
inferring third-party package dependencies. Therefore, they can
lack other necessary dependencies and violate version constraints,
thus resulting in program build failures and runtime errors.

This paper proposes a knowledge-based technique named PyEGo,
which can automatically infer dependencies of third-party packages,
the Python interpreter, and system libraries at compatible versions
for Python programs. We first construct the dependency knowl-
edge graph PyKG, which can portray the relations and constraints
among third-party packages, the Python interpreter, and system
libraries. Then, by querying PyKG with extracted program features,
PyEGo constructs a program-related sub-graph with dependency
candidates of the three types. It finally outputs the latest compatible
dependency versions by solving constraints in the sub-graph. We
evaluate PyEGo on 2,891 single-file Python gists, 100 open-source

∗Wei Chen is the corresponding author.
†Wei Chen, Wensheng Dou and Guoquan Wu are also affiliated with Nanjing Institute
of Software Technology and University of Chinese Academy of Sciences, Nanjing,
China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510127

Python projects and 4,836 jupyter notebooks. The experimental re-
sults show that PyEGo achieves better accuracy, 0.2x to 3.5x higher
than the state-of-the-art approaches.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software maintenance tools;Maintaining software.

KEYWORDS
Python, environment dependency inference, version constraint,
knowledge graph
ACM Reference Format:
Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei. 2022.
Knowledge-Based Environment Dependency Inference for Python Pro-
grams. In 44th International Conference on Software Engineering (ICSE ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3510003.3510127

1 INTRODUCTION
Python programs depend on third-party packages (i.e., Python
libraries), the Python interpreter, and system libraries. Missing
and incompatible environment dependencies can result in program
build failures and runtime errors.

Developers need to infer environment dependencies for Python
programs due to the following reasons. First, many open-source
Python programs (e.g., Python gists and Jupyter Notebooks in
GitHub) do not explicitly declare their dependencies or miss some
dependencies [23, 38]. Second, Python libraries are usually fre-
quently updated, may become deprecated, or are removed due to
security issues [30]. Third, a program migrating from one envi-
ronment to another may fail due to overlooking required system
libraries, which are usually not explicitly documented.

Besides third-party packages, Python programs also depend on
specific system libraries and the Python interpreter. In our empirical
study on 100 gists sampled from HG2.9k [24], we find that 34 gists

https://doi.org/10.1145/3510003.3510127
https://doi.org/10.1145/3510003.3510127

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

suffer from runtime errors due to incompatible Python interpreter
versions, and 24 gists fail due to missing system libraries. Despite
the importance of system library and Python interpreter dependen-
cies, we find that only half of our investigated programs declare
compatible Python versions, and only a quarter of projects docu-
ment dependent system libraries. Therefore, an effective approach
is still required to “dig and build the full required dependencies [14].”

Some studies have tried to address Python program environ-
ment dependency issues. The prior work [23, 24] infers third-party
packages and system libraries for single-file Python programs, but
they only recommend the latest package versions without concern-
ing version constraints. SnifferDog [37] infers dependent Python
libraries for Jupyter notebooks based on API usage analysis, but
it neglects system libraries and the Python interpreter. Pipreqs
[6], a popular open-source tool, only focuses on third-party pack-
ages and does not pay attention to system libraries and the Python
interpreter.

This paper proposes a knowledge-based technique named PyEGo,
which can automatically infer dependencies at compatible versions
for Python programs. PyEGo considers dependencies of third-party
packages, the Python interpreter, and system libraries. Based on a
thorough analysis of the knowledge required for environment de-
pendency inferences, we first construct the dependency knowledge
graph PyKG, which can portray the three types of dependencies
and their relations. Then, facilitated with PyKG, PyEGo infers en-
vironment dependencies for a Python program via static program
analysis and constraint solving. It extracts program features and
takes them as inputs to query PyKG for the candidate versions of
possible dependencies. The dependency candidates form a program-
related dependency sub-graph with their interrelations. PyEGo fur-
ther infers the latest compatible dependency versions within the
sub-graph by solving constraints among the candidates. In essence,
PyEGo is an exploratory step towards automating dependency
inferences for Python program.

We evaluate PyEGo on HG2.9K [24], containing 2,891 single-
file Python programs, by resolving ImportErrors with inferred
environment dependencies. In addition, we evaluate PyEGo on 100
more complex Python projects and 4,836 jupyter notebooks. Overall,
PyEGo achieves 46.14%, 62% and 60.90% accuracy, respectively,
which is 0.2x to 3.5x higher than the state-of-the-art approaches.

In summary, this work makes the following contributions.

• We propose a dependency knowledge graph and its construction
approach. PyKG can portray the relations among third-party
packages, the Python interpreter, and system libraries.

• We propose a knowledge-based environment dependency in-
ference technique PyEGo, which regards constraints among a
program and its dependencies and can infer the latest compatible
dependency versions of three dependency types, i.e., third-party
packages, the Python interpreter, and system libraries.

• The evaluations on HG2.9K, 100 open-source projects and 4,836
jupyter notebooks reveal that PyEGo is more effective than state-
of-the-art approaches.

2 MOTIVATION
In this section, we perform an empirical study for investigating
the prevalence of environment dependency issues. Then, we use

an example to analyze the challenges of environment dependency
inference for Python programs. Finally, we present an overview of
our approach addressing the challenges.

2.1 Empirical Study
Our small-scale empirical study concentrates on dependencies is-
sues relating to the Python interpreter and system libraries because
the prior work [24, 37] has confirmed that Python packages are in-
dispensable to program builds and executions. This empirical study
is dedicated to answering the following two research questions.

• RQ1: To what extent do open-source Python projects provide
documented environment dependencies? What kinds of depen-
dencies are documented?

• RQ2: Besides Python packages, do the Python interpreter and
system libraries affect Python program builds and executions
seriously?

To answer RQ1, we randomly sample 100 popular Python projects
on Github with more than 1000 stars. We identify their dependency
declaration files and investigate what kinds of dependencies they
document. We find that (1) 79 out of 100 projects declare third-party
package dependencies, (2) 51 projects declare compatible Python
interpreter versions, and (3) only 27 projects declare system library
dependencies. In addition, We categorize dependency declaration
files. Requirements.txt is the most popular declaration file (54
of 100 projects), but they only record third-party package depen-
dencies. Dockerfile, Pipfiles, and conda YAML files can record
dependencies of the Python interpreter and system libraries, but
only 26 projects use declaration files of these types.

Findings: Most open-source Python projects document their
third-party packages dependencies. However, only half of the in-
vestigated projects declare their compatible Python versions, and
even worse, only a quarter of projects declare system library depen-
dencies. Moreover, although requirements.txt is most prevalent,
they do not document the dependencies of the Python interpreter
and system libraries.

To answer RQ2, we randomly sample 100 gists from HG2.9K [24].
We manually construct runtime environments for these gists and
investigate the encountered problems. Only 42 out of 100 gists can
execute successfully by simply installing the third-party dependent
packages. For the remaining 58 gists, (1) 34 gists encounter runtime
errors due to incompatible Python versions because 19 and 15 gists
are only compatible with Python2 and Python3, respectively. (2)
24 gists fail to build or execute due to missing system libraries.
In addition, we investigate the top 30 voted Python questions in
Stack Overflow. We find that (1) 11 of 30 questions are relevant to
incompatible Python interpreter versions, and (2) 6 of 30 questions
are relevant to third-party package installation failures caused by
missing some system libraries.

Findings: The Python interpreter and system libraries are criti-
cal dependencies of Python programs. Unfortunately, more than
half of the gists experience build failures and execution errors due
to incompatible Python versions or missing system libraries.

In summary, besides third-party packages, the Python interpreter
and system libraries are also indispensable, but few techniques
concern them in practice.

Knowledge-Based Environment Dependency Inference for Python Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 1: An example code snippet and its dependencies.

2.2 Motivating Example
Figure 1 shows a Python code snippet of a GitHub project, an im-
plementation of SuperGlue network1. The code snippet belongs
to demo_superglue.py (superglue for short), running SuperPoint
and SuperGlue features matching an anchor image with live im-
ages [32]. Table 1 lists superglue’s feasible dependencies, where
the expressions in brackets (e.g., ⩾ 3.5) are version constraints.
Superglue’s dependencies include:

(1) Third-party package. Third-party packages are the basic instal-
lation units instead of their contained modules. Therefore, torch,
opencv-python, and matplotlib are direct dependencies as they
contain the directly used top-levelmodules torch, cv2, matplotlib
(line 3-5), and the second-level module cm. Besides, numpy, pillow,
pyyaml are transitive dependencies since the direct dependenciesmay
use them.

(2) System library. Some third-party packages are partially im-
plemented in C, and the C code may depend on system libraries.
libopencv-contrib is a system-level dependency as the third-
party package opencv-python depends on it.

(3) The Python interpreter. The Python interpreter is necessary for
providing a Python environment and standard modules. pathlib
and argparse (line 1-2) are standard modules installed with the
Python interpreter, and Path is a second-level module in pathlib.

(4) Local module. A code snippet may use other modules imple-
mented in a program itself, such as models (line 6-8) implemented
in another file models.py. However, we do not regard local modules
as they are self-contained resources.

Besides, the imported modules imply version constraints on such
dependencies, including:

(1) Python version constraint. The code restricts the Python inter-
preter version must be 3.5 or later as the standard module pathlib
is introduced since Python 3.5.

(2) Third-party package version constraint. matplotlib 3.4.2 is
the latest version, and it requires the transitive dependency pillow
⩾ 6.2.0. Moreover, matplotlib, opencv-python and torch depend

1https://github.com/magicleap/SuperGluePretrainedNetwork

on numpy simultaneously, and the latest versions of the first two
packages restrict numpy later than 1.16 and 1.19.3, respectively. Thus,
numpy ⩾ 1.19.3 is a version constraint restricting numpy compatible
with all the other third-party packages using it.

Challenges. This example indicates that inferring dependencies
for a Python program has several difficulties.

(1) A Python package includes at least one module, and the
names of the package and the module can be different, which makes
developers have to know to what packages the imported modules
belong when reusing open-source code.

(2) System libraries are necessary transitive dependencies used
by the imported modules, but few documents record the dependent
relations between third-party packages and system libraries. The
prior work finds missed system libraries by iteratively analyzing
runtime error logs [24] with expensive costs.

(3) The differences in contained modules would restrict versions
of a dependent third-party package. Therefore, additional efforts
have to be taken to identify the compatible package versions.

(4) The imported standardmodules and leveraged syntax features
implicitly restrict compatible Python interpreter versions, but it is
not easy to uncover such constraints in the target program code.

(5) Complex interdependent relations and dependency version
constraints among a program and its dependencies may result in
version conflicts [38]. Therefore, a dependency at the latest version
may be incompatible [30], and in consequence, the latest compatible
version of each dependency has to be figured out. In other words,
we should follow the optimization principle of “using dependencies
as new as possible” when multiple compatible versions exist because
installing the latest versions follows pip’s working mechanism [15]
and may fix bugs and security vulnerabilities in prior versions [20].

Limitations of the existing work. The state-of-the-art ap-
proaches, pipreqs [6], DockerizeMe [24] and SnifferDog [37] mainly
focus on inferring third-party package dependencies. We execute
pipreqs and DockerizeMe to infer dependencies for superglue.

Without regarding the version constraint of the Python inter-
preter, DockerizeMe takes Python2.7 as the default interpreter and
fails with “ImportError: No module named pathlib.” This is

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

Table 1: Environment dependencies of the example code

Dependent Resource Version

Python 3.9 (⩾ 3.5)
opencv-python 4.5.2.52
matplotlib 3.4.2
torch 1.8.1
numpy 1.20.3 (⩾ 1.19.3)
pillow 8.2.0 (⩾ 6.2.0)
libopencv-contrib3.2 3.2.0+dfsg-4ubuntu0.1

Pyyaml is not a necessary transitive dependency as the direct
dependency torch 1.8.1 no longer uses it

Figure 2: Knowledge graph model

because the standard module is introduced since Python 3.5. Al-
though we use Python 3.5 or later, DockerizeMe still fails with an-
other ImportError as it cannot identify the dependency between
opencv-python and libopencv-contrib3.2.

Pipreqs directly uses the local Python environment and would
also fail with the ImportError if the Python version is older than
3.5. Besides, pipreqs pays no attention to dependent system libraries,
and hence it still fails even if we use a compatible Python version.

SnifferDog infers dependencies for Jupyter notebooks. Notably,
we cannot successfully execute SnifferDog since its public reposi-
tory [11] does not offer the critical component API-bank. Although
SnifferDog analyzes modules, functions, and classes in third-party
packages, its limitations are (1) not regarding Python version con-
straint and dependent system libraries and (2) simply taking the
latest package versions containing used APIs as dependencies.

2.3 Our Approach Overview
As a result, much knowledge is required for dependency infer-
ences. (1) Syntax features and standard modules of each Python
interpreter version are required for identifying compatible Python
versions. (2) Modules in each third-party package version should
be known to determine what package versions are compatible. (3)
Dependencies between Python packages and system libraries are
required for installing dependent system libraries proactively. (4)
Version constraints among third-party packages and between the
Python interpreter and third-party packages are required to avoid
incompatibilities and dependency conflicts (DCs) [38].

We are motivated to design a knowledge-based and constraint-
aware technique to infer environment dependencies at the latest
compatible versions. The technique comprises two main parts, i.e.,

Table 2: Symbols in dependency knowledge graph model

Symbol Description

𝑐 Python interpreter
𝑙𝑡 Third-party package
𝑙𝑠 System library
𝑓 Language syntax feature
𝑚𝑠 Standard module
𝑚𝑡 Third-party module
→ depend-on relationship
↔ associated-with relationship

a knowledge graph offering knowledge relevant to the three types
of dependencies and a tool inferring Python program dependencies
by solving version constraints.

In the first part, we propose a dependency knowledge graph
model to portray the relations among third-party packages, the
Python interpreter, system libraries, and other related entities. Then,
we identify multiple sources from which we acquire data and in-
formation relating to the required knowledge. Finally, we extract
knowledge from the data with several methods and construct a
dependency knowledge graph PyKG.

In the second part, we design a technique PyEGo to infer depen-
dencies for Python programs. Given a program, PyEGo extracts its
syntax and module features and gets the program-related depen-
dency candidates from PyKG. After that, we propose dependency
constraints according to the dependency inference requirements,
and PyEGo infers final dependencies from the candidates by solving
dependency constraints.

3 KNOWLEDGE GRAPH CONSTRUCTION
We structure the required knowledge as a dependency knowledge
graph whose model is illustrated in Figure 2.

Dependency Knowledge Graph is defined as 𝐺 =< 𝑉 , 𝐸 >,
where (1) 𝑉 = {𝑛𝑖 |𝑖 ⩾ 0,∀𝑛𝑖 ∈ {𝑓 , 𝑐, 𝑙𝑡 , 𝑙𝑠 ,𝑚𝑠 ,𝑚𝑡 }} is a set of ver-
tices relevant to dependencies, meaning a vertex can be the python
interpreter (𝑐), a third-party package (𝑙𝑡), a system library (𝑙𝑠), a third-
party module (𝑚𝑡), a standard module (𝑚𝑠), and a syntax feature
(𝑓). (2) 𝐸 = {𝑒 𝑗 | 𝑗 ⩾ 0,∀𝑒 𝑗 ∈ {𝑑𝑒𝑝, 𝑎𝑠𝑠𝑜} is a set of edges of two
relation types, i.e., depend-on and associated-with are represented
by symbols ‘→’ and ‘↔’, respectively. Table 2 lists the symbols
used in this definition.

On the one hand, depend-on relations describe inter-dependencies
among the three types of dependencies. In particular, a third-party
package can depend on other packages, the Python interpreter and
system libraries, and a system library may depend on other libraries.
In addition, the dependent relations between such dependency ver-
sions also specify the version constraints among them.

On the other hand, associated-with relations describe features of
third-party packages and the Python interpreter. Thus, the knowl-
edge graph model characterizes a third-party package version with
the third-party modules they contain. It also characterizes a specific
Python version with its standard modules and the supported syntax
features.

Knowledge-Based Environment Dependency Inference for Python Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Data sources of dependency knowledge

Source Acquired Data & Information

PyPI [8] Top 10,000 popular third-party pack-
ages at each version

Libraries.io [4] Popularity measured by SourceRanks of
third-party packages

APT [1] Information of system libraries
Python docs [9] Syntax features of Python versions
Python environ-
ments

Python versions and their standard
modules

3.1 Data Source
Table 3 lists the sources from which we directly acquire data and
information, where
• PyPI [8] is the world-class Python library repository hosting
300k+ third-party open-source packages, and from which we
crawl the most popular ones and their inter-dependent relations;

• Libraries.io [4] provides SourceRanks that measure the popularity
of open-source Python libraries;

• APT [1] is the official system software repository of Debian
family operating systems provisioning system libraries;

• Python official website [10] offers Python interpreter versions,
and from which we download and install Python at various ver-
sions. We analyze installed Python environments and extract the
standard modules;

• Online Python documents [9] provide new features, user guid-
ance, and other information on each Python version.
Note that we sample data instead of crawling all to make a trade-

off between the expensive cost of exhaustively acquiring data and
adequate verification and demonstration of our work. Table 3 also
lists what data and information we acquire from the data sources.

3.2 Knowledge Extraction
We propose several methods for extracting knowledge, particularly
syntax features, dependency version constraints of third-party pack-
ages, and dependencies between third-party packages and system
libraries, from the obtained data.

3.2.1 Syntax feature extraction and representation. Syntax features
supported by each Python interpreter version are scattered in online
documents and usually described in natural language, and hence
how to extract and present such knowledge is concerned.

We notice that the “what’s new” document of each Python version
explains new features compared with the previous version, such as
“What’s New In Python 3.9” [12]. Therefore, we extract context-free
syntax features from the “New Features” section in each feature
document because such features can be directly recognized in a
target program without needing to analyze program contexts and
other factors. For example, “positional-only parameters” (PEP 570)
[27] is a context-free syntax feature can be recognized when a
symbol “/” appears like a parameter in a function definition based
on the static analysis. Conversely, “Dictionary Merge & Update
Operators” (PEP 584) [33] is not a such feature as the context (i.e.,
operand types)must be concerned. Besides, other features, like “New

Parser” (PEP 617) [22], irrelevant to source code are also discarded.
In this way, we systematically investigate feature documents of
six Python versions and recognize 26 context-free syntax features
(syntax features for short hereafter). 𝑐 (𝑣) ↔ {𝑓1, 𝑓2, · · · } denotes
the syntax features supported by the Python interpreter at version
𝑣 (or a version range).

Furthermore, to automate syntax feature recognition for a target
Python program, we manually transform 19 out of the 26 extracted
syntax features into regular expressions. For example, the knowl-
edge of the feature “positional-only parameters” introduced since
Python 3.8 is represented as:

𝑐 (⩾ 3.8) ↔“def \S*\(.*, ?/.*\)”

Notably, we do not present all extracted syntax features due to
space limitations, and they are available in our released knowledge
graph.

3.2.2 Version constraint extraction and module identification. A
third-party package’s metadata usually provides information on
contained third-party modules, compatible Python versions, and
version constraints on its dependent packages. However, such in-
formation is scattered in several metadata files, and even worse,
some information is incomplete or absent.

For a third-party package version 𝑙𝑡 (𝑣), we extract its compatible
Python versions and dependent third-Party packages by analyzing
its metadata in the files METADATA and requirements.txt. The
obtained information is represented as 𝑙𝑡 (𝑣) → 𝑐 (𝑣𝑐) and 𝑙𝑡 (𝑣) →
{𝑙𝑡1 (𝑣1), 𝑙𝑡2 (𝑣2), · · · }, where 𝑐 (𝑣𝑐) is compatible Python versions
and {𝑙𝑡1 (𝑣1), 𝑙𝑡2 (𝑣2), · · · } is a set of dependent package versions.

The differences in contained third-party modules (particularly
lower-level modules) are important for distinguishing versions of
a package. However, the file top_level.txt in a package only
records its top-level modules. Therefore, we traverse each pack-
age top-down to get its modules at each level. The information is
represented as 𝑙𝑡 (𝑣) ↔ {𝑚𝑡1,𝑚𝑡2, · · · }.

3.2.3 Dependency inference between third-party packages and sys-
tem libraries. As aforementioned, dependencies between a pack-
age and its system libraries are absent. We mine such dependency
knowledge with two methods, i.e., (a) association mining-based de-
pendency inference and (b) similarity-based dependency inference.
Since the former is similar to that proposed in prior work [24], we
only elaborate on the latter below.

We observe that some pip-installable third-party packages have
similar apt-installable distributions with slight differences in their
names and structures. For example, python-matplotlib, an apt-
installable package, is similar to the package matplotlib on PyPI
as their names are similar and they both contain the same top-
level modules matplotlib, pylab, and mpl_toolkits. Moreover,
if an apt-installable package depends on a set of system libraries
{𝑙𝑠1, 𝑙𝑠2, · · · }, the similar pip-installable one is likely depending on
them, too. Thus, we can get dependent system libraries of an apt-
installable package with the command “apt-cache depends”. And
then, we search for the similar pip-installable package (𝑙𝑡) of the
apt-installable one (𝑙 ′𝑡) by measuring the comprehensive similar-
ity (Equation 1) between their names (Equation 2) and contained
top-level modules (Equation 3). 𝑙𝑡 and 𝑙 ′𝑡 are similar only if their

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

similarity exceeds a threshold set with 0.8 in practice. In Equa-
tion 2,𝐿𝐶𝑆𝑡𝑟 () returns the longest common substring of their names
and 𝑀𝑎𝑥 () returns the max length of their names. In Equation 3,
𝑀𝑜𝑑𝑢𝑙𝑒 () returns the top-level module set of a package.

𝑆 (𝑙𝑡 , 𝑙 ′𝑡) =
𝑆𝑁 (𝑙𝑡 , 𝑙 ′𝑡) + 𝑆𝑀 (𝑙𝑡 , 𝑙 ′𝑡)

2
(1)

𝑆𝑁 (𝑙𝑡 , 𝑙 ′𝑡) =
|𝐿𝐶𝑆𝑡𝑟 (𝑙𝑡 , 𝑙 ′𝑡) |
𝑀𝑎𝑥 (𝑙𝑡 , 𝑙 ′𝑡)

(2)

𝑆𝑀 (𝑙𝑡 , 𝑙 ′𝑡) =
|𝑀𝑜𝑑𝑢𝑙𝑒 (𝑙𝑡) ∩𝑀𝑜𝑑𝑢𝑙𝑒 (𝑙 ′𝑡) |
|𝑀𝑜𝑑𝑢𝑙𝑒 (𝑙𝑡) ∪𝑀𝑜𝑑𝑢𝑙𝑒 (𝑙 ′𝑡) |

(3)

The inferred dependency knowledge is represented as 𝑙𝑡 →
{𝑙𝑠1, 𝑙𝑠2, · · · }. For instance,

opencv-python→ {libopencv-contrib3.2}
means “the pip-installable package opencv-python depends on the
system library libopencv-contrib3.2.”

3.3 Knowledge Graph Construction and Update
We organize extracted knowledge as a knowledge graph named
PyKG, which is stored in Neo4j [36], a popular graph database. At
the time of writing, PyKG contains about 256 thousand nodes and
1.9 million relations.

PyKG is extensible and evolvable. On the one hand, PyKG can
update periodically as most data acquisition and knowledge extrac-
tion are automated. For each existed package, PyKG re-accesses
PyPI and compares the local and the online versions. If the latest
version is not fetched, PyKG automatically crawls it, analyzes its
metadata, extracts corresponding knowledge, and makes a syn-
chronization. In practice, PyKG synchronizes every three months,
and each synchronization takes about 1.5 days. On the other hand,
PyKG can increment in a similar way for crawling new packages
and extracting relevant knowledge.

4 ENVIRONMENT DEPENDENCY INFERENCE
Figure 3 depicts PyEGo’s workflow. The first step extracts imported
modules and used syntax features of a target program via static
analysis. Next, PyEGo gets dependency candidates by querying
PyKG with extracted modules and syntax features. Finally, PyEGo
outputs the inferred dependencies at the latest compatible versions
based on constraint solving.

4.1 Program Feature Extraction
For a target program P = {𝑝𝑚 |𝑚 ⩾ 1} comprising a set of .py files,
PyEGo extracts P’s features, i.e., used syntax features, imported
third-party modules and standard modules. For each python file
𝑝𝑖 (1 ⩽ 𝑖 ⩽ 𝑚) in P,
(1) PyEGo matches the code against each regular expression in

PyKG that represents a syntax feature and groups identified
syntax features in a set 𝑆 (𝑝𝑖).

(2) PyEGo parses 𝑝𝑖 into an abstract syntax tree (AST) and extracts
its used modules from import statements. Next, in assistance
with PyKG, PyEGo filters out local modules and groups the
remaining ones in a standard module set (𝑀𝑠 (𝑝𝑖)) and a third-
party module set (𝑀𝑡 (𝑝𝑖)), respectively.

In this way, PyEGo iteratively analyzes all .py files and integrates
their features as 𝐹 (P) = {𝑆,𝑀𝑡 , 𝑀𝑠 }, where 𝑆 , 𝑀𝑡 and 𝑀𝑠 denote
P’s syntax feature set, third-party module set, and standard module
set, respectively.

For example, superglue’s (Sec. 2.2) feature set includes

• 𝑆 = 𝜙 , meaning no special syntax feature is identified,
• 𝑀𝑠 = {𝑎𝑟𝑔𝑝𝑎𝑟𝑠𝑒, 𝑝𝑎𝑡ℎ𝑙𝑖𝑏, 𝑝𝑎𝑡ℎ𝑙𝑖𝑏.𝑃𝑎𝑡ℎ}, and
• 𝑀𝑡 = {𝑐𝑣2, 𝑡𝑜𝑟𝑐ℎ,𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏,𝑚𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏.𝑐𝑚}.

4.2 Dependency Candidate Identification
PyEGo identifies P’s dependency candidates by querying PyKG
with 𝐹 (P).

Python interpreter candidates. PyKG returns all Python ver-
sions not only supporting all syntax features in 𝐹 (P).𝑆 but also con-
taining all standard modules in 𝐹 (P).𝑀𝑠 as an interpreter candidate
set 𝐶 (P) = {𝑐𝑣1, 𝑐𝑣2, · · · }. Thus, 𝐶 (P) implies Python interpreter
version constraint of P.

For example, the usage of standard module pathlib makes
superglue compatible with Python 3.5 or later as the module is in-
troduced since Python 3.5. Therefore, its candidate Python version
set is 𝐶 (𝑠𝑢𝑝𝑒𝑟𝑔𝑙𝑢𝑒) = {𝑐𝑣 |3.5 ⩽ 𝑣 ⩽ 3.9} (the latest Python version
is 3.9).

Third-party package candidates. For each third-party mod-
ule𝑚𝑡 in 𝐹 (P) .𝑀𝑡 , PyKG returns all third-party package versions
containing the module, i.e., 𝐿𝑡 (𝑚𝑡). In this way, all possible third-
party packages directly used in P are grouped in 𝐿𝑡 (P). On the
other hand, PyEGo constructs 𝐿′𝑡 (P) that comprises all transitive
dependent third-party packages of P.

This step concerns the following case and heuristically filters the
initial third-party package candidates. For a module simultaneously
contained in several different third-party packages, we heuristically
select the most popular package instead of all for the following
reasons: (1) packages containing the same modules may conflict
with one another [5]; and (2) taking all the packages as dependency
candidates would increase the time cost of the subsequent depen-
dency inference. For example, cv2 is a module in opencv-python,
opencv-python-headless, and opencv-contrib-python. Thus,
we select opencv-python as the candidate due to its popularity
(with SourceRank 18 in Libraries.io [4]).

System library candidates. PyKG returns system libraries on
which any element in 𝐿𝑡 (P) or 𝐿′𝑡 (P) depends. PyEGo takes all
returned system libraries as P’s dependency candidates of system
libraries, i.e., 𝐿𝑠 (P).

Target program centric dependency graph. P’s dependency
candidates form a subgraph of PyKG, 𝐺 ′ =< 𝑉 ′, 𝐸′ >, where the
vertices in𝑉 ′ are dependency versions in𝐶 (P) ∪ 𝐿𝑡 (P) ∪ 𝐿′𝑡 (P) ∪
𝐿𝑠 (P); 𝐸′ contains dependent relations among them. Without loss
of generality, we denote a dependency 𝑛 at version 𝑣 as 𝑛𝑣 , whose
dependency candidates in 𝐺 ′ is 𝑑𝑒𝑝 (𝑛𝑣) = {𝛼, 𝛽, · · · }.

Figure 4 shows a part of superglue’s dependency graph formed
by its dependency candidates. For simplicity, each vertex is anno-
tated with a symbol plus a number representing a specific version.
For example, the dependencies of vertex MA34 (i.e., matplotlib
3.4.2) are represented as 𝑑𝑒𝑝 (𝑀𝐴34) = {𝑃𝑌39, 𝑃𝐿82, 𝑁𝑃20}.

Knowledge-Based Environment Dependency Inference for Python Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 3: PyEGo’s workflow of inferring environment dependencies for a Python program.

Figure 4: A part of Superglue’s dependency graph.

4.3 Dependency Inference
As aforementioned, a package’s latest version is preferred, but
it is not always feasible due to DCs [38] and version constraint
violations. Therefore, several requirements in inferring P’s depen-
dencies from the candidate set are summarized, i.e., the inferred
dependencies must be compatible with one another, necessary, and
as new as possible. To this end, PyEGo infers dependencies by
solving dependency constraints with an optimization objective.

Dependency constraints. Suppose𝐺 =< 𝑉 , 𝐸 >,𝐺 ⊆ 𝐺 ′, is the
graph formed by P’s final inferred dependencies. It should satisfy
the following constraints.

(1) Existence constraint restricts 𝐺 must contain the Python in-
terpreter and all P’s directly dependent third-party packages, i.e.,

• ∀𝑛𝑣1
𝑖

∈ 𝐶 (P) ∪ 𝐿𝑡 (P), ∃𝑛𝑣2
𝑗

∈ 𝐺.𝑉 , 𝑛𝑖 ≡ 𝑛 𝑗 .

For example, in Figure 4, Python, opencv-python, matplotlib,
and torch are dependencies must be installed. In contrast, pyyaml
is not necessary if torch 1.8.1 (TH18) is chosen.

(2) Unique constraint restricts 𝐺 to contain only one version of
each dependency 𝑛, i.e.,

• ∀𝑛𝑣1
𝑖
, 𝑛𝑣2

𝑗
∈ 𝐺.𝑉 , 𝑛𝑖 ≠ 𝑛 𝑗 .

For example, in Figure 4, one can choose either torch 1.8.1 or
torch 0.1.2 (TH01), but cannot choose both at the same time.

(3) Version constraint restricts each dependency 𝑛𝑣 in 𝐺 must be
compatible with all the other resources depending on it, i.e.,

• ∀𝑛𝑣1
𝑖

∈ 𝐺.𝑉 ,∀𝑛𝑣2
𝑗

∈ 𝑑𝑒𝑝 (𝑛𝑣1
𝑖
), ∃𝑛𝑣3

𝑘
∈ 𝐺.𝑉 , 𝑛 𝑗 ≡ 𝑛𝑘 ∧ 𝑛𝑣3

𝑘
∈

𝑑𝑒𝑝 (𝑛𝑣1
𝑖
).

For example, in Figure 4, one cannot choose matplotlib 3.4.2
and Python 3.5 (PY35) at the same time, since matplotlib 3.4.2
is not compatible with Python 3.5.

Optimization objective. We harmonize the latter two require-
ments above into an optimization objective. PyEGo sorts all ver-
sions of each dependency 𝑛 in 𝐺 ′ from the oldest to the latest as
a vector 𝑉𝑒𝑟 (𝑛) =< 𝑛𝑣1, 𝑛𝑣2, · · · , 𝑛𝑣0 >. Notably, 𝑛𝑣0 is a virtual
version denoting no versions of 𝑛 are selected. Therefore, the op-
timization objective is represented as Equation 4, where 𝑖𝑛𝑑𝑒𝑥 (𝑛)
denotes the index of the selected version in 𝑉𝑒𝑟 (𝑛). For example,
𝑖𝑛𝑑𝑒𝑥 (𝑛) = 0 if the oldest version in𝑉𝑒𝑟 (𝑛) is selected. 𝑁 is the set
of all dependency candidates (not their versions) of P.

𝑂 =𝑚𝑎𝑥Σ∀𝑛∈𝑁 𝑖𝑛𝑑𝑒𝑥 (𝑛) (4)

To maximize 𝑂 , PyEGo first tries to select 𝑛𝑣0 (i.e., not install any
version of 𝑛), and if 𝑛 is necessary or a constraint violation occurs,
it replaces 𝑛𝑣0 with the latest version of 𝑛 satisfying all its relevant
version constraints. To this end, PyEGo exploits the famous SMT
solver Z3 [13] to obtain the optimized solution, i.e., the final in-
ferred environment dependencies, such as the inference result of
the example listed in Table 1.

5 EVALUATION
To evaluate the effectiveness and efficiency of PyEGo, we answer
the follow research questions (RQs).
RQ3: How effective is PyEGo in inferring dependencies for Python

programs?
RQ4: Does PyEGo outperform state-of-the-art approaches? How

better is PyEGo than others?

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

RQ5: How efficient is PyEGo in inferring dependencies for Python
programs?

For RQ3, PyEGo infers environment dependencies for Python
programs in the dataset HG2.9K [24], 100 complex Python projects
collected from Github, and 4,836 jupyter notebooks. We evaluate
dependency inference results in terms of accuracy and average
inferred dependencies.

For RQ4, we execute pipreqs [6] and DockerizeMe [24] with the
datasets HG2.9K, the 100 collected projects and the 4,836 jupyter
notebooks and compare their results with those of PyEGo. Notably,
SnifferDog [37] is another related work, but we cannot replicate its
experiment and quantitatively compare it with PyEGo as it is not
executable due to the lack of critical component API-bank.

For RQ5, we compare PyEGo with pipreqs and DockerizeMe in
terms of average execution time.

5.1 Methodology
5.1.1 Datasets. Three datasets are used in evaluations, i.e., HG2.9K
[24], 100 open-source Python projects, and 4,836 jupyter notebooks.

HG2.9K contains 2,891 Python gists, i.e., single-file Python pro-
grams from GitHub gist service, experiencing import errors hard
to fix in the prior work [23, 24].

In addition, following the criteria listed below, we create a dataset
SD containing 100 real-world open-source Python projects collected
from GitHub.
• executable, i.e., running without errors once all the dependencies
are configured;

• well documented, i.e., document their dependencies explicitly;
• popular, i.e., having at least hundreds of stars;
• diverse, i.e., varying in forms and application types.
The projects in SD are third-party packages (47), applications (49)
and tutorials (4), belonging to machine/deep learning (30), Internet
(29), development (25), database (4), security (13), computer vision
(14) and natural language processing (6) (a project can belong to
multiple types). On average, these projects contain 58 Python files
(with .py extensions), 10,821 lines of code (LOC), and 270 import
statements.

Besides, we create a dataset JPD containing 4,836 jupyter note-
books. SnifferDog [37] provides a list of 6,004 notebooks in its
repositories, and we try to download the notebooks and convert
them into Python files. 1,168 notebooks fail in download or con-
version, and we take the rest 4,836 notebooks as the final dataset.
Notably, we comment out magic commands [2] contained in the
notebooks as they cannot be executed by CPython interpreter.

5.1.2 Evaluation metrics. Equation 5 measures the effectiveness of
dependency inference, where 𝐼𝑛𝑓 (𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠) is the number of pro-
grams whose environment dependencies are successfully inferred
within a dataset. Following the criterion in the prior work [24], an
inference is considered successful only if the program does not en-
counter ImportErrors anymore. In addition, since the projects in
SD record dependencies originally, we further compare their infer-
ence results with the documented dependencies to check whether
the inferred environment dependencies are semantically correct.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐼𝑛𝑓 (𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠)
𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑠

(5)

5.1.3 Experimental environment. Our experiments are performed
on a computer running Ubuntu 18.04 LTS with 8-core 3.50 GHz
CPU and 32 GB RAM.

5.2 Answer to RQ3
Experimental result. Table 4 shows the dependency inference
results of PyEGo for programs in the three datasets.

(1) PyEGo successfully infers dependencies for 1,334 out of 2,891
(46.14%) gists in HG2.9K, 1.41 third-party packages and 2.31 system
libraries per gist on average. Among the 1,334 gists,PyEGo infers
Python 3.9 for 765 gists, Python 2.7 for 528 gists, and Python 3.8
for 41 gists, respectively.

(2) PyEGo successfully infers dependencies for 62 out of 100
(62%) projects in SD, 8.91 dependencies (4.01 third-party packages
and 4.90 system libraries) per project on average. The accuracy on
SD is significantly higher than that on HG2.9K since each project in
SD is complete and executable originally. Therefore, they would not
encounter ImportErrors caused by missing local modules. Among
the 62 projects, PyEGo infers Python 3.9 for 51 projects, Python2.7
for 6 projects, and other Python versions for 5 projects. We inspect
the inference results of the 62 projects and find that 4 results con-
tain later dependency versions, but they do not change the target
projects’ execution semantics as the used APIs in the imported third-
party package versions do not change. For example, jd-assistant
[3] declares it depends on pycryptodome 3.6.6, while PyEGo in-
fers version 3.10.1. We inspect the change log of pycryptodome
[7] and confirm the used APIs, i.e., Crypto.PublicKey.RSA and
Crypto.Cipher.PKCS1_v1_5, do not change since 3.6.1. Thus, we
consider the inferred result is correct.

(3) PyEGo successfully infers dependencies for 2,945 out of 4,836
(60.90%) notebooks in JPD, 8.51 dependencies (3.30 third-party pack-
ages and 5.21 system libraries) per project on average. Among
the 2,945 notebooks, PyEGo infers Python3.9 for 2,193 notebooks,
Python2.7 for 479 gists and other Python versions for 273 note-
books.

Failure root causes analysis. We inspect programs failing with
incorrect dependency inference results and analyze the root causes.
Overall, the root causes are classified into several categories.

(1)Missing dependencies. First, some programs fail due to missing
third-party packages. Take the code snippet below as an example,
PyEGo infers numpy 1.16.1 and scipy 1.2.3, but fails to figure
out what package contains themodule sparsesvd as the knowledge
is absent.

1 import scipy.sparse

2 import numpy

3 import sparsesvd

Second, some programs fail to install third-party packages be-
cause of missing required system libraries. For example, installing
dbus-python without the system library libdbus-1-dev leads to
“error: Package requirements(dubs-1 >= 1.8) were not met.”
PyEGo fails to figure out on what system libraries the third-party
package depends.

Third, some programs fail due to missing extra dependencies.
Some third-party packages are installed optionally (PEP 508) [19],
i.e., theywould not be automatically installed unless asking for them
explicitly. For example, xlrd is an extra dependency of pandas,

Knowledge-Based Environment Dependency Inference for Python Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 4: Dependency inference results of PyEGo and two state-of-the-art approaches

Tool ACC ADP ATP AT (sec.)

HG2.9k
PyEGo 46.14% (1334/2891) 3.68 1.39 0.69
pipreqs 10.27%(297/2891) 1.52 1.52 2.18
DockerizeMe 30.72%(888/2891) 7.32 5.99 13.45

SD
PyEGo 62.00%(62/100) 8.98 4.01 2.52
pipreqs 45.00%(45/100) 6.25 6.25 2.43
DockerizeMe 23.00%(23/100) 13.18 10.41 10.37

JPD
PyEGo 60.90%(2,945/4,836) 8.51 3.30 2.86
pipreqs 52.92%(2,559/4,836) 3.41 3.41 3.11
DockerizeMe 46.20%(2,234/4,836) 8.48 6.86 7.97

ACC is the dependency inference accuracy; ADP is the average inferred dependent packages, including system libraries and third-party
packages; ATP is the average inferred dependent third-party packages; AT is the average execution time.

which would not be automatically installed with ”pip install
pandas”. Executing function pandas.read_excel() without xlrd,
the program would encounter an import error, i.e., “ImportError:
Missing optional dependency ‘xlrd’...”.

(2) Incompatible dependency versions. First, some programs fail
due to incompatible dependency versions induced by incorrect
version constraints documented in third-party packages’ metadata.
For example, pyarrow 2.0.0 specifies it is compatible with Python
>=3.5. However, it is incompatible with Python 3.9 and would
fail with “Installing build dependencies ... error.”.

Second, some programs fail due to incompatible classes or func-
tions in third-party package versions. For example, the function
numpy.rank is removed since numpy 1.18. Unfortunately, PyEGo
cannot identify such an incompatible change as it focuses on fea-
tures at module granularity.

(3) Incompatible operating systems. Some programs fail due to
their dependent third-party packages are OS-specific. For example,
pyobjc-core is only compatible with OS X, and installing it in Linux
would fail with “error: PyObjC requires macOS to build.”

(4) Conditional dependency. A program conditionally declares
its dependencies on standard modules specific to Python2 and
Python3 in try-catch or if-else code blocks for being compati-
ble with both Python versions. In the code snippet below, cPickle
and pickle are standard modules specific to Python2 and Python3,
respectively. PyEGo does not consider the import statements’ con-
text and cannot find a Python version containing both modules.

1 try:

2 import cPickle as pickle

3 except ImportError:

4 import pickle

5.3 Answer to RQ4
Table 4 lists all dependency inference results of the three approaches
(including PyEGo). Since pipreqs and DockerizeMe do not con-
sider Python versions, we config them with Python 2.7 for HG2.9k,
following the original experimental setting of DockerizeMe, and
config them with Python 3.9, the version most projects compat-
ible with, for SD and JPD. Notably, our replicated evaluation on

DockerizeMe with HG2.9K is slightly different from the original,
i.e., it successfully infers dependencies for 888 instead of 892 gists.
The reason is that some packages that DockerizeMe records have
been removed from PyPI and cannot be downloaded and installed
anymore. Overall, PyEGo reaches the highest accuracy on both
datasets. In particular,
• PyEGo’s accuracy is about 3.5x, 0.4x and 0.2x higher than that of
pipreqs on the datasets HG2.9K, SD and JPD, respectively;

• PyEGo’s accuracy is about 0.5x, 1.7x and 0.3x higher than that of
DockerizeMe on the datasets HG2.9K, SD and JPD, respectively.

In comparison,
• DockerizeMe reaches the lowest accuracy on SD since it does
not consider the hierarchical structure of a Python project and
only analyzes .py files at the top-level.

• Pipreqs reaches the lowest accuracy on HG2.9k as it does not
concern system libraries and Python version constraints.
The reasons of PyEGo outperforming the other approaches are

summarized as follows.
Finer-grained module analysis. Pipreqs and DockerizeMe

only focus on top-level modules, while PyEGo analyzes lower-
level modules in addition. In comparison, lower-level modules are
usually distinctive features for third-party package versions and
Python versions. In the code snippet below, urllib exists in both
Python2 and 3, but the second-level module urllib.parse is only
in Python3. On the other hand, DockerizeMe and pipreqs infer the
code snippet depends on google-api-python-client through the
top-level module oauth2client. However, only versions between
1.0 and 1.2 of the package contain oauth2client.appengine. Con-
sequently, DockerizeMe and pipreqs recommend the incompatible
latest version 2.15, and conversely, PyEGo infers the package at
version 1.2 and solves the ImportError.

1 import urllib.parse

2 from oauth2client import appengine

Discovering more dependent system libraries. Pipreqs does
not consider system libraries, and DockerizeMe only discovers such
dependencies based on association mining. In comparison, PyEGo
discovers more dependencies with an additional similarity-based

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

Table 5: Pairwise comparison results

programs ADP ATP AT (sec.)

HG2.9K-PyEGo 246 2.76 1.37 0.46
HG2.9K-pipreqs 246 1.43 1.43 1.11

HG2.9K-PyEGo 734 4.23 1.63 0.49
HG2.9K-DockerizeMe 734 3.08 2.94 5.10

SD-PyEGo 38 6.24 2.92 0.55
SD-pipreqs 38 3.00 3.00 1.21

SD-PyEGo 19 7.84 3.26 0.53
SD-DockerizeMe 19 7.74 6.95 8.78

JPD-PyEGo 2,287 6.85 2.85 2.91
JPD-pipreqs 2,287 2.86 2.86 2.93

JPD-PyEGo 2,035 6.32 2.72 2.80
JPD-DockerizeMe 2,035 5.26 4.82 6.18

The top two sub-datasets are gists in HG2.9K whose dependen-
cies are inferred by both PyEGo and pipreqs, and both PyEGo
and DockerizeMe. The middle two sub-datasets are projects in
SDwhose dependencies are inferred by both PyEGo and pipreqs,
and both PyEGo andDockerizeMe. The bottom two sub-datasets
are projects in JPD whose dependencies are inferred by both
PyEGo and pipreqs, and both PyEGo and DockerizeMe.

approach (Sec.3.2). For instance, PyEGo discovers av depending
on libavcodec-dev, and pyldap depending on libldap2-dev and
libsasl2-dev. Such knowledge helps PyEGo achieve high accu-
racy.

Python version compatibility awareness. DockerizeMe takes
Python2.7 as the default interpreter, and pipreqs only uses the local
Python versions directly. However, not all programs are compat-
ible with pre-installed Python versions. PyEGo analyzes syntax
features and standard modules used in programs, and thus PyEGo
recommends a compatible Python version for each target program.

Dependency conflicts prevention. Both pipreqs and Dock-
erizeMe simply take the latest package versions without concern-
ing dependency conflicts. PyEGo avoids potential DCs by solving
constraints among dependencies. For example, in the following
code snippet, the latest version of torchmeta and torchvision
are 1.7.0 and 0.10.0, respectively. However, torchmeta 1.7.0 de-
pends on torchvision<0.10.0 . Thus, installing the latest versions
of both packages would result in a DC. Conversely, PyEGo installs
torchmeta 1.7.0 and torchvision 0.9.0 and avoids the DC.

1 from torchvision import models

2 from torchmeta.utils.data import BatchMetaDataLoader

On average, PyEGo infers the fewest third-party packages (ATP)
but a little more system libraries than pipreqs and DockerizeMe. On
the one hand, although pipreqs does not consider system libraries,
some programs happened to depend on system libraries installed in
default. On the other hand, some obtained dependencies between

system libraries and third-party packages are false positives, result-
ing in unnecessary system libraries. However, a little more false
positives is an acceptable price to pay for the higher accuracy.

To make a more thorough evaluation, we perform a set of pair-
wise comparisons. That is, we compare PyEGo with every other ap-
proach based on the programs whose dependencies are successfully
inferred by both. For example, we compare PyEGo with pipreqs
based on the gists whose dependencies are successfully inferred
by both of them. Table 5 lists the pairwise comparison results. We
notice that PyEGo can infer dependencies for most programs whose
dependencies are successfully inferred by pipreqs and DockerizeMe.

5.4 Answer to RQ5
We compare PyEGowith DockerizeMe and pipreqs in terms of their
average execution time. As Table 4 shows, PyEGo runs 2.2x and
18.5x faster than pipreqs and DockerizeMe on HG2.9K, as well as
0.1x and 1.8x faster than pipreqs and DockerizeMe on JPD, respec-
tively. PyEGo runs 3.1x faster than DockerizeMe, but almost equally
to pipreqs on SD. However, unlike pipreqs, which immediately exits
once encountering a SyntaxError (caused by incompatible Python
versions) during program analysis, PyEGo tries the other Python
version until it finds a compatible one. PyEGo runs faster on all
sub-datasets in the pairwise comparison since pipreqs would no
longer encounter any SyntaxErrors and exit immediately.

PyEGo avoids online queries by storing the obtained knowledge
in PyKG locally, and thus, its performance bottleneck becomes
querying knowledge graph PyKG. Hence, we partially cache PyKG
(10% in practice) to speed up PyEGo. Take the dataset SD as an
example, PyEGo takes 2.52s in a dependency inference on average
with cache, 1.79x faster than without cache. In comparison, pipreqs
only locally records modules in third-party packages and has to
query PyPI for the latest version, increasing its time overhead.
On the other hand, DockerizeMe runs slowly because it directly
accesses its knowledge base step by step without leveraging cache.

6 DISCUSSION
We discuss some future work to deal with limitations.

More comprehensive knowledge acquirement. PyEGo is
limited in the equipped domain knowledge, e.g., PyKG stores only
a small part (e.g., 1/30 third-party packages in PyPI) of domain
knowledge. Thus, PyEGo does not know to what packages the
unrecognized imported modules belong. Therefore, we will contin-
uously and incrementally enrich PyKG by acquiring more domain
knowledge.

OS-specific dependency identification.Our failure root cause
analysis found that some third-party packages are compatible with
specific OSes, e.g., macOS. Currently, PyEGo concentrates on de-
pendencies in Linux, and we will enrich PyKG with OS-level com-
patibility information in the future.

Finer-grained feature utilization. Functions and classes are
also important for distinguishing versions of the Python interpreter
and packages, especially in situations where two versions of a pack-
age only differ in implementation details. However, PyEGo only
concerns module-level features and cannot recognize the function-

Knowledge-Based Environment Dependency Inference for Python Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

and class-level differences. We will extract and utilize such finer-
grained features in standard and third-party modules for improving
dependency inference accuracy.

Conditional dependency identification. PyEGo fails to in-
fer conditional dependencies for target programs. We will explore
context-aware program analysis to identify such dependencies.

7 THREATS TO VALIDITY
Internal validity threats come from the acquired knowledge, partic-
ularly the dependencies between third-party packages and system
libraries. The similarity- and association-based dependency mining
may introduce false positives (Sec. 3.2). We mitigate the threat by
(1) leveraging a comprehensive metric for increasing the accuracy
of similarity-based mining and (2) setting the threshold with a
moderately high value to filter out more false positives.

The external validity concerns the generality of our work. We
evaluate PyEGo by resolving ImportErrors for 2,891 single-file
Python programs. In particular, each program in HG2.9K is a “hard
gist” whose ImportErrors cannot be resolved by the naive algo-
rithm [24]. The experimental result reveals that PyEGo is more
effective than state-of-the-art approaches. On the other hand, we
evaluate PyEGo on 100 real-world projects selected from GitHub
based on several criteria and 4,836 jupyter notebooks. These projects
are more complex with multiple code files. The experimental result
shows that PyEGo is scalable to infer dependencies for complex
Python projects of various types, and most inferred dependencies
do not change execution semantics.

Construct validity refers to the suitability of our evaluation
measures. Like the prior study [24], we think a dependency infer-
ence is successful only if the target program no longer experiences
ImportErrors. We evaluate the dependency inference result of a
Python project more strictly. A dependency inference of a complete
Python project is successful if the project can execute correctly and
the inference is consistent with its originally declared dependencies.

8 RELATEDWORK
Dependency inference. The most relevant work is DockerizeMe
[24], SnifferDog [37], and pipreqs [6]. DockerizeMe infers third-
party package and system library dependencies using a combination
of static analysis, dynamic analysis, and association rule mining.
Pipreqs, a popular open-source tool, generates a requirements.txt
file for a Python program based on import statements analysis. It
resolves the inconsistencies between package names and module
names based on a pre-constructed dictionary and queries PyPI [8]
on the fly. SnifferDog [37] analyzes Jupyter notebooks to determine
candidates for required packages and versions based on a database
of APIs. PyEGo is more effective since it (1) concerns more depen-
dencies, (2) considers version constraints among dependencies, and
(3) is configured with rich and detailed dependency knowledge.

Dependency conflict management. WatchMan [38] detects
DCs in the PyPI ecosystem. Riddle [40] generates tests to collect
crashing stack traces to facilitate DC issue diagnosis of Java projects
based on the empirical study findings [39]. Pradel et al. [31] pro-
posed a detection strategy for DCs between JavaScript libraries.
LibHarmo [26] detects library version inconsistencies for Java
Maven projects and interactively suggests a harmonized version

with the least harmonization efforts. Sensor [41] synthesizes test
cases to trigger inconsistent behaviors of the APIs with the same
signatures in conflicting Java library versions.

Breaking change detection. PyDFix [30] detects and fixes un-
reproducibility in Python builds caused by breaking changes of
dependencies. V2 [25] detects breaking changes based on Python
program crash information. It fixes crashes by repeatedly building
environments and running programs with inferred dependencies
in a trial-and-error manner, inducing intolerable time overhead.
Mezzetti et al. [28] presented a technique, type regression testing, to
detect breaking changes in Node.js libraries. Through cross-project
testing and analysis, DeBBI [17] detects backward behavioral in-
compatibilities between Java software libraries and client software
projects. Mujahid et al.[29] leveraged automated test suites of other
projects depending upon the same dependencies to test newly re-
leased npm package versions.

Python ecosystem study. Valiev et al. [34] performed a mixed-
methods study on ecosystem-level factors affecting the sustain-
ability of open-source Python projects. Bommarito et al. [16] and
Chen et al. [18] conducted empirical studies on PyPI and language
features, respectively. Vu et al. [35] found that PyPI is an attractive
target for attackers to trick developers into using malicious pack-
ages. They studied the attacks and proposed an approach to identify
combosquatting and typosquatting [21] packages automatically.

9 CONCLUSION
Configuring a Python program execution environment is non-
trivial due to complex dependencies. This work proposes an au-
tomated dependency inference technique PyEGo. Assisted with a
dependency knowledge graph, PyEGo considers dependencies of
third-party packages, the Python interpreter and system libraries,
and infers dependencies for a program by constructing its depen-
dency graph and solving constraints in it. The evaluation shows
that PyEGo is more effective and efficient than the state-of-the-art
approaches. In the future, we plan to enhance PyEGo in several as-
pects, e.g., considering finer-granularity features, improving depen-
dency mining between system libraries and third-party packages,
automating language feature identification and representation.

10 DATA AVAILABILITY
PyEGo and its experimental data are publicly available at https:
//github.com/PyEGo/PyEGo.

ACKNOWLEDGEMENTS
This work was partially supported by National Key R&D Program
of China (2017YFA0700603), National Natural Science Foundation
of China (61732019, U20A6003, 62072444), Foundation of Science
and Technology on Parallel and Distributed Processing Laboratory
(61421102000402), Frontier Science Project of Chinese Academy of
Sciences (QYZDJ-SSW-JSC036), and Youth Innovation Promotion
Association at Chinese Academy of Sciences (2018142).

REFERENCES
[1] [n.d.]. The Advanced packaging tool, or APT (from Wikipedia). Retrieved

August 20, 2021 from https://en.wikipedia.org/wiki/APT_(software)
[2] [n.d.]. Built-in magic commands. Retrieved August 11, 2021 from https://ipython.

readthedocs.io/en/stable/interactive/magics.html

https://github.com/PyEGo/PyEGo
https://github.com/PyEGo/PyEGo
https://en.wikipedia.org/wiki/APT_(software)
https://ipython.readthedocs.io/en/stable/interactive/magics.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Hongjie Ye, Wei Chen, Wensheng Dou, Guoquan Wu, and Jun Wei

[3] [n.d.]. Jd-assistant. Retrieved August 24, 2021 from https://github.com/tychxn/jd-
assistant

[4] [n.d.]. Libraries.io. Retrieved August 10, 2021 from https://libraries.io/
[5] [n.d.]. Opencv-python. Retrieved September 2, 2021 from https://pypi.org/

project/opencv-python/
[6] [n.d.]. pipreqs. Retrieved August 4, 2021 from https://github.com/bndr/pipreqs
[7] [n.d.]. Pycryptodome changelog. Retrieved August 24, 2021 from https://

pycryptodome.readthedocs.io/en/latest/src/changelog.html#
[8] [n.d.]. PyPI. Retrieved August 7, 2021 from https://pypi.org/
[9] [n.d.]. Python Docs by version. Retrieved August 11, 2021 from https://docs.

python.org/3/
[10] [n.d.]. Python Official Website. Retrieved August 13, 2021 from https://www.

python.org/
[11] [n.d.]. SnifferDog repository. Retrieved August 24, 2021 from https://github.

com/SMAT-Lab/SnifferDog
[12] [n.d.]. What’s New in Python. Retrieved August 25, 2021 from https://docs.

python.org/3.9/whatsnew/
[13] [n.d.]. Z3. Retrieved August 17, 2021 from https://github.com/Z3Prover/z3/

wiki#background
[14] 2019. Customized dependency resolution / full required graph #3118. Retrieved

July 30, 2021 from https://github.com/pypa/pipenv/issues/3118
[15] 2019. pip documentation v21.0.1. Retrieved July 30, 2021 from https://pip.pypa.

io/en/stable/reference/pip_install/
[16] Ethan Bommarito and Michael Bommarito. 2019. An empirical analysis of the

python package index (PyPI). arXiv preprint arXiv:1907.11073 (2019).
[17] Lingchao Chen, Foyzul Hassan, Xiaoyin Wang, and Lingming Zhang. 2020. Tam-

ing behavioral backward incompatibilities via cross-project testing and analysis.
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. 112–124.

[18] Zhifei Chen, Yanhui Li, Bihuan Chen, Wanwangying Ma, Lin Chen, and Baowen
Xu. 2020. An Empirical Study on Dynamic Typing Related Practices in Python
Systems. In Proceedings of the 28th International Conference on Program Compre-
hension. 83–93.

[19] Robert Collins. 2015. Dependency specification for Python Software Packages.
Retrieved July 30, 2021 from https://www.python.org/dev/peps/pep-0508/#extras

[20] Jens Dietrich, David Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency versioning in the wild. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR). IEEE, 349–359.

[21] John E Dunn. 2017. PyPI Python repository hit by typosquatting sneak attack.
Retrieved July 28, 2021 from https://nakedsecurity.sophos.com/2017/09/19/pypi-
python-repository-hit-by-typosquatting-sneak-attack/

[22] Lysandros Nikolaou Guido van Rossum, Pablo Galindo. 2020. New PEG parser for
CPython. Retrieved August 11, 2021 from https://www.python.org/dev/peps/pep-
0617/#overview

[23] Eric Horton and Chris Parnin. 2018. Gistable: Evaluating the executability of
python code snippets on github. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 217–227.

[24] Eric Horton andChris Parnin. 2019. Dockerizeme: Automatic inference of environ-
ment dependencies for python code snippets. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, 328–338.

[25] Eric Horton and Chris Parnin. 2019. V2: fast detection of configuration drift in
Python. In 2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 477–488.

[26] Kaifeng Huang, Bihuan Chen, Bowen Shi, Ying Wang, Congying Xu, and Xin
Peng. 2020. Interactive, effort-aware library version harmonization. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 518–529.

[27] Mario Corchero Larry Hastings, Pablo Galindo and Eric N.Vander Weele. 2018.
Python Positional-Only Parameters. Retrieved August 23, 2021 from https:
//www.python.org/dev/peps/pep-0570/

[28] Gianluca Mezzetti, Anders Møller, and Martin Toldam Torp. 2018. Type regres-
sion testing to detect breaking changes in Node. js libraries. In 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[29] Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, and Shane McIntosh. 2020.
Using Others’ Tests to Identify Breaking Updates. In Proceedings of the 17th
International Conference on Mining Software Repositories. 466–476.

[30] Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-González. 2021. Fixing
dependency errors for Python build reproducibility. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 439–
451.

[31] Jibesh Patra, Pooja N Dixit, and Michael Pradel. 2018. Conflictjs: finding and
understanding conflicts between javascript libraries. In Proceedings of the 40th
International Conference on Software Engineering. 741–751.

[32] Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. 2020. Superglue: Learning feature matching with graph neural networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion. 4938–4947.

[33] Brandt Bucher Steven D’Aprano. 2019. Add Union Operators To dict. Retrieved
August 11, 2021 from https://www.python.org/dev/peps/pep-0584/#abstract

[34] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 644–655.

[35] Duc-Ly Vu, Ivan Pashchenko, FabioMassacci, Henrik Plate, and Antonino Sabetta.
2020. Typosquatting and Combosquatting Attacks on the Python Ecosystem. In
2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 509–514.

[36] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas Partner.
2015. Neo4j in action. Vol. 22. Manning Shelter Island.

[37] Jiawei Wang, Li Li, and Andreas Zeller. 2021. Restoring Execution Environments
of Jupyter Notebooks. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 1622–1633.

[38] Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang,
Hai Yu, Shing-Chi Cheung, Chang Xu, and Zhiliang Zhu. 2020. Watchman:
monitoring dependency conflicts for Python library ecosystem. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 125–135.

[39] Ying Wang, Ming Wen, Zhenwei Liu, Rongxin Wu, Rui Wang, Bo Yang, Hai Yu,
Zhiliang Zhu, and Shing-Chi Cheung. 2018. Do the dependency conflicts in my
project matter?. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 319–330.

[40] Ying Wang, Ming Wen, Rongxin Wu, Zhenwei Liu, Shin Hwei Tan, Zhiliang Zhu,
Hai Yu, and Shing-Chi Cheung. 2019. Could I have a stack trace to examine the
dependency conflict issue?. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 572–583.

[41] YingWang, RongxinWu, ChaoWang, MingWen, Yepang Liu, Shing-Chi Cheung,
Hai Yu, Chang Xu, and Zhi-liang Zhu. 2021. Will Dependency Conflicts Affect
My Program’s Semantics. IEEE Transactions on Software Engineering (2021).

https://github.com/tychxn/jd-assistant
https://github.com/tychxn/jd-assistant
https://libraries.io/
https://pypi.org/project/opencv-python/
https://pypi.org/project/opencv-python/
https://github.com/bndr/pipreqs
https://pycryptodome.readthedocs.io/en/latest/src/changelog.html#
https://pycryptodome.readthedocs.io/en/latest/src/changelog.html#
https://pypi.org/
https://docs.python.org/3/
https://docs.python.org/3/
https://www.python.org/
https://www.python.org/
https://github.com/SMAT-Lab/SnifferDog
https://github.com/SMAT-Lab/SnifferDog
https://docs.python.org/3.9/whatsnew/
https://docs.python.org/3.9/whatsnew/
https://github.com/Z3Prover/z3/wiki#background
https://github.com/Z3Prover/z3/wiki#background
https://github.com/pypa/pipenv/issues/3118
https://pip.pypa.io/en/stable/reference/pip_install/
https://pip.pypa.io/en/stable/reference/pip_install/
https://www.python.org/dev/peps/pep-0508/#extras
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://nakedsecurity.sophos.com/2017/09/19/pypi-python-repository-hit-by-typosquatting-sneak-attack/
https://www.python.org/dev/peps/pep-0617/#overview
https://www.python.org/dev/peps/pep-0617/#overview
https://www.python.org/dev/peps/pep-0570/
https://www.python.org/dev/peps/pep-0570/
https://www.python.org/dev/peps/pep-0584/#abstract

	Abstract
	1 Introduction
	2 Motivation
	2.1 Empirical Study
	2.2 Motivating Example
	2.3 Our Approach Overview

	3 Knowledge Graph Construction
	3.1 Data Source
	3.2 Knowledge Extraction
	3.3 Knowledge Graph Construction and Update

	4 Environment Dependency Inference
	4.1 Program Feature Extraction
	4.2 Dependency Candidate Identification
	4.3 Dependency Inference

	5 Evaluation
	5.1 Methodology
	5.2 Answer to RQ3
	5.3 Answer to RQ4
	5.4 Answer to RQ5

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	10 Data Availability
	References

