
Understanding Device Integration Bugs in Smart Home System
Tao Wang∗

State Key Lab of Computer Science at
ISCAS, University of CAS, China
wangtao19@otcaix.iscas.ac.cn

Kangkang Zhang∗
State Key Lab of Computer Science at
ISCAS, University of CAS, China

zhangkangkang19@otcaix.iscas.ac.cn

Wei Chen†
State Key Lab of Computer Science at
ISCAS, University of CAS, Nanjing
Institute of Software Technology,

China
wchen@otcaix.iscas.ac.cn

Wensheng Dou†
Jiaxin Zhu

State Key Lab of Computer Science at
ISCAS, University of CAS, University

of CAS Nanjing College, China
{wsdou,zhujiaxin}@otcaix.iscas.ac.cn

Jun Wei
State Key Lab of Computer Science at
ISCAS, University of CAS, Nanjing
Institute of Software Technology,

China
wj@otcaix.iscas.ac.cn

Tao Huang
State Key Lab of Computer Science at
ISCAS, University of CAS, China

tao@otcaix.iscas.ac.cn

ABSTRACT
Smart devices have been widely adopted in our daily life. A smart
home system, e.g., Home Assistant and openHAB, can be equipped
with hundreds and even thousands of smart devices. A smart home
system communicates with smart devices through various device
integrations, each of which is responsible for a specific kind of de-
vices. Developing high-quality device integrations is a challenging
task, in which developers have to properly handle the heterogeneity
of different devices, unexpected exceptions, etc. We find that device
integration bugs, i.e., iBugs, are prevalent and have caused various
consequences, e.g., causing devices unavailable, unexpected device
behaviors.

In this paper, we conduct the first empirical study on 330 iBugs
in Home Assistant, the most popular open source smart home
system.We investigate their root causes, trigger conditions, impacts,
and fixes. From our study, we obtain many interesting findings
and lessons that are helpful for device integration developers and
smart home system designers. Our study can open up new research
directions for combating iBugs in smart home systems.

CCS CONCEPTS
• General and reference→ Empirical studies; • Networks→
Home networks.

∗TaoWang and Kangkang Zhang contribute equally. CAS is the abbreviation of Chinese
Academy of Sciences. ISCAS is the abbreviation of Institute of Software, Chinese
Academy of Sciences.
†Wei Chen and Wensheng Dou are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534365

KEYWORDS
Empirical study, smart home system, integration bugs, Home As-
sistant

ACM Reference Format:
Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun
Wei, and Tao Huang. 2022. Understanding Device Integration Bugs in
Smart Home System. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis (ISSTA ’22), July 18–
22, 2022, Virtual, South Korea. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3533767.3534365

1 INTRODUCTION
A smart home is equipped with software driven devices, namely
smart devices, which can be automatically controlled remotely
from anywhere via a terminal with internet connection, e.g., mobile
phones [22]. The smart home system is used to manage smart
devices. It usually provides services of scheduling tasks, e.g., turning
on sprinklers to water flowers at the preset time, and handling
events, e.g., turning lights on when people come over. More and
more people begin to construct their own smart homes. The global
smart homemarket size is expected to grow from 78.3 billion dollars
in 2020 to 135.3 billion dollars by 2025 [23]. To have a more flourish
smart home ecosystem and more reliable smart home systems is
anticipated to meet the growing demand of smart home market.

There are more and more smart home systems in the market.
Many smart home systems are closed source or commercial, e.g.,
Samsung SmartThings [24], Google Assistant [19], and Huawei
HiLink [20]. Most of these systems only support the devices in their
closed ecosystems. In contrast, open source smart home systems are
crowdsourcing software and allow third parties to integrate all kinds
of devices. openHAB [1] and Home Assistant [6] are two typical
open source smart home systems. Both of them have powerful
automation engines, friendly UI, and open interfaces to integrate
devices. Various smart home devices can be integrated into the
systems, and the number of supported devices keeps increasing. To
make a device connectable and accessible to a smart home system,
developers have to contribute an adaptive program for the device to
the system, which is called a device integration. Through device

https://doi.org/10.1145/3533767.3534365
https://doi.org/10.1145/3533767.3534365
https://doi.org/10.1145/3533767.3534365

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

integrations, end users can control the devices in the smart home
systems.

Developing high-quality device integrations is a challenging task,
in which developers need to properly handle the heterogeneity of
different devices, possible situations and errors, master domain
knowledge of target systems and devices. Therefore, device inte-
gration bugs often occur in smart home systems, e.g., no responses
from devices, incorrect device states in the systems. These problems
can potentially make a smart home inconvenient and even dan-
gerous, e.g., serious accidents. In this paper, we call such a device
integration bug as an iBug for brevity.

Substantial studies have investigated smart home systems. Some
of them investigated bugs occurred in smart devices [34, 49, 53],
and some of them looked into smart home applications to find bugs
that could lead to safety and security problems [28, 31–33, 39, 60].
However, none of these studies has focused on iBugs in smart home
systems. There is little knowledge about iBugs of smart home sys-
tems in the literature. Understanding iBugs is of significant interest
to researchers and practitioners in the smart home community,
which could help identify areas where we need better tool support
and offer guidelines on high-quality device integration develop-
ment.

In this paper, we conduct the first empirical study on iBug in
an open source smart home system. We select Home Assistant [6],
the most popular and active open source smart home system as
our study object. We investigate 2767 issues committed from 2020.5
to 2020.12 in the Home Assistant repository. Among them, 330
device integration bugs are identified. Furthermore, we attempt to
answer the following four research questions through analyzing
these iBugs.

• RQ1 (Root cause):What are the root causes of iBugs?
• RQ2 (Fix): How do developers fix iBugs, and are there some
common fix strategies?

• RQ3 (Trigger condition): What are the trigger conditions
of iBugs?

• RQ4 (Bug impact):What impacts do these iBugs have?
Through our in-depth analysis of these iBugs, we obtain 23

atomic categories of root causes. For example, developers may not
know that the established device authentication can expire, making
devices inaccessible, and developers often generate unique device
ID based on the device’s MAC address, but some devices do not
expose their MAC addresses. For iBugs under the same root cause,
we extract their fix patterns and trigger conditions. We observe that
more than half of the categories have frequent fix patterns, which
means that most iBugs under the same root cause can be resolved
by its associated fix pattern. For example, all iBugs caused by gen-
erating incorrect device information can be resolved by generating
unique device ID. Based on the findings, we also offer some useful
lessons for researchers and practitioners of smart home systems.
For example, device integration developers should keep in mind
that some devices can become invalid or expired, and they should
set up some polling tasks to maintain the authenticated state. Smart
home system designers should standardize the device life cycle
and provide frameworks to assist developers developing device
integrations. We have made our studied iBugs publicly available at
https://github.com/tcse-iscas/iBugs.

We summarize our contributions as follows.
• We present the first systematically empirical study on iBugs
in the most popular open source smart home system, Home
Assistant.

• Weprovide a large-scale benchmark of iBugs in a smart home
system, which can be used to evaluate the effectiveness of
tools in combating iBugs.

• We make some takeaways to help developers implement a
high-quality device integration and a highly extensible smart
home system.

The rest of this paper is organized as follows. Section 2 briefs
Home Assistant basics and its integration model. Section 3 presents
our study methodology. Section 4 presents our empirical study
results and findings. Section 5 discusses lessons learned from our
study. Section 6 discusses related work and finally Section 7 con-
cludes this paper.

2 HOME ASSISTANT
Home Assistant (HA) is an open source home automation software
designed to be the central control system for smart home devices
with a focus on local control and privacy [25]. The heart of Home
Assistant is the Core module. HA Core interacts with users, smart
devices and services, and schedules and processes events within
the system. With the help of HA Core, users can easily control
their smart devices and invoke services, such as turning on a light
and checking the weather. HA Core can be extended with modules,
termed as integrations in HA. Each integration is responsible for
a specific domain within HA, especially interacting with external
devices and services.

More specifically, there are four types of integration, which can
listen for or trigger events, offer services, and maintain states. In
particular, most integrations are responsible for interacting with
various external devices and services, making them available in
Home Assistant. For example, the Philips Hue integration can be
extended from light integration, and it can be used to control the
physical device.

In this work, we focus on this type of integrations and refer to
them as device integrations hereafter. As mentioned above, many
device integrations are contributed by developers in the open source
smart home system community, and they evolve along with IoT de-
vice updates. However, it is challenging for developers to implement
a high-quality device integration. They should apply proper com-
munication protocols, handle device lifecycle management mech-
anisms, deal with errors and exception situations. Consequently,
various iBugs can occur in the implemented device integrations.

To guide the analysis of iBugs, we build a general integration
model of Home Assistant by investigating the existing device inte-
gration code and official documents. As shown in Figure 1, Home
Assistant consists of two parts: Home Assistant Core (Figure 1a) and
integrations (Figure 1b). For better understanding, an integration
can be thought of as a simplified digital twin of a physical device.
Through the analysis of the existing device integration code, we
find that the device integration development needs to focus on four
stages, which we call the four lifecycle functions. We will cover
each of these stages in turn.

https://github.com/tcse-iscas/iBugs

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

(a) Home Assistant Core

(b) Integration

4. Release

- listening tasks

- gateway, broker

- other cleanup jobs

3. Execution

- update status

- call services

1.Discovery

- manual(UI, storage)

- automatic(UPnP, mDNS)

2. Initialization

- device model

- authentication

- poll / push tasks

(c) Device

Figure 1: The integration model of a smart home device.

Discovery. In the discovery stage, the device integration is re-
sponsible for obtaining some device information, e.g., IP, port, user-
name, password. The information, obtained manually or automati-
cally, is used to connect or initialize the device in the system. In the
manual way, developers provide the device information through
the UI or configuration files. In the automatic way, some automatic
discovery protocols, e.g., UPnP and mDNS, are provided by some
third-parties, and developers can use them to implement the auto-
matic discovery.

Initialization. The purpose of initialization is to make a device
integration ready for managing the corresponding device. It usually
includes three steps. First, devices are connected through device
information like network addresses and device IDs. If required, the
authentication and authorization are conducted. Second, the device
integration establishes a mapping of devices from physical space
to cyberspace for further operations. Third, the device integration
sets polling or monitoring tasks to synchronize states between the
physical device and the digital mapping in the system or some
repeatable tasks.

Execution. A device integration is responsible for communicat-
ing with remote devices and external services via various protocols
in execution. On the one hand, a device integration polls or moni-
tors the target device’s state and synchronizes the device’s digital
model to the perceived actual device state. On the other hand, a
device integration schedules and conducts tasks that either change
the remote device’s properties or control the device to perform
expected functions.

Release.When a device is no longer in use or malfunctions, the
allocated resources for them should be released properly, such as
terminating themonitoring process and cancel timers. For indirectly
connected devices (e.g., through hardware gateways, and MQTT
servers), the corresponding clean-up work should be required.
There also exist some global shared states for inter-integration
communication or used for reloading. These shared states should
be correctly handled.

Device integrations should implement the full lifecycle functions
and ensure each stage is carefully managed. Otherwise, integration
bugs can occur.

3 METHODOLOGY
In this section, we present the methodology of our empirical study.
In order to answer the four research questions, we conduct a com-
prehensive empirical investigation on 330 iBugs. In the following,
we first explain why we choose Home Assistant as our target smart
home system, and describe how we collect iBugs. We then present
how these iBugs are analyzed. Finally, we discuss the threats to our
study.

3.1 Target Smart Home System
We select the open source smart home system Home Assistant as
the target system to conduct our empirical study considering its
popularity and open source nature. Home Assistant is the most
popular smart home project which has supported thousands of
device integrations on GitHub. Meanwhile, it has an open source
project in which issue reports and code repository are publicly
available. This can greatly facilitate our study. We have also com-
pared Home Assistant with another popular smart home systems,
i.e., openHAB. The device integration model of these two typical
systems are similar. We have summarized three common concepts
as follows.

• Device integration. Developers can develop device integra-
tions to extend the capability of systems.

• Device monitor. Both of the two systems provide device au-
tomation mechanism and unified interfaces for monitoring
devices.

• Device object. Physical devices are mapped to virtual objects
in the system, and the states and behaviors of the objects
can be accessed and controlled within the system and reflect
in the physical space.

The concerned difference is that Home Assistant has a special
design, which separates and maintains the device SDKs from the
device integrations. Each device SDK encapsulates the communica-
tion protocols and device capabilities. Developers can control the
device through the device SDKs, e.g., turn on the light. Therefore,
it is straightforward to analyze and locate iBugs in Home Assistant,
and there is little noise from device related bugs in our study, such

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

as incorrect communication protocols and incorrect wrapper of
device APIs.

3.2 Collecting iBugs
We manually went through issues and pull requests (PRs) of the
Home Assistant repository [3] on GitHub to collect iBugs. First,
we concentrated on the closed bug reports with the label “integra-
tion”, the number of which is larger than ten thousand. Second, we
selected issues in the second half of 2020 (2020.5-2020.12) . Next,
we searched for each issue’s associated merged pull request, which
indicated that the issue was potentially a real bug. Then we man-
ually read the issue report and discussions to screen out iBugs.
Eventually, we have obtained 330 iBugs for further analysis.

3.3 Analyzing iBugs
The collected GitHub issues were manually analyzed by four au-
thors following an open coding procedure [59]. We created a shared
document containing five columns, i.e., issue ID, root cause, fix,
impact, trigger. The authors need to label the last four columns. To
explore the root causes of iBugs, we tried to answer the question
“what caused this bug at the code level”. Based on the stack traces
and messages in the issue reports, we located the buggy code and
figured out what caused the bugs. The fixes were obtained from the
associated pull requests, and finally, wemanually extracted the com-
mon patterns by abstracting the patches. The impacts and trigger
conditions can be inferred by issue reports straightforwardly.

Each author independently labeled the document assigned to him
by defining the range of issue IDs. The shared document can show
all the created labels during the labeling process, and all authors can
further use them. Such a choice can help us use consistent naming
without introducing bias. Authors also discarded issues and PRs
that can not represent a bug or be fully understood.

The labeling process is conducted iteratively. In each round, each
author was assigned different issues from his previous round, and
the authors discussed the problems they met. After each labeling
iteration, all potential conflicts between authors were resolved. We
continued this process until the labels reached a state of saturation
where no new label appeared after three rounds.

Taxonomy Construction.We used a bottom-up approach [42]
to construct the taxonomy. We first grouped the bugs according to
the different dimensions based on the proposed integrationmodel in
Figure 1. Then we grouped labels that correspond to similar views
into categories. After that, we constructed parent categories to
extract common features further. Each sub-category should belong
to its parent category. The whole process was discussed and decided
by all authors through offline meetings.

The labeling and analysis of the 330 iBugs took about four
months.

3.4 Threats to Validity
Similar to other bug studies [41, 46, 47, 51, 65], potential threats to
our work are the representativeness of the studied system and bugs,
the accuracy of our analysis methodology, and the replicability,
reproducibility, generalizability of the empirical study.

Generalizability. Smart home systems aim to integrate diverse
IoT physical devices into cyberspace for control. Both open-source

(e.g., Home Assistant [6], openHAB [1], and KubeEdge [18]) and
commercial systems (e.g., Samsung SmartThings [24], Google As-
sistant [19], and Huawei HiLink [20]) have many design choices in
common. These systems provide integration components to control
diverse IoT devices. To integrate devices into smart home systems,
developers need to map the devices in the physical world into cy-
berspace. To manage device models, these systems adopt similar
lifecycle management mechanisms, including device discovery, ini-
tialization, execution, and release. Therefore, these systems can
suffer from similar kinds of bugs as Home Assistant.

Representativeness. Home Assistant is the most popular open
source smart home system on GitHub. It offers good flexibility,
user interface, and overall performance and updates frequently
[4, 7, 21]. Compared to other open source smart home systems,
HomeAssistant has amore flourishing community, and the reported
issues in its repository contain richer information. We consider all
the issues reported in the studied time period, i.e., from 2020.5
to 2020.12, and carefully collect all iBugs. Since then, the design
and architecture of Home Assistant stay stable. Therefore, Home
Assistant can still suffer from similar integration bugs.

Studied bugs and analysis methodology.We carefully read
the description, discussions, related source code and bug fix patches
for each bug. Once the label changed during the study, all bugs were
re-analyzed. All studied bugs have been discussed and confirmed by
at least four authors. For bugs that we still labeled in conflict after
the discussion, we asked developers to help us reach a consensus. If a
bug still cannot be understood, we did not take it into consideration.
We are very confident that all studied bugs are valid and have been
thoroughly studied.

Replicability and reproducibility. This paper is a qualitative
exploration study, and the results depend on the collected data
and involved researchers. The labeling method strictly follows the
open coding procedure. Besides, the empirical study’s design and
planning follow the structure suggested by Wohlin [35]. The repli-
cability and reproducibility of qualitative exploration studies are
common and recognized limitations. To reduce the threat, We have
made our studied objects and analysis results publicly available
at https://github.com/tcse-iscas/iBugs. Thus, other researchers are
able to validate our study results easily.

4 STUDY RESULTS
This section presents our empirical study results and the answers
to the research questions.

4.1 Root Cause (RQ1)
We present the result of our manual taxonomy of root causes in
Figure 2, a hierarchical classification tree of depth four constructed
by categories (gray rounded rectangles), sub-categories (gray rect-
angles) and atomic categories (white rectangles). For example, au-
thentication error (C.2) is a sub-category containing two atomic
categories: incorrect authentication establishment (C.2.1) and forget
to keep authentication (C.2.2). The number in the upper right corner
denotes the number of bugs in each (atomic, sub-) category.

Device (A). This category covers 47 (14.2%) iBugs relating to
device adaptation and malfunction, and contains two atomic cate-
gories.

https://github.com/tcse-iscas/iBugs

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Device Integration Bugs
330

[A] Device

[A.2] Device

failure

2

[B] Discovery
27

[B.2] Generate

incorrect device

information

9

[C] Initialization
51

[C.1] Incorrect

device initialization

status
[C.2] Authentication error

20

[C.2.1] Incorrect

authentication

establishment

12

[C.2.2]

Forget to keep

authentication

8

[C.3] Incorrect

task scheduling

19

[D] Execution
13

[D.1] Incorrect

execution status

update

10

[D.2] Inappropriate

polling interval

3

[E] Release
9

[E.1] Incorrect

release

5

[E.2] Forget

to release

resources

4

[F] Error handling
100

[F.1]

Input

validation

14

[F.2] Incorrect

response

handling

31

[F.3]

Incorrect error

handling

7

[F.4]

Insufficient error

handling

48

[G] Others
97

25

[G.3] General

code error

[G.4]

Dependency

conflict

3

[G.2]

Asynchronous

error

7

[G.5]

Constrained

resource

4

[G.6]

Corner case

6

[B.1.2] Incorrect

configuration

item handling

8

[B.1.1] Incorrect

configuration

10

[B.1] Configuration error
18

[A.1]

Incompatible

device

[G.1]

API-update-caused

breakage

38

47

45 2

51

12

19 12

20

8

100

14 31 7 48

27

18

9

10 8

13

10 3

9

5 4

83

38 7 25

3 4 6

Figure 2: Taxonomy of root causes in device integration bugs

Incompatible device (A.1). This atomic category considers bugs
caused by incompatible device adaptations and 45 iBugs belong to
this category. Device integrations do not provide some abilities of
the connected device or have not supported this device yet. Take
issue #42921 [16] as an example, the latest version of Nest (SDM)
for climate adds an “auto” mode. However, the user’s device only
supports “heat” and “off”, and “auto” mode cannot cool down the
room when the temperature is high. Since users do not know the
device and the device integration well and the Home Assistant
system usually does not give any clear error message, users are
always confused by such bugs.

Device failure (A.2). Devices connecting to the system can mal-
function and cause the corresponding device unavailable. However,
these bugs in our study are rare and only have two cases, as users
can easily perceive their device failures and will not report such
bugs.

Finding 1: 13.6% (45/330) iBugs are caused by accessing incom-
patible devices without clear prompts.
Implication 1: The smart home system should give a clear prompt
when a user encounters an incompatible device.

Discovery (B). This category contains 27 bugs occurring dur-
ing the device discovery stage. A device discovery requires device
information for further device connection. However, developers
can inadvertently provide incorrect information or configurations.
In particular, this category is divided into three atomic categories
further.

Configuration error (B.1).A device should be configured manually
or automatically before its connection and use, and configuration
errors can cause the device integration to fail. 18 iBugs belong to
this category.

This sub-category has two atomic categories, i.e., incorrect con-
figuration and incorrect configuration item handling.

• Incorrect configuration (B.1.1). Ten iBugs is caused by in-
correct and incompatible configurations. Developers can
provide incorrect parameters, redundant configurations and
forget to set default configuration values.

• Incorrect configuration item handling (B.1.2). This category
represents faults due to the negligence of developers. Devel-
opers do not take into account the configuration parameter
information provided by the user when developing the in-
tegration, which means that all the configurations are hard-
coded by the developer. More specifically, The user config-
ures certain parameters such as the IP address of the device,
but the developer does not use this configuration informa-
tion. Eight iBugs belong to this category.

Generate incorrect device information (B.2). Nine iBugs are caused
by the generation of incorrect device information. As mentioned
above, the device information should be provided to the corre-
sponding device integration. However, not all device information
can be obtained from configurations directly, and some are obtained
dynamically or after calculations. Generating wrong device infor-
mation can cause iBugs. Take issue #39099 [11] as an example, the
user wants to access surepetcare (The surepetcare allows people

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

to get information on Sure Petcare Connect Pet or Cat Flap) into
the system and gets an error message: “Platform surepetcare
does not generate unique IDs”. Each device accessed into the
smart home system should have its unique ID and the device inte-
gration is responsible for the ID generation. Therefore, the device
integration should provide a unique ID for each device and avoid
generating the duplicate ID. Interestingly, some developers use the
MAC address as the unique ID, while some devices do not expose
their MAC addresses through certain APIs. However, developers
are not aware of this situation and can introduce iBugs.

Finding 2: 8.2% (27/330) iBugs are caused by configuration errors
and generating incorrect device information. The main cause of
generating incorrect device information is that the accessed device
does not have a unique ID.
Implication 2: Developers should not hard code the configuration
and make sure their configurations are correct and customizable.
Developers should make sure the device ID is unique in the system
during the device discovery phase.

Initialization (C). In this group fall all the aspects relevant to
iBugs raised during the device initialization. The device integrations
are responsible for setting the initial state, authentication, and
scheduling task of the device during the initialization stage. 51
iBugs occurred during the device initialization.

Incorrect device initialization state (C.1). A device integration
requires ensuring that the state of the device reflected in the device
integration or smart home system is consistent with that of the
physical device. Device integrations can have problems of handling
initial device state settings, such as forgetting to configure the state
or setting a wrong state. 12 iBugs belong to this category.

Authentication error (C.2). Some devices require authentication
for accessing them, and the corresponding device integration should
provide such an authentication process, including the authentica-
tion establishment and maintenance. Developers should make sure
that their authentication parameters and implemented logic are
correct. Otherwise, an access can be denied or return an incor-
rect response. 20 iBugs belong to this category. The following two
atomic categories explain the main causes of such iBugs.

• Incorrect authentication establishment (C.2.1). The device au-
thentication process is managed by the corresponding device
integration. Home Assistant Core has already configured the
standard auth providers, and developers need to provide the
identity information. However, the identity information pro-
vided by some developers can be incorrect, which leads to
authentication failures. Furthermore, some developers even
implement wrong authentication logic in their device inte-
grations, which can also lead to authentication failures. 12
iBugs are caused by incorrect authentication establishment.

• Forget to keep authentication (C.2.2). The authentications of
some devices can become invalid or expire. Therefore, de-
velopers need to ensure that the device integrations they
implemented always have valid authorizations. Take issue
#42947 [17] as an example, it reports that Nest (SDM) Google

Pubsub stops working after 60 minutes with observed non-
recoverable stream error 401 request. Restarting Home As-
sistant with reloading the Nest integration temporarily re-
solves the issue in 60 minutes. After analysis, we find that
the authentication of the device has expired after 60 minutes,
making the device unavailable. Eight iBugs belong to this
category.

Incorrect task scheduling (C.3). A device integration needs to
schedule tasks for an initialized device. The main thread is unsuit-
able for carrying out some time-consuming tasks, such as database
access, as it will be blocked. Instead, other threads should be del-
egated to execute such tasks asynchronously to avoid blocking
the main thread and degrading the system performance. However,
some device integrations do not follow such practical guidelines
and set heavy tasks into the main thread, blocking the system. 19
iBugs belong to this category.

Finding 3: 5.1% (17) iBugs are caused by forgetting to maintain
the establishment of device authentication and scheduling heavy
tasks inappropriately.
Implication 3: Smart home systems should inform device integra-
tion developers of the existence of an expired device authentication.

Execution (D). At runtime, the smart home system commu-
nicates with connected devices and controls them via the device
integrations for updating their states. This category contains 13
iBugs related to device execution state update and polling interval
settings.

Incorrect execution state update (D.1). During a device execution,
the system triggers the device to change its state and meanwhile
changes the properties/state of the device reflected in the system
synchronously. However, device integrations can forget to update
the reflected state or configure incorrect update information, which
leads to the inconsistency between the actual device state and the
reflected one in the system. Ten iBugs are caused by this.

Inappropriate polling interval (D.2). Device integrations are re-
sponsible for setting up polling tasks to synchronize system state
and device state regularly. The polling interval can be inappropriate
and make the state of a device in the system inconsistent with the
real state. We find three iBugs are caused by inappropriate polling
intervals.

Finding 4:When the synchronization interval of device state is
not appropriately set, there may be inconsistencies between the
actual state and that shown in the system.
Implication 4: When an operation triggers a device or system
state change, the state should be synchronized in time.

Release (E). Device integrations are responsible for cleaning
up when devices and services are released or unloaded, e.g., termi-
nating state synchronization, stopping device discovery process.
For some device integrations, there exist some shared variables
for communication with other integrations. These shared variables
also should be released. Incorrect release (E.1) will waste system
resources or cause unexpected system behaviors. We have also
found four device integrations forgetting to release resources (E.2).
Take issue #42781 [15] as an example, the device integration RFXtrx

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

remains in an automatic add state after removing the correspond-
ing device. After analyzing the associated PR, we found that the
dispatches were not cleaned up when unloading RFXtrx. As a result,
without restarting Home Assistant, these residual dispatches will
keep registering new devices into the system.

Finding 5: Device integrations can forget to release resources or
perform an incorrect release.
Implication 5: The system should provide some utilities to help
the resource release process or introduce an automatic garbage
collection mechanism.

Error handling (F). Error handling is the largest category in
the taxonomy, and it includes a wide range of bugs. Error handling
refers to the response and recovery procedures from error condi-
tions present in a software application [5]. Error handling helps
keep the system operating normally and prompts error information.
In fact, many applications face numerous design challenges when
considering error-handling techniques [5]. 30.3% iBugs are of this
category and can be further divided into four atomic categories.

Input validation (F.1). It is often assumed that the obtained data,
especially some data returned from third-party requests, are correct
and expected. Device integrations sometimes directly use the data
without any validations. However, the data can be exceptional, e.g.,
undefined, null. 14 iBugs are caused by not applying the input
validation.

Incorrect response handling (F.2). This category differs from the
previous one because the obtained data is correct and legal but
handled incorrectly. These iBugs are mainly related to the logic
errors of data processing, and we have found 31 cases.

Incorrect error handling (F.3). Although some device integrations
take errors into account, they do not handle them correctly. For the
case where some services need to call a third-party API, the failure
of the API call is considered, and a retry mechanism is implemented
in the device integration to handle such exceptions. However, the
device integration may repeatedly try without checking the cor-
rectness of the returned results and traps in an infinite retry loop.

Insufficient error handling (F.4). Bugs of this type differ from those
in the prior atomic category as some errors are unknown and not be
handled at all. It is often difficult for developers to comprehensively
know the situations in the application, and corner cases are often
not considered.

• Network recovery. After the network is restored from discon-
nection, the device integrations do not consider restoring the
task schedule and device state. For example, the device inte-
gration needs to perform connection authentication again
and continue the tasks which are not completed.

• Non-existent device. The device integration wants to control
the device but does not considerwhether the device is already
connected to the system, which will throw an error like
“Device does not exist.”

• Incorrect retry & timeout setting. A failure can occur when-
ever one device integration calls another service or integra-
tion. Various factors, such as target servers, networks, load
balance, and even system errors, can cause failures. Some de-
vice integrations consider these exceptions and apply some
methods, i.e., timeout and retry mechanism, to make them

more robust. The system can handle failures when it tries to
connect to a service or network resource by retrying a failed
operation. Timeout allows for more efficient usage of limited
resources without requiring additional resources. However,
device integrations can apply incorrect retry and timeout
settings. For example, issue #42687 [14] reported that the
integration RFXtrx stopped working since upgrading the
system. After upgrading the system, some resources are no
longer cleaned up, and it will take more time to establish
the RFXtrx connection. The fix strategy is to increase the
timeout on connection from 5 to 30 seconds.

Finding 6: Device integrations do not handle exceptions well,
frequently causing iBugs. Developers may ignore some abnormal
scenarios, or wrongly handle errors.
Implication 6: The handling of abnormal scenarios is necessary
to improve the system’s robustness, such as strengthening input
validation and error handling.

Others (G). This category contains the bugs whose root causes
cannot be classified into the above categories. This is the second
largest (83/330) category in the taxonomy, and it includes a wide
range of bugs also appear in some other systems.

API-update-caused breakage (G.1). Updates and changes in soft-
ware development are inevitable. As a consequence, clients are
compelled to update, and thus, benefit from the available API im-
provements. However, some of these API changes can break con-
tracts established previously, resulting in compilation errors and
behavioral changes. 38 (11.5%) iBugs are caused by API updates.

Asynchronous error (G.2). Data are processed and accessed in
an unexpected order due to the asynchronous loading of HA in-
tegrations. When the system is initialized, the loading sequence
of HA integrations is asynchronous. When a HA integration is re-
quired to provide corresponding functions or information, the HA
integration may not be loaded yet. Therefore, the normal function
of the integration cannot be realized. Take issue #42188 [13] as
an example, when the doorbird sends an HTTP(S) call to Home
Assistant, Home Assistant’s response is 500 internal service error.
After analysis, we found that the corresponding device integration
is not fully set up yet by the time doorbird sends the request.

General code error (G.3). 25 (6.6%) iBugs are similar to those in
other software systems, including illegal argument, key not found,
null reference, syntax error, undefined object. We no longer explain
this type of iBug in detail.

Dependency conflict (G.4). The execution environment of Home
Assistant is based on Python. Dependency conflicts occur when
different Python packages have the same dependency but depend on
different and incompatible versions of that shared package. Because
only a single version of a dependency is permitted in the Python
project’s environment. Since the development of device integrations
is often based on third-party libraries, such problems can also cause
device integrations to fail to operate normally. We only found 3
such bugs because such bugs are often found during the testing
phase, and developers will naturally solve them.

Constrained resource (G.5). Four bugs are caused by constrained
resource.We have found several situations. First, there are too many
concurrent requests at the same time, and the system cannot handle

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

Table 1: Frequent fix patterns for each root cause

Dimension Root cause Fix pattern description #Issues

[A] Device (47) [A.1] Incompatible device (45)
Improve the device integration and adapt
to incompatible modules of the device. 24

Prompt a warning to indicate that the device is
unsupported contemporarily, waiting for
the corresponding integration.

21

[A.2] Device failure (2) Use new device instead. 2

[B] Discovery (27)
[B.1.1] Incorrect configuration (10) Add default configurations. 3

Fix corresponding configurations. 6
[B.1.2] Incorrect configuration handling (8) Correctly handle conflicting parameters. 6
[B.2] Generate incorrect device information (9) Generate unique ID. 9

[C] Initialization (51)

[C.1] Incorrect device initialization state (12) Fix corresponding state. 8
After restart, load the original data from
the cache. 4

[C.2.1] Incorrect authentication establishment (12) Update correct authentication information. 3
Correct authentication logic. 5

[C.2.2] Forget to keep authentication (8) Add watchdog or set timer to maintain
the authentication. 8

[C.3] Incorrect task scheduling (19) Remove heavy tasks from the event loop. 13
Modify synchronous (asynchronous) tasks
to asynchronous (synchronous) tasks. 6

[D] Execution (13) [D.1] Incorrect execution state update (10) Correct state processing logic. 5
[D.2] Inappropriate polling interval (3) Adjust polling interval. 3

[E] Release (9) [E.1] Incorrect release (5) Release the wrong part correctly. 5
[E.2] Forget to release resources (4) Release relevant resources. 4

[F] Error handling (100)
[F.1] Input validation (14) Check before use. 14
[F.3] Incorrect error handling (31) Add retry & timeout setting. 9
[F.4] Insufficient error handling (31) Adjust retry & timeout setting. 9

[G] Others (97)

[G.1] API-update-caused breakage (38) Fix API usage. 38
[G.2] Asynchronous errors (7) Waiting for synchronization. 7

[G.3] General code error (25)
Fix corresponding errors, including illegal
argument, null reference, syntax error,
undefined object.

25

[G.4] Dependency conflict (3) Choose appropriate third-party library
versions. 3

Total (330) 240

them. Second, the connection pool is exhausted, and subsequent
requests cannot be processed. Third, there is a limit to the number of
third-party API calls. These bugs are mainly caused by constrained
system resource and cloud resource.

Finding 7: Some common bugs are also raised in device inte-
grations, i.e., API-update-caused breakage, asynchronous errors,
general code errors, dependency conflicts and constrained resource.
Implication 7: Existing bug detection and fixing techniques can
also be used on iBugs to improve the reliability and robustness of
device integrations.

4.2 Fix Pattern (RQ2)
Fixes of device integration bugs are highly related to their root
causes. For each root cause, we summarize its fix patterns in Table 1,
which depict the outlines to fix different types of iBugs. The columns
“Dimension” and “Root cause” are derived from the results shown in

Figure 2, and the number in parentheses is the number of iBugs in
that category. The column “Fix pattern description” briefly presents
the fix pattern and the last column “#Issues” is the number of issues
fixed by that pattern. For example, out of the 47 bugs in device, 45
bugs are caused by incompatible device, and they can be fixed with
two patterns, i.e., adapting an existing device integration to support
the device (24 cases) or developing a new device integration (21
cases). We propose some general fix guidance for some root causes
that are difficult to summarize their fix patterns. Note that the bugs
which are not included in Table 1 need case-by-case fixes.

In general, we observe complicated crossovers between different
fix patterns and root causes, confirming that fixing device integra-
tion bug is a challenging task.

Relationship between fix patterns and root causes. From
Table 1, we observe that some pairs of fix patterns and root causes
frequently co-occurring, which indicates that most iBugs caused
by the same root cause can be resolved by its associated fix pattern.

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

We regard such combination of fix pattern and root cause as a pair.
These pairs are useful for bug fixing. More specifically, when the
root cause of an iBug is diagnosed, the corresponding paired fixes
can be taken to fix it manually or automatically.

In Table 1, we find that for 15 atomic categories, more than half
of its iBugs can be fixed by a specific pattern. For example, all
iBugs caused by generating incorrect device information (B.2) are
resolved by generating unique ID. 13 out of 19 class incorrect task
scheduling (C.3) are fixed by removing the heavy task. All iBugs
caused by Forget to keep authentication (C.2.2) can be fixed by adding
watchdogs or set timer to maintain the authentication. Take issue
#37134 [10] as an example, the session of the integration tile was
expired after 6 hours and did not auto-renew, making the entities
unavailable. The developers solved this issue by monitoring session
expiration errors with the code below.

1 + except SessionExpiredError:

2 + LOGGER.info("Tile session expired; creating a new

one")

3 + await client.async_init ()

In summary, these frequent pairs can derive heuristic strategies
for iBugs resolution.

Finding 8: 15 out of 23 atomic categories have frequent fix pat-
terns, such as generating unique ID to resolve the incorrect device
information and removing heavy tasks to fix the incorrect task
scheduling.
Implication 8: Researchers can develop automated fixing tools
for iBugs based on our fix patterns.

Case-by-case fix. In spite of the categories and their co-occurring
fix patterns, 90 iBugs do not have common fix patterns, and they
need case-by-case fix strategies. Most (68) of them are related to
the category error handling (F). More specifically, iBugs caused by
incorrect response handling (F.2) account for almost half (31). Device
integrations use or process data incorrectly, causing the system
behave abnormally. Fixes of these iBugs often require analysis of
the specific scenarios. Another portion of iBugs is caused by incor-
rect or insufficient error handling. This observation indicates that
device integration developers need comprehensive knowledge and
experience for handling various errors and exceptions.

4.3 Trigger Condition (RQ3)
We have summarized six types of trigger conditions from 253 iBugs.
We do not cover all iBugs as the information included in some issue
reports and associated pull requests is insufficient to identify their
trigger conditions.

Loading device integration. 93 iBugs occurred while load-
ing device integrations without any external actions. These iBugs
involve the discovery and initialization process. The category in-
compatible device (A.1) also accounted for a lot.

Reloading device integration. Reloading device integrations
will trigger some lifecycle functions of the device integration, i.e.,
release and initialization. All iBugs caused by incorrect release (E.1)
and 7 out of 12 iBugs of the category incorrect device initialization
state (C.1) can be triggered by reloading device integrations. This
trigger conditions totally involve 19 iBugs.

Invoking device service. 110 iBugs are raised while invoking
device services. All iBugs caused by incorrect task scheduling (C.3)
and forgetting to keep authentication (C.2.2) can be triggered under
this condition. Most iBugs related to error handling (F) can also be
found by invoking device services.

Frequent requests. Frequent requests can lead to iBugs related
to constrained resource(G.5) and device failure (A.2). It is challenging
for device integration developers to recognize these iBugs. Themain
difficulty is which request needs to be replayed at a high frequency.
Seven iBugs are triggered by frequent requests.

Network interruption and recovery. Ten iBugs can be trig-
gered by network interruption and recovery. We find that few
device integrations take into account the recovery of the network
interruptions. When there is no response, users usually wait for a
while or call the services again, and such iBugs are covered up. The
actual number of them would be larger than that we count.

Network delay. 14 iBugs are triggered by network delay. The
unstable network connection is common in many environments,
and simulation of such a condition is important to reveal or repro-
duce such bugs.

Finding 9:Most iBugs (253/330) can be triggered with six types of
trigger conditions. We can perform systematically testing on these
trigger conditions, e.g., reloading device integrations and injecting
network interruptions.

4.4 Impact (RQ4)
iBugs can directly affect user experience when using smart home
systems and bring inconveniences and even dangers to users. We
find five main impacts that both developers and users should be
paid attention to.

Unavailable device. 174 iBugs make devices unavailable, and
users may find that the expected devices or their properties/services
are missing. Many aspects can cause a device to be unavailable,
such as incorrect response handling (F.2) and forgetting to keep au-
thentication (C2.2).

Incorrect device state. 28 iBugs result in inconsistencies be-
tween the reflected device state by the system and the actual state.
In issue#36767 [9], the developers set an inappropriate polling inter-
val of synchronizing state, and the user observed an inconsistency
between the actual state and the digital model within the system.

Unexpected device behavior. 12 iBugs lead to unexpected
device behavior. In issue #42921 [16], the latest version of Nest
(SDM) for climate adds the “auto” mode. However, the developers’
device only supports “heat” and “off”, and the “auto” mode cannot
cool down the room when the temperature is high.

Unexpected system behavior. 12 iBugs result in unexpected
system behavior, i.e., the devices are incorrectly managed. In is-
sue #42781 [15], after the user unloads an integration, the system
continues to add new devices belonging to this integration.

Slow response. 18 iBugs have abnormal CPU or memory usage
and the system cannot respond to users’ operations in time. This is
very annoying when users expect the system to respond immedi-
ately. For example, developers do heavy IO operations in the main
thread, which blocks other tasks. The infinite loop for retry also
makes abnormal CPU and memory usage.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

Finding 10: iBugs can cause serious consequences, e.g., device
unavailable, unexpected device and system behaviors, more than
half of iBugs (174/330) make devices unavailable.

5 LESSONS LEARNED
As shown in Section 4.4, iBugs can seriously affect the user expe-
rience of smart home systems. A high-quality device integration
is of great significance for the reliability of smart home systems.
In this section, we will discuss the pitfalls that device integration
developers and smart home system designers should focus on, and
the way to fight against iBugs.

5.1 Lessons for Device Integration Developers
Device integration developers should carefully handle all the four
stages in device lifecycle management in Figure 1, including han-
dling the various errors that may occur during system and device
running.

Generate unique device ID. Each device connecting to the
smart home system should have a unique ID. It is not recommended
for developers directly using the MAC address as the device ID. We
have found that some devices prevent the system from obtaining
their MAC addresses, making the ID assignments fail (Finding
2). Developers also need to avoid generating duplicate IDs, e.g.,
maintain a list of already generated IDs and check new IDs against
those in the list.

Handle configurations.Device information and configurations
are necessary for device connections. The information is configured
manually and automatically. Auto-discovery protocols can provide
certain device information, e.g., IP, port. End-users can configure
and change configurations through UIs or configuration files. There-
fore, developers should not hard code configurations (Implication
2). There are differences between the developer environment and
the user environment. Some configurations, e.g., timeout settings,
password, should be configurable for users, and a device integration
has to recognize the modifications and apply changes.

Maintain authentication. Finding 3 shows that the authenti-
cation of some devices can become invalid or expired. Therefore,
developers should ensure each device is always in an authenticated
state. They can set up some polling tasks to confirm the authenti-
cation state of each device and re-authenticate if expired.

Keep themain thread lightweight. The time-consuming tasks,
such as some heavy IO operations, should not occupy the main
thread, where runs the four stages of an integration lifecycle. Oth-
erwise, the system performance may degrade significantly (Finding
3). Developers should not put lots of IO and computing tasks at the
initialization stage. If certain tasks are necessary, developers can
set these tasks asynchronously. In Home Assistant, they only need
to add field async before the function.

Validate data. The responses of requests may not be the ex-
pected ones due to some errors (Finding 6), and developers need
to validate the returned data before using them. More specifically,
developers can check whether a response is empty and whether
the response holds the desired fields for further processing.

Recover state automatically. Developers should be aware that
there are various unexpected scenarios, e.g., system restart, network

interruption and recovery. They should handle these cases to ensure
the consistency and availability of the system. They can also design
methods to recover from exceptions. For example, they can use the
buffer pool to store states and scheduled tasks, and recover systems
based on the buffer pool when exceptions occur.

5.2 Lessons for Smart Home System Designers
The development of a smart home system faces various challenges
and a reliable smart home system face many challenges. We put
forward two suggestions to strengthen the system reliability.

Standardize the device life cycle. Home Assistant does not
give a unified standard and framework for device integration devel-
opers to implement their integrations. The integration model we
proposed in Figure 1 can be used as the guideline. Smart home sys-
tems can apply this model and provide corresponding functions for
developers to manage the development process, such as establishing
device connections, processing requests by performing correspond-
ing functions. A native implementation of the integration model
can greatly reduce the difficulty of developing device integrations.

Reasonably allocate system resources. Home Assistant does
not limit the resources requested by a device. When a device re-
quests resources endlessly, the systemmay run out of memory, CPU
times, and even crash. Take issue #41721 [12] as an example, the
integration ceaselessly attempts to establish authentication. This
occupies a thread and the CPU usage of the system increases con-
tinuously. In this case, having a resource management mechanism
would be very helpful, e.g., aborting the task which repeats some
operations and takes up too many resources.

5.3 Detecting iBugs
iBugs can make accessed devices unavailable and lead unexpected
behaviors (Finding 10). Thus, resolving iBugs is of great significance
for the reliability of the smart home system. Existing IoT testing
approaches, e.g., device simulators [8] and emulators [30, 50], unit
testing frameworks [2] mainly focus on model checking and testing
and do not understand the root causes behind these bugs. None of
them focuses on iBugs. Our study reveals that iBugs can be summa-
rized into 23 atomic categories. These bug categories provide new
light and guidance for iBug detection based on program analysis.

Some static and dynamic program analysis techniques can be
used to detect iBugs. More specifically, some API testing methods
[38, 40] can apply to detect the device ID generation functions to
check whether the ID is unique. iBugs caused by class forget to
keep authentication (C.2.2) and incorrect task scheduling (C.3) can be
detected by analyzing code statically. Developers can locate the au-
thentication code and then determine whether the code is assigned
as a polling task. Developers can identify some code patterns of
heavy tasks, e.g., accessing the database for large amounts of data.
They can detect whether the initialization stage includes these pat-
terns. Some model-based testing methods also can be used to test
device integration. As mentioned in Section 3.1, Home Assistant
separates the device SDKs from the device integration. Based on the
device SDKs, we can conduct testing by invoking certain APIs. We
do not list some solutions of common iBugs, e.g., breaking changes,
general code errors and dependency conflict. In addition, we also
propose some potential approaches for iBug detection.

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

State inconsistency guided detection. The inconsistent state
between the physical device and the state present in the system
indicates an iBug (Finding 4). These iBugs lie in the initialization and
execution stages. State inconsistency guided detection approaches
can be applied to detect these iBugs. To identify inconsistencies,
we can compare the device state with system state after device
initialization and executions. We can also generate device execution
trace, and then judge whether the final state is consistent.

Error injection testing. If device integrations do not handle
errors well, iBugs appear (Finding 6). Therefore, we can inject ex-
ceptions within the system to see whether device integrations can
handle them well. Some exceptions that we can inject are summa-
rized from Error handling (F). (1) Incorrect response result. We can
provide an incorrect response or empty result to check whether de-
vice integrations apply input validations. (2) Network delay. We can
inject network delay to check whether device integrations apply
retry or timeout settings. (3) Network recovery. After the network
is restored from discussion, device integrations are responsible for
restoring the device state and task schedule. We can inject network
interruption and recovery to test this.

Non-deterministic analysis in device integrations. Home
Assistant adopts an event-driven architecture and supports many
asynchronous APIs. Home Assistant loads device integrations asyn-
chronously, and the heavy tasks in some device integrations (Find-
ing 3) can affect the loading sequence, causing non-deterministic
iBugs. Little literature has focused on this aspect in IoT systems.
To automatically detect non-deterministic iBugs, we need to build
a clear model about the event-driven architecture, device lifecycle
management, asynchronous APIs, heavy tasks in Home Assistant.

6 RELATEDWORK
In this section, we discuss related works that are close to our work.
We review the related work from three aspects, analyzing IoT bugs,
testing IoT systems, and general bug studies.

IoT bugs investigation. A few previous studies have inspected
the bugs and design flaws in the IoT systems and provided some pre-
liminary insights. Duc et al. [37] examine the main failure patterns
of smart home systems. They focus on hardware-related failures,
such as wireless link loss, battery damage, power outage. Chen et
al. [34] model the IoT system with four layers: application, storage,
communication, data. Based on the model, they analyze the fault
symptoms and provide maintenance suggestions. Recently, a study
[53] conducted by Makhshari et al. firstly provides a generalized
and systematic overview of bugs in the IoT system. They present a
taxonomy of the bugs in IoT system and the challenges of develop-
ing IoT systems. However, none of them look into the integration
part of a smart home system. The literature lacks the knowledge to
develop a good integration, which is essential to make the smart
home system more reliable.

IoT system testing. A number of approaches have been pro-
posed to test IoT systems. Security issues are frequently discussed.
A number of papers raise the concerns related to security issues
[29, 64]. A related topic, user’s privacy and trust is also being fre-
quently discussed. Sajid et al. [58] first discussed the data privacy
in IoT systems and proposed the future research directions. Several

system testing research also span to the IoT systems, e.g., model-
based testing [27, 54], test cases generation [44, 45], and testing
frameworks [57, 61]. However, these studies are conducted to find
security issues. It is unknown whether they are helpful for detect-
ing iBugs in smart home systems. We attempt to figure out the
requirements in testing iBugs and help develop effective testing
methods.

Empirical bug studies. Empirical bug studies play an impor-
tant role in understanding the aspect of software reliability. These
studies often can help to characterize bugs in the target systems
and provide useful guidance for future works. For example, Lu et
al. [52] conduct a comprehensive study on real world concurrency
bug characteristics. Their work opens up a new light in combating
concurrency bugs, such as concurrency bug detection [36, 63], bug
fixing [48]. Gunawi et al. [43] study 3000+ issues in cloud systems.
Their study brings new insights on some of the most vexing prob-
lems in cloud systems. Ocariza et al. [55] conduct an empirical
study on the client-side JavaScript bugs and find that most bugs are
DOM-related. This promotes some research [56, 62] on investigat-
ing DOM related JavaScript bugs. However, no empirical studies
are performed on integration bugs in smart home systems.

7 CONCLUSION
Smart home systems allow developers to integrate diverse smart
IoT devices. Community developers implement various device inte-
grations, but few detailed documents are available to understand
the bugs in them. To fill this gap, we conduct the first empirical
study on 330 iBugs and analyze their root causes, trigger condi-
tions, impacts, and fixes. We obtain many interesting findings and
insights for researchers and practitioners of open source smart
home systems. We believe our study can open up new research
directions in combating iBugs.

8 DATA AVAILABILITY
The dataset of our paper is available at Zenodo [26].

ACKNOWLEDGEMENTS
This work was partially supported by National Natural Science
Foundation of China (U20A6003, 62072444, 61732019), Frontier Sci-
ence Project of Chinese Academy of Sciences (QYZDJ-SSW-JSC036),
and Youth Innovation Promotion Association at Chinese Academy
of Sciences (2018142).

REFERENCES
[1] 2012. OpenHAB. Retrieved June 23, 2021 from https://www.openhab.org/
[2] 2013. Arduinounit. Retrieved Jan 1, 2022 from https://github.com/mmurdoch/

arduinounit
[3] 2013. Github: Home Assistant. Retrieved July 19, 2021 from https://github.com/

home-assistant/core
[4] 2018. Best of Open Source Smart Home: Home Assistant vs OpenHAB. Retrieved

June 23, 2021 from https://smarthome.university/your-smart-home-platform-
home-assistant-vs-openhab/

[5] 2020. Error Handling. Retrieved June 23, 2021 from https://www.techopedia.
com/definition/16626/error-handling

[6] 2020. Home Assistant Homepage. Retrieved June 23, 2021 from https://www.home-
assistant.io/

[7] 2020. Home Assistant vs OpenHAB – Which one is better? Retrieved June 23,
2021 from https://everythingsmarthome.co.uk/home-assistant/home-assistant-
vs-openhab-which-one-is-better/

[8] 2020. IOTIFITY. Retrieved Jan 10, 2022 from https://iotify.io/

https://www.openhab.org/
https://github.com/mmurdoch/arduinounit
https://github.com/mmurdoch/arduinounit
https://github.com/home-assistant/core
https://github.com/home-assistant/core
https://smarthome.university/your-smart-home-platform-home-assistant-vs-openhab/
https://smarthome.university/your-smart-home-platform-home-assistant-vs-openhab/
https://www.techopedia.com/definition/16626/error-handling
https://www.techopedia.com/definition/16626/error-handling
https://www.home-assistant.io/
https://www.home-assistant.io/
https://everythingsmarthome.co.uk/home-assistant/home-assistant-vs-openhab-which-one-is-better/
https://everythingsmarthome.co.uk/home-assistant/home-assistant-vs-openhab-which-one-is-better/
https://iotify.io/

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Tao Wang, Kangkang Zhang, Wei Chen, Wensheng Dou, Jiaxin Zhu, Jun Wei, and Tao Huang

[9] 2020. Issue 36767: Inconsistency Status. Retrieved June 23, 2021 from https:
//github.com/home-assistant/core/issues/36767

[10] 2020. Issue 37134: Tile Integration: Session expiring and not renewing. Retrieved
Jun 26, 2020 from https://github.com/home-assistant/core/issues/34134

[11] 2020. Issue 39099: Platform surepetcare does not generate unique IDs. Retrieved
June 23, 2021 from https://github.com/home-assistant/core/issues/39099

[12] 2020. Issue 41721: Reconfigure Integration gets triggered multiple times. Retrieved
June 23, 2021 from https://github.com/home-assistant/core/issues/41721

[13] 2020. Issue 42188: [Doorbird] API causing 500 Internal Service Error. Retrieved
June 23, 2021 from https://github.com/home-assistant/core/issues/42188

[14] 2020. Issue 42687: RFXtrx serial error. Retrieved June 23, 2021 from https:
//github.com/home-assistant/core/issues/42687

[15] 2020. Issue 42781: RFXtrx integration remains in automatic add state. Retrieved
June 23, 2021 from https://github.com/home-assistant/core/issues/42781

[16] 2020. Issue 42921: Nest (SDM) ECO Mode adds temperature range to Climate
which is not supported by Thermostat. Retrieved June 23, 2021 from https:
//github.com/home-assistant/core/issues/42921

[17] 2020. Issue 42947: Nest (SDM) Google Pubsub stops working after 60 mins. Retrieved
June 23, 2021 from https://github.com/home-assistant/core/issues/42947

[18] 2020. A Kubernetes Native Edge Computing Framework. Retrieved Jan 10, 2022
from https://kubeedge.io/en/

[19] 2021. Google Assistant. Retrieved Aug 10, 2021 from https://assistant.google.
com/smart-home/

[20] 2021. HuaWei HiLink. Retrieved Aug 10, 2021 from https://iot.hilink.huawei.com/
[21] 2021. OpenHAB Vs Home Assistant: Detailed Comparison By An Expert in 2021. Re-

trieved June 23, 2021 from https://purdylounge.com/openhab-vs-home-assistant/
[22] 2021. Smart Home. Retrieved July 16, 2021 from https://www.investopedia.com/

terms/s/smart-home.asp
[23] 2021. Smart Home Market. Retrieved Aug 10, 2021 from https:

//www.marketsandmarkets.com/Market-Reports/smart-homes-and-assisted-
living-advanced-technologie-and-global-market-121.html

[24] 2021. SmartThings. Retrieved Aug 10, 2021 from https://www.smartthings.com/
[25] 2021. Wiki: Home Assistant. Retrieved July 19, 2021 from https://en.wikipedia.

org/wiki/Home_Assistant
[26] 2022. ISSTA 22 Artifact for "Understanding Device Integration Bugs in Smart Home

System". Retrieved June 28, 2022 from https://doi.org/10.5281/zenodo.6481927
[27] Abbas Ahmad, Fabrice Bouquet, Elizabeta Fourneret, Franck Le Gall, and Bruno

Legeard. 2016. Model-based Testing as a Service for IoT Platforms. In Proceedings
of International Symposium on Leveraging Applications of Formal Methods (ISoLA).
Springer, 727–742.

[28] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In Proceedings of IEEE
Symposium on Security and Privacy (SP). 1362–1380.

[29] Elisa Bertino, Kim-Kwang Raymond Choo, Dimitrios Georgakopolous, and Surya
Nepal. 2016. Internet of Things (IoT): Smart and Secure Service Delivery. ACM
Transaction on Internet Technology 16, 4 (2016).

[30] Giacomo Brambilla, Marco Picone, Simone Cirani, Michele Amoretti, and
Francesco Zanichelli. 2014. A Simulation Platform for Large-Scale Internet
of Things Scenarios in Urban Environments. In Proceedings of International Con-
ference on IoT in Urban Space (URB-IOT). 50–55.

[31] Z. Berkay Celik, Leonardo Babun, Amit K. Sikder, Hidayet Aksu, Gang Tan,
Patrick McDaniel, and A. Selcuk Uluagac. 2018. Sensitive Information Tracking in
Commodity IoT. In Proceedings of USENIX Security Symposium (USENIX Security).
1687–1704.

[32] Z. Berkay Celik, Earlence Fernandes, Eric Pauley, Gang Tan, and PatrickMcDaniel.
2019. Program Analysis of Commodity IoT Applications for Security and Privacy:
Challenges and Opportunities. Comput. Surveys 52, 4 (2019), 30 pages.

[33] Z. Berkay Celik, Patrick McDaniel, and Gang Tan. 2018. SOTERIA: Automated
IoT Safety and Security Analysis. In Proceedings of USENIX Conference on Usenix
Annual Technical Conference (USENIX ATC). 147–158.

[34] Yingyi Chen, Zhumi Zhen, Huihui Yu, and Jing Xu. 2017. Application of Fault
Tree Analysis and Fuzzy Neural Networks to Fault Diagnosis in the Internet of
Things (IoT) for Aquaculture. Sensors 17, 1 (2017), 153.

[35] Wohlin Claes, Per Runeson, Martin Höst, Ohlsson Björn Regnell, and Anders
Wesslén. 2012. Experimentation in Software Engineering. Springer Science &
Business Media.

[36] Dongdong Deng, Wei Zhang, and Shan Lu. 2013. Efficient Concurrency Bug
Detection across Inputs. Acm Sigplan Notices 48, 10 (2013), 785–802.

[37] Anh Nguyen Duc, Ronald Jabangwe, Pangkaj Paul, and Pekka Abrahamsson. 2017.
Security Challenges in IoT Development: A Software Engineering Perspective.
In Proceedings of XP Scientific Workshops (XP). 1–5.

[38] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2018. Auto-
matic Generation of Test Cases for REST APIs: A Specification-Based Approach.
In Proceedings of International Enterprise Distributed Object Computing Conference
(EDOC). 181–190.

[39] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2019. Security Analysis
of Emerging Smart Home Applications. In Proceedings of IEEE Symposium on
Security and Privacy (SP). 636–654.

[40] Tobias Fertig and Peter Braun. 2015. Model-Driven Testing of RESTful APIs. In
Proceedings of International Conference on World Wide Web (WWW). 1497–1502.

[41] Yu Gao, Wensheng Dou, Feng Qin, Chushu Gao, Dong Wang, Jun Wei, Ruirui
Huang, Li Zhou, and YongmingWu. 2018. An Empirical Study on Crash Recovery
Bugs in Large-Scale Distributed Systems. In Proceedings of ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 539–550.

[42] Vijayaraghavan Giri and Cem Kaner. 2003. Bug Taxonomies: Use them to Gener-
ate Better Tests. In Software Testing Analysis and Review. 1–40.

[43] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-
anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. 2014. What Bugs Live in
the Cloud? A Study of 3000+ Issues in Cloud Systems. In Proceedings of ACM
Symposium on Cloud Computing (SOCC). 1–14.

[44] Lorena Gutiérrez-Madroñal, Antonio García-Domínguez, and Inmaculada
Medina-Bulo. 2019. Evolutionary Mutation Testing for IoT with Recorded and
Generated Events. Software: Practice and Experience 49, 4 (2019), 640–672.

[45] Lorena Gutiérrez-Madroñal, Inmaculada Medina-Bulo, and Juan José Domínguez-
Jiménez. 2018. IoT–TEG: Test Event Generator System. Journal of Systems and
Software (JSS) 137 (2018), 784–803.

[46] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. 2018. Understand-
ing and Detecting Callback Compatibility Issues for Android Applications. In
Proceedings of ACM/IEEE International Conference on Automated Software Engi-
neering (ASE). 532–542.

[47] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-World Performance Bugs. In Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 77–88.

[48] Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu. 2012. Auto-
mated Concurrency-Bug Fixing. In Proceedings of USENIX Conference on Operating
Systems Design and Implementation (OSDI). 221–236.

[49] Hongliang Liang, Qian Zhao, YuyingWang, andHaifeng Liu. 2016. Understanding
and Detecting Performance and Security Bugs in IOT OSes. In Proceedings of In-
ternational Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD). 413–418.

[50] Vilen Looga, Zhonghong Ou, Yang Deng, and Antti Ylä-Jääski. [n. d.]. Mammoth:
A Massive-Scale Emulation Platform for Internet of Things. In Proceedings of
International Conference on Cloud Computing and Intelligence Systems, Vol. 3.
1235–1239.

[51] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Charac-
teristics. In Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 329–339.

[52] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
Mistakes: A Comprehensive Study on Real World Concurrency Bug Charac-
teristics. In Proceedings of International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 329–339.

[53] Amir Makhshari and Ali Mesbah. 2021. IoT Bugs and Development Challenges. In
Proceedings of International Conference on Software Engineering (ICSE). 460–472.

[54] Julie L. Newcomb, Satish Chandra, Jean-Baptiste Jeannin, Cole Schlesinger, and
Manu Sridharan. 2017. IOTA: A Calculus for Internet of Things Automation.
In Proceedings of ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward). 119–133.

[55] Frolin Ocariza, Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. 2013. An
Empirical Study of Client-Side JavaScript Bugs. In Proceedings of ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM). 55–64.

[56] Jinkun Pan and Xiaoguang Mao. 2017. Detecting DOM-Sourced Cross-Site
Scripting in Browser Extensions. In Proceedings of IEEE International Conference
on Software Maintenance and Evolution (ICSME). 24–34.

[57] Philipp Rosenkranz, Matthias Wählisch, Emmanuel Baccelli, and Ludwig Ort-
mann. 2015. A Distributed Test System Architecture for Open-Source IoT Soft-
ware. In Proceedings of Workshop on IoT Challenges in Mobile and Industrial
Systems (IoT-Sys). 43–48.

[58] Anam Sajid and Haider Abbas. 2016. Data Privacy in Cloud-Assisted Healthcare
Systems: State of the Art and Future Challenges. Journal of Media Systems 40, 6
(2016), 1–16.

[59] Carolyn B. Seaman. 1999. Qualitative Methods in Empirical Studies of Software
Engineering. IEEE Transactions Software Engineering 25, 4 (1999), 557–572.

[60] Rahmadi Trimananda, Seyed Amir Hossein Aqajari, Jason Chuang, Brian Dem-
sky, Guoqing Harry Xu, and Shan Lu. 2020. Understanding and Automatically
Detecting Conflicting Interactions between Smart Home IoT Applications. In Pro-
ceedings of ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE). 1215–1227.

[61] Jeff Voas, Rick Kuhn, and Phil Laplante. 2018. Testing IoT Systems. In Proceedings
of IEEE Symposium on Service-Oriented System Engineering (SOSE). 48–52.

[62] Ran Wang, Guangquan Xu, Xianjiao Zeng, Xiaohong Li, and Zhiyong Feng. 2018.
TT-XSS: A Novel Taint Tracking based Dynamic Detection Framework for DOM

https://github.com/home-assistant/core/issues/36767
https://github.com/home-assistant/core/issues/36767
https://github.com/home-assistant/core/issues/34134
https://github.com/home-assistant/core/issues/39099
https://github.com/home-assistant/core/issues/41721
https://github.com/home-assistant/core/issues/42188
https://github.com/home-assistant/core/issues/42687
https://github.com/home-assistant/core/issues/42687
https://github.com/home-assistant/core/issues/42781
https://github.com/home-assistant/core/issues/42921
https://github.com/home-assistant/core/issues/42921
https://github.com/home-assistant/core/issues/42947
https://kubeedge.io/en/
https://assistant.google.com/smart-home/
https://assistant.google.com/smart-home/
https://iot.hilink.huawei.com/
https://purdylounge.com/openhab-vs-home-assistant/
https://www.investopedia.com/terms/s/smart-home.asp
https://www.investopedia.com/terms/s/smart-home.asp
https://www.marketsandmarkets.com/Market-Reports/smart-homes-and-assisted-living-advanced-technologie-and-global-market-121.html
https://www.marketsandmarkets.com/Market-Reports/smart-homes-and-assisted-living-advanced-technologie-and-global-market-121.html
https://www.marketsandmarkets.com/Market-Reports/smart-homes-and-assisted-living-advanced-technologie-and-global-market-121.html
https://www.smartthings.com/
https://en.wikipedia.org/wiki/Home_Assistant
https://en.wikipedia.org/wiki/Home_Assistant
https://doi.org/10.5281/zenodo.6481927

Understanding Device Integration Bugs in Smart Home System ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Cross-Site Scripting. J. Parallel and Distrib. Comput. 118 (2018), 100–106.
[63] Zhendong Wu, Kai Lu, Xiaoping Wang, and Xu Zhou. 2015. Collaborative

Technique for Concurrency Bug Detection. International Journal of Parallel
Programming 43, 2 (2015), 260–285.

[64] Teng Xu, James B Wendt, and Miodrag Potkonjak. 2014. Security of IoT Systems:
Design Challenges and Opportunities. In Proceedings of International Conference

on Computer-Aided Design (ICCAD). 417–423.
[65] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.

2020. An Empirical Study on Program Failures of Deep Learning Jobs. In Pro-
ceedings of International Conference on Software Engineering (ICSE). 1159–1170.

	Abstract
	1 Introduction
	2 Home Assistant
	3 Methodology
	3.1 Target Smart Home System
	3.2 Collecting iBugs
	3.3 Analyzing iBugs
	3.4 Threats to Validity

	4 Study Results
	4.1 Root Cause (RQ1)
	4.2 Fix Pattern (RQ2)
	4.3 Trigger Condition (RQ3)
	4.4 Impact (RQ4)

	5 Lessons Learned
	5.1 Lessons for Device Integration Developers
	5.2 Lessons for Smart Home System Designers
	5.3 Detecting iBugs

	6 Related Work
	7 Conclusion
	8 Data Availability
	References

