
Testing Database Systems via Differential Query
Execution

Jiansen Song∗†, Wensheng Dou∗†‡§, Ziyu Cui∗†, Qianwang Dai∗†, Wei Wang∗†‡§,
Jun Wei∗†‡§, Hua Zhong∗†, Tao Huang∗†

∗State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
†University of Chinese Academy of Sciences

‡University of Chinese Academy of Sciences Nanjing College
§Nanjing Institute of Software Technology

{songjiansen20, wsdou, cuiziyu20, daiqianwang19, wangwei, wj, zhonghua, tao}@otcaix.iscas.ac.cn

Abstract—Database Management Systems (DBMSs) provide
efficient data retrieval and manipulation for many applications
through Structured Query Language (SQL). Incorrect implemen-
tations of DBMSs can result in logic bugs, which cause SELECT
queries to fetch incorrect results, or UPDATE and DELETE queries
to generate incorrect database states. Existing approaches mainly
focus on detecting logic bugs in SELECT queries. However, logic
bugs in UPDATE and DELETE queries have not been tackled.

In this paper, we propose a novel and general approach, which
we have termed Differential Query Execution (DQE), to detect
logic bugs in SELECT, UPDATE and DELETE queries of DBMSs.
The core idea of DQE is that different SQL queries with the
same predicate usually access the same rows in a database. For
example, a row updated by an UPDATE query with a predicate
φ should also be fetched by a SELECT query with the same
predicate φ. If not, a logic bug is revealed in the target DBMS. To
evaluate the effectiveness and generality of DQE, we apply DQE
on five production-level DBMSs, i.e., MySQL, MariaDB, TiDB,
CockroachDB and SQLite. In total, we have detected 50 unique
bugs in these DBMSs, 41 of which have been confirmed, and 11
have been fixed. We expect that the simplicity and generality of
DQE can greatly improve the reliability of DBMSs.

Index Terms—Database system, DBMS testing, logic bug

I. INTRODUCTION

Database Management Systems (DBMSs) are designed to
efficiently retrieve and manipulate data in databases. Rela-
tional DBMSs, e.g., MySQL [1], MariaDB [2], TiDB [3],
CockroachDB [4] and SQLite [5], adopt Structured Query
Language (SQL) [6] as their standard query language, and
have become an indispensable component in many business-
critical applications [7].

DBMSs suffer from various bugs, e.g., crashes and logic
bugs. Specially, logic bugs can cause a DBMS to return
incorrect results for SELECT queries, or generate incorrect
database states for UPDATE and DELETE queries. Such logic
bugs do not crash the DBMS, and can easily go unnoticed by
developers. In this work, we focus on detecting logic bugs in
DBMSs.

Recently, researchers have proposed some approaches to de-
tect logic bugs in DBMSs [8]–[11]. RAGS [8] feeds a SELECT
query into multiple DBMSs and observes discrepancies in their
query results. PQS [9] generates SELECT queries that fetch

Wensheng Dou and Hua Zhong are the corresponding authors.

a pivot row, and checks whether the target DBMS fails to
fetch the pivot row. NoREC [10] rewrites a SELECT query
as another equivalent one that cannot be optimized by the
DBMS, and then detects difference in their query results.
TLP [11] decomposes a SELECT query into three partitioning
queries, and merges these partitioning queries’ results into a
combined result, which is expected to be the same as the
original query’s result. However, all these approaches mainly
focus on detecting logic bugs in SELECT queries. While the
logic bugs in UPDATE and DELETE queries have not been
tackled yet, even though they can cause severer consequences,
e.g., incorrect database states.

Logic bugs in DBMSs, especially those in UPDATE and
DELETE queries, are difficult to detect automatically. A key
challenge to detect logic bugs is to construct an effective test
oracle to determine whether a DBMS behaves correctly for
a given query. Existing approaches to construct oracles for
SELECT queries, e.g., PQS [9], NoREC [10] and TLP [11],
cannot be adopted on UPDATE and DELETE queries.

In DBMSs, SELECT, UPDATE and DELETE queries utilize
predicates (i.e., WHERE clauses) to specify which rows to
retrieve, update or delete, respectively. If they use the same
predicate φ, they should access the same rows in a database.
Ideally, DBMSs can adopt the same implementations for pred-
icate evaluation in SELECT, UPDATE and DELETE queries.
However, a DBMS usually adopts different implementations
for predicate evaluation in SELECT, UPDATE and DELETE
queries due to various optimization choices1. Inconsistent
implementations for predicate evaluation among these queries
can cause SELECT, UPDATE and DELETE queries with the
same predicate φ to access different rows.

Inspired by this key observation, we propose Differential
Query Execution (DQE), a novel and general approach to
detect logic bugs in SELECT, UPDATE and DELETE queries.
DQE solves the test oracle problem by executing SELECT,
UPDATE and DELETE queries with the same predicate φ,
and observing inconsistencies among their execution results.
For example, if a row that is updated by an UPDATE query
with a predicate φ does not appear in the query result of a

1https://bugs.mysql.com/bug.php?id=106420

https://bugs.mysql.com/bug.php?id=106420

SELECT query with the same predicate φ, a logic bug is
detected in the target DBMS. The key challenge of DQE is to
automatically obtain the accessed rows for a given SELECT,
UPDATE or DELETE query. To address this challenge, we
append two extra columns to each table in a database, to
uniquely identify each row and track whether a row has
been modified, respectively. We further rewrite SELECT and
UPDATE queries to identify their accessed rows.

CREATE TABLE t1 (c1 INT);
INSERT INTO t1 VALUES (1); -- r1
1. SELECT * FROM t1 WHERE ’’;

-- Fetch empty result
-- Warning|1292|Truncated incorrect DOUBLE

value ’’
2. UPDATE t1 SET c1=2 WHERE ’’;

-- Update r1
3. DELETE FROM t1 WHERE ’’;

-- Delete r1

Listing 1. TiDB#27648. The UPDATE and DELETE queries unexpectedly
change the database state.

Listing 1, shows a real-world logic bug TiDB#276482 de-
tected by DQE. In this bug, the UPDATE and DELETE queries
unexpectedly change the database state. Table t1 consists of
an INT row with value 1. The predicate φ is ' ', i.e., an empty
string. TiDB tries to convert φ into a boolean value for the
three queries at Line 1−3. For the SELECT query, TiDB first
truncates φ to a DOUBLE value 0, and then converts it to a
boolean value FALSE. Therefore, the SELECT query fetches
an empty query result and raises a warning. For the UPDATE
and DELETE queries, TiDB erroneously evaluates φ to TRUE,
and changes the database state unexpectedly. We report this
bug to TiDB developers, who have confirmed and fixed it.
Existing approaches cannot detect this bug, because this bug
occurs in the UPDATE and DELETE queries.

To evaluate DQE’s effectiveness and generality, we im-
plement DQE and perform experiments on five widely-used
and production-level DBMSs, i.e., MySQL [1], MariaDB [2],
TiDB [3], CockroachDB [4] and SQLite [5]. In total, we
have detected 50 unique bugs among these DBMSs, 41 of
which have been confirmed as new bugs, and 11 bugs have
been fixed. Among the 41 confirmed bugs, 20 bugs occur in
UPDATE and DELETE queries. None of our detected bugs can
be detected by existing approaches, e.g., PQS [9], NoREC [10]
and TLP [11]. Our experimental results indicate that DQE is
effective in detecting logic bugs in SELECT, UPDATE and
DELETE queries in DBMSs. We have made DQE publicly
available at https://github.com/tcse-iscas/dqetool.

Although we have detected many bugs in SELECT,
UPDATE and DELETE queries in our target DBMSs, DQE
still has some limitations. First, DQE suffers from the same
issue as differential testing, in which DQE fails to detect
the same bug occurring in all the three SELECT, UPDATE
and DELETE queries. Second, DQE only supports common
operations and functions in SELECT, UPDATE and DELETE
queries, e.g., JOIN, ORDER BY, and LIMIT. DQE does not
support operations and functions that are only used in one kind

2https://github.com/pingcap/tidb/issues/27648

of queries, e.g., DISTINCT, sub-queries, aggregate-based
functions, window functions and GROUP BY that are only
used in SELECT queries. For these features, DQE cannot com-
pare their execution results in SELECT, UPDATE and DELETE
queries. Third, DQE cannot support non-deterministic func-
tions, e.g., RAND function, which returns different values in
different queries.

Despite these limitations, the key insight of DQE is
widely applicable to other DBMSs that support data manip-
ulation specified by predicates, e.g., find(), update()
and remove() in MongoDB. We expect that DQE can be
widely adopted to improve the reliability of DBMSs and draw
attention to detecting logic bugs in UPDATE and DELETE
queries.

In summary, we make the following contributions.
• We propose DQE, a novel and general approach to detect

logic bugs in SELECT, UPDATE and DELETE queries in
DBMSs. To our knowledge, DQE is the first approach to
detect logic bugs in UPDATE and DELETE queries.

• We implement and evaluate DQE on five widely-used
DBMSs. DQE has detected 41 previously-unknown bugs
in these DBMSs, 20 of which occur in UPDATE and
DELETE queries.

II. PRELIMINARIES

We first explain our target DBMSs (Section II-A and
Section II-B), and then discuss SQL query execution strategies
that are adopted in our target DBMSs (Section II-C).

A. Database Management Systems and SQL

Database Management Systems (DBMSs) are widely used
in many applications for effective data retrieval and ma-
nipulation. Mainstream DBMSs, e.g., MySQL [1], MariaDB
[2], TiDB [3], CockroachDB [4] and SQLite [5], adopt the
relational data model [12], which organizes data into relational
tables. These DBMSs are so-called relational DBMSs.

Relational DBMSs usually adopt Structured Query Lan-
guage (SQL) [6] as their query language. In SQL, SELECT,
UPDATE and DELETE queries utilize predicates (i.e., WHERE
clauses) to determine which rows to retrieve, update or delete,
respectively. DBMSs usually adopt sophisticated optimizations
to increase the performance of query evaluation [13]–[16]. For
the same predicate, DBMSs can apply different optimizations
in SELECT, UPDATE and DELETE queries. For example,
MySQL developers stated that “all the DML statements have
to pass through the optimizing stage,... SELECT and UPDATE
queries do not pass through the same optimizing process.”3

However, no matter what optimizations are applied on query
evaluation, SELECT, UPDATE and DELETE queries with the
same predicate φ should access the same rows.

B. Target DBMSs

We focus on five production-level and widely-used DBMSs,
i.e., MySQL [1], MariaDB [2], TiDB [3], CockroachDB [4]

3https://bugs.mysql.com/bug.php?id=106420

https://github.com/tcse-iscas/dqetool
https://github.com/pingcap/tidb/issues/27648
https://bugs.mysql.com/bug.php?id=106420

TABLE I
TARGET DBMSS

DBMS DB-Engines Ranking GitHub Stars Type
MySQL 2 8.7K Traditional
MariaDB 13 4.7K Traditional
TiDB 108 33.3K NewSQL
CockroachDB 57 26.5K NewSQL
SQLite 9 3.5K Embedded

and SQLite [5], as shown in Table I. We choose these DBMSs
based on their popularity and database types. The DB-Engines
Ranking [17] shows that MySQL, SQLite and MariaDB are
among the most popular DBMSs, which are ranked 2nd, 9th
and 13th, respectively. MySQL and MariaDB are traditional
DBMSs that have been developed for decades. SQLite is
an embedded DBMS and the most widely deployed DBMS
[18]. According to GitHub Database Topic [19], TiDB and
CockroachDB are the top two popular (33.3K and 26.5K stars,
respectively) relational DBMSs. CockroachDB and TiDB are
distributed NewSQL DBMSs with high scalability.

C. Query Execution Strategy

Different DBMSs usually adopt different SQL query execu-
tion strategies, e.g., how to handle syntax and semantic errors
in query evaluation. In this section, we mainly discuss about
how our target DBMSs handle syntax and semantic errors in
query evaluation for SELECT, UPDATE and DELETE queries,
which can affect the query execution analysis in DQE.

MySQL, MariaDB and TiDB. These three DBMSs adopt
the same query execution strategies. When a syntax or se-
mantic error err occurs in query evaluation, DBMSs can
raise warnings or errors according to the severity of err. For
example, if an invalid value (e.g., comparing an INTEGER
value with a TEXT value) is used, a warning is raised, while if
a predicate is syntactically invalid (e.g., a function takes more
arguments than necessary), an error is raised. If a warning
occurs when evaluating a query, DBMSs can continue to
execute the query. For example, when evaluating a predicate φ
on row r1 raises a warning, DBMSs can continue to evaluate φ
on the following rows, e.g., row r1+1. If an error occurs when
evaluating a query, DBMSs will abort and roll back the query.
Specifically, SELECT queries return an empty query result,
and all changes made by UPDATE and DELETE queries are
rolled back.

These three DBMSs can execute queries in different SQL
modes, which can affect the query execution strategies. A SQL
mode is a set of configurations, e.g., STRICT_ALL_TABLES
and STRICT_TRANS_TABLES. Specially, there are two SQL
modes, i.e., strict mode and non-strict mode, which can affect
query execution strategies of SELECT, UPDATE and DELETE
queries. Fig. 1 shows how SQL queries handle warnings and
errors for a given predicate φ in different SQL modes. When
enabling strict mode, DBMSs adopt strict validation check
for UPDATE and DELETE queries. Specifically, if a SELECT
query with a predicate φ raises a warning, the warning is

SELECT …
FROM t WHERE φ

Warning

Error

Warning

Error

No

Yes

Strict
mode?

UPDATE/DELETE …
FROM t WHERE φ

Fig. 1. SQL modes in MySQL, MariaDB and TiDB.

treated as an error (with the same error message) in the
UPDATE and DELETE queries with the same predicate φ.
For non-strict mode, if a SELECT query with a predicate φ
raises a warning, the UPDATE and DELETE queries with the
same predicate φ raise the same warning, too. Note that, if a
SELECT query with a predicate φ raises an error, the UPDATE
and DELETE queries with the same predicate φ also raise the
same error no matter whether strict mode is enabled.

CockroachDB and SQLite. These two DBMSs adopt rela-
tively simple query execution strategies. In these two DBMSs,
SELECT, UPDATE and DELETE queries can only raise errors
when a syntax or semantic error occurs in predicate evaluation,
and do not raise warnings. If an UPDATE or DELETE query
raises an error, it will be rolled back, and all changes made by
the query will be undone. However, if a SELECT query raises
an error, it will return all rows that match its predicate before
the error occurs. That said, a SELECT query may return a
non-empty query result when it raises an error.

III. APPROACH

We propose Differential Query Execution (DQE) to auto-
matically detect logic bugs in SELECT, UPDATE and DELETE
queries. The core idea of DQE is that the SELECT, UPDATE
and DELETE queries with the same predicate φ should access
the same rows. If these queries access different rows, DQE
reveals a potential logic bug in the target DBMS.

A. DQE Overview

Fig. 2 shows the workflow of DQE. We first generate a
random database (step 1). The generated database contains
one or more tables, e.g., t1 and t2. Each table contains some
random columns and data, e.g., table t1 has a column c1 with
value ‘a’ and ‘b’. We then randomly generate a predicate φ,
e.g., NOT c1 (step 2). Based on predicate φ, we generate
a query triple < Qsel, Qup, Qdel >, in which Qsel, Qup

and Qdel denote a SELECT query, an UPDATE query and
a DELETE query, respectively. Qsel, Qup, and Qdel in the
query triple all use φ as their predicates (step 3). We then
execute Qsel, Qup and Qdel in the query triple on the same
database state (step 4), and analyze their execution results,
i.e., accessed rows and raised errors (step 5). Specially, we
analyze Qsel’s query result rs, the modified tables tu and
td after executing Qup and Qdel, respectively. If the three
queries’ execution results in the query triple are inconsistent,
e.g., accessing different rows, DQE reveals a potential logic
bug in the target DBMS (step 6).

①Generate a
random
database

Generate a random
predicate φ

② Generate a query triple
< 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑄𝑄𝑢𝑢𝑢𝑢,𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑 >

③ Compare execution
results

⑥

{r1, r2}

{}

{r1, r2}

≠

Execute queries
on the DBMS

④

Execute on t1
Accessed rows

c1 (TEXT)

a

b

t1

r1
r2

t1.c1

NOT t1.c1φ

NOT

SELECT t1.c1 FROM t1
WHERE φ

DELETE FROM t1
WHERE φ

UPDATE t1 SET t1.c1='c'
WHERE φ

⑤Obtain execution
results

c1

a

b

rs

r1
r2

c1

a

b

tu

r1
r2

c1

a

b

td

r1
r2

Execute on t1

Execute on t1
c2 (TEXT)

c

d

t2

r3
r4

𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠

𝑄𝑄𝑢𝑢𝑢𝑢

𝑄𝑄𝑑𝑑𝑑𝑑𝑑𝑑

Fig. 2. We use MariaDB#27885 [20] to illustrate the workflow of DQE. rs denotes the query result of Qsel, tu denotes t1’s new table state after executing
Qup, and td denotes t1’s new table state after executing Qdel.

The rest of this section is organized as follows. Section III-B
describes our database generation. Section III-C describes our
strategies to generate SQL queries. Section III-D shows how
we obtain a query triple’s execution results. Section III-E
shows how we detect logic bugs by comparing the execution
results of the three queries in a query triple.

B. Database Generation

Database generation has been widely explored by existing
works [21]–[26], and is not a contribution of this work. Our
database generation is mainly adopted from SQLancer [27].
We present our database generation only for completeness.

We first use the CREATE TABLE command to create at
most maxTable tables. Each table contains at most maxCol
columns. We assign each column with a random column
type, e.g., INT or TEXT, and some column constraints, e.g.,
PRIMARY KEY and UNIQUE. We then populate random data
into each table by executing the INSERT command. Each
table contains at most maxInsert rows of data. We further
execute at most maxAlter ALTER TABLE and CREATE
INDEX commands to modify each initial table, e.g., adding
new columns or building indexes on existing columns. More-
over, we configure each table with random options, e.g.,
setting the starting number of the auto-incrementing column
by appending AUTO_INCREMENT=5. Note that, maxTable,
maxCol, maxInsert, maxAlter are all configurable param-
eters. We set them as 5, 3, 10, 3 by default in our experiment,
respectively.

After generating the initial database, we alter each table in
the database by adding column rowId and updated. Column
rowId is used to uniquely identify each row. We assign
column rowId as TEXT type and populate it with unique
values, e.g., UUID. Column updated is used to track the
modifications of each row. We assign column updated as INT
type with default value 0. Note that, these two newly-added
columns are not used in the following query triple generation
(Section III-C). We only use them to obtain a query’s accessed
rows in Section III-D.

The above database generation is specific to individual
DBMSs. Different DBMSs support different column types,

Algorithm 1: Predicate generation.
Input: maxDepth

1 Function generatePredicate () do
2 generateAST(0)

3 Function generateAST(depth) do
4 nodeTypes← {CONST,COLUMN}
5 if depth < maxDepth then
6 nodeTypes←

{CONST,COLUMN,AND,OR, ...}
7 nodeType← random(nodeTypes)
8 if nodeType = CONST then
9 return randomConst()

10 else if nodeType = COLUMN then
11 return randomTable().randomColumn()

12 else
13 node← nodeType.createNode()
14 for i← 1; i ≤ node.operands.length; i++ do
15 node.child[i]← generateAST

(depth+ 1)
16 return node

column constraints and table options. For example, Cock-
roachDB supports column type INTERVAL, while MySQL
does not support it.

C. Query Triple Generation

After database generation, we generate a query triple <
Qsel, Qup, Qdel >, in which Qsel, Qup, Qdel use the same
predicate φ. In the following paragraphs, we first explain how
to generate a predicate φ, and then explain how to generate
Qsel, Qup, and Qdel based on predicate φ.

Predicate generation. We use Algorithm 1 to randomly
generate predicates based on Abstract Syntax Trees (ASTs)
of SQL. We randomly choose one node type from CONST ,
COLUMN , and operators supported by the target DBMS
(Line 5−7). If the node type is CONST , we randomly

TABLE II
EXAMPLES OF UPDATE OR DELETE -SPECIFIC ERRORS IN MYSQL AND SQLITE

Table Constraint MySQL SQLite
NOT NULL 1048, Column ‘c0’ cannot be null NOT NULL constraint failed: t1.c1
UNIQUE 1062, Duplicate entry ‘2’ for key ‘t1.i0’ UNIQUE constraint failed: t1.c1
Generated Column 3105, The value specified for generated column ‘c1’ in table ‘t1’ is not allowed cannot UPDATE generated column “c2”
Foreign Key 1451, Cannot delete or update a parent row: a foreign key constraint fails FOREIGN KEY constraint failed

generate a constant value, e.g., ‘a’ (Line 8−9). If the node
type is COLUMN , we randomly return a column reference
from the tables in our generated database, e.g., t1.c1 (Line
10−11). If the node type is an operator, we iteratively generate
its operands (Line 13−15). When the depth of an AST reaches
maxDepth, we only generate a constant or a column reference
(Line 4−6) and will not expand the AST further. Note that,
maxDepth is configurable, and we set it as 3 by default in
our experiment.

Query triple generation. After generate a predicate φ,
we further randomly generate Qsel, Qup, and Qdel based on
predicate φ. Specially, We first extract the referenced tables
from predicate φ, which are used in Qsel, Qup, and Qdel.
For example, if predicate φ is t1.c1 > 2 AND t2.c2 > 1,
its referenced tables are t1 and t2. We then generate Qsel’s
select field and Qup’s update field. The select field of Qsel is
a list of column references, e.g., t1.c1, t2.c2. The update field
of Qup is a list of assignments, e.g., t1.c1 = 1, t2.c2 = 2.
Finally, we generate optional clauses, e.g., ORDER BY, which
are commonly supported by Qsel, Qup, and Qdel. For example,
we can generate a query triple as follows.

Qsel: SELECT t1.c1,t2.c2 FROM t1,t2
WHERE t1.c1>2 AND t2.c2>1

Qup: UPDATE t1,t2 SET t1.c1=1,t2.c2=2
WHERE t1.c1>2 AND t2.c2>1

Qdel: DELETE t1,t2 FROM t1,t2
WHERE t1.c1>2 AND t2.c2>1

During query generation, DQE supports common operations
and functions in SELECT, UPDATE and DELETE queries,
and does not support operations and functions that are only
used in one type of queries, e.g., DISTINCT, aggregate-
based functions, window functions and GROUP BY that are
only used in SELECT queries. Moreover, DQE cannot support
non-deterministic functions, e.g., RAND function that returns
a random value. Note that, our query generation is specific to
DBMSs.

D. Obtaining Execution Results

For a generated query triple < Qsel, Qup, Qdel >, we
execute Qsel, Qup and Qdel on the same database state, and
obtain their execution results. Note that, the three queries’
execution results, i.e., Qsel’s query result, the modified tables
by Qup, and Qdel, cannot be used directly to compare and
find bugs. Instead, we collect two kinds of information in
each query, i.e., the rows accessed by a query, and the errors
raised by a query if any. These information can be used to
compare the queries’ execution results in the query triple
in Section III-E. In the following, we first discuss how to

obtain the errors raised by a query, and then discuss how to
automatically obtain each query’s accessed rows in a query
triple in details.

1) Obtaining the errors raised by a query: For a query, e.g.,
Qsel, Qup and Qdel, it can raise errors (sometimes warnings in
MySQL, MariaDB and TiDB) when a syntax or semantic error
occurs in query evaluation. Specially, an UPDATE query Qup

may violate table constraints, e.g., NOT NULL and UNIQUE,
and raises UPDATE-specific errors when updating the refer-
enced tables. Similarly, a DELETE query Qdel may violate
table constraints, e.g., FOREIGN KEY, and raises DELETE-
specific errors when deleting data in the referenced tables.
Table II shows some errors about constraint violations in
MySQL and SQLite for UPDATE and DELETE queries. For
example, when Qup updates on a column c1 with NOT NULL
constraint by changing its value to NULL, MySQL raises
an error with code 1048 and message “Column ‘c0’ cannot
be null”. When Qdel deletes a column that is referenced by
another table, SQLite raises an error with message “FOREIGN
KEY constraint failed”. Note that, Qsel does not raise specific
errors that Qup and Qdel cannot raise.

We use diagnostic commands provided by our target
DBMSs to obtain the errors raised by a query. Specially, we
use the SHOW WARNINGS command to obtain the raised er-
rors in MySQL, MariaDB and TiDB. The SHOW WARNINGS
command returns the error level, code and message when exe-
cuting a query [28]. CockroachDB and SQLite do not provide
such diagnostic commands. Thus, we use SQLException in
Java to obtain the raised errors in these two DBMSs.

2) Obtaining the accessed rows by a SELECT query (Qsel):
In order to obtain the rows returned by a SELECT query Qsel,
we append the select field of Qsel with column rowId of
its referenced tables, and form a new SELECT query Q′

sel.
After executing Q′

sel, we fetch column rowId’s values from
its result set. Because column rowId’s values can appear
more than once when testing multiple tables, we remove the
duplicate values of column rowId if necessary.

Fig. 3 shows an example for Qsel. We append Qsel’s select
field with t1.rowId, t2.rowId, which is shown in the red font,
and form Q′

sel. We then execute Q′
sel to get the accessed rows

from its query result rs. In this example, the same value of
column t1.rowId appears twice, so we remove the duplicate
values. We can see that the accessed rows by Qsel is r3, r5, r6.

3) Obtaining the accessed rows by an UPDATE query
(Qup): In order to obtain the rows updated by an UPDATE
query Qup, we append the update field of Qup with a list of
assignments to column updated in its referenced tables, and

t1.c1 t2.c2 t1.rowId t2.rowId
4 3 r3 r5

4 5 r3 r6

SELECT
t1.c1,t2.c2
t1.rowId,
t2.rowId

FROM t1,t2
WHERE t1.c1>2

AND t2.c2>1t2

t1

rs

c1 rowId
0 r1

2 r2

4 r3

c2 rowId
1 r4

3 r5

5 r6
{r3, r5, r6}

Fig. 3. Obtaining the accessed rows by a SELECT query.

t2

t1 c1 updated
0 0
2 0
4 0

UPDATE t1,t2
SET t1.c1=1,t2.c2=2
t1.updated=1,
t2.updated=2

WHERE t1.c1>2
AND t2.c2>1

c2 updated
1 0
3 0
5 0

t2u

t1u c1 updated
0 0
2 0
1 1

c2 updated
1 0
2 1
2 1

r1

r2

r3

r4

r5

r6

r1

r2

r3

r4

r5

r6

{r3}

{r5, r6}

{r3, r5, r6}

Fig. 4. Obtaining the accessed rows by an UPDATE query.

form a new UPDATE query Q′
up. After executing Q′

up, we
fetch column rowId’s values from each referenced table with
column updated’s value equal to 1, and form the accessed
rows by Qup.

Fig. 4 shows an example for Qup. We append Qup’s update
field with t1.updated = 1, t2.updated = 1, which is shown
in the red font, and form Q′

up. We then execute Q′
up, and

obtain its accessed rows by combining column rowId in each
modified table (i.e., t1u and t2u) with column updated’s value
equal to 1. We can see that the accessed rows by Qup is
r3, r5, r6.

4) Obtaining the accessed rows by a DELETE query (Qdel):
In order to obtain the rows deleted by a DELETE query Qdel,
we compare column rowId’s values in each referenced table
before and after executing it.

Fig. 5 shows an example for Qdel. Before executing Qdel,
the column rowId’s values in table t1 are r1, r2, r3, and
the column rowId’s values in table t2 are r4, r5, r6. After
executing Qdel, the column rowId’s values in the modified
table t1d are r1, r2, and the column rowId’s values in the
modified table t2d are r4, which means r3 in the table t1 and
r5, r6 in the table t2 are deleted. Therefore, the accessed rows
by Qdel is r3, r5, r6.

Note that, in Fig. 3, Fig. 4, and Fig. 5, we only show
the related columns for brevity. In fact, we append these two
columns to each table in our database generation.

E. Comparing Execution Results

After obtaining the execution results of Qsel, Qup and Qdel,
we analyze and compare them to detect whether a logic bug
occurs in the target DBMS. In the following, we use rowsel,

t2

t1 c1 rowId
0 r1

2 r2

4 r3

DELETE t1,t2
FROM t1,t2
WHERE t1.c1>2

AND t2.c2>1

c2 rowId
1 r4

3 r5

5 r6

t2d

t1d c1 rowId
0 r1

2 r2

4 r3

c2 rowId
1 r4
3 r5
5 r6

{r3}

{r5, r6}

{r3, r5, r6}

Fig. 5. Obtaining the accessed rows by a DELETE query.

rowup and rowdel to present the set of accessed rows by Qsel,
Qup and Qdel, respectively.

As discussed in Section III-D, Qup and Qdel can raise
UPDATE and DELETE -specific errors, respectively, while
Qsel cannot. Therefore, if Qup raises UPDATE-specific errors,
we will not compare Qup’s execution results with those of
Qsel and Qdel, i.e., we only compare the execution results
of Qsel and Qdel. Similarly, if Qdel raises DELETE-specific
errors, we will not compare Qdel’s execution results with those
of Qsel and Qup. In these two cases, rowup or rowdel should
be empty. In the following discussion, we assume that Qup

and Qdel do not raise UPDATE and DELETE -specific errors,
respectively.

As discussed in Section II-C, different DBMSs adopt dif-
ferent query execution strategies. Thus, we first discuss how
to compare a query triple’s execution results in MySQL,
MariaDB and TiDB, and then discuss how to compare a query
triple’s execution results in CockroachDB and SQLite.

1) MySQL, MariaDB and TiDB: We apply the following
rules to compare the execution results of Qsel, Qup and Qdel

in a query triple. If any rule is violated, DQE reports a bug.

• If Qsel raises an error, Qup and Qdel should raise the
same error. In this case, rowsel, rowup and rowdel should
be empty.

• Under strict mode, if Qsel raises a warning, Qup and Qdel

should raise an error. The warning and error should have
the same error codes and messages, except for their error
levels. In this case, rowup and rowdel should be empty.

• Under non-strict mode, if Qsel raises a warning, Qup and
Qdel should raise the same warning. In this case, rowsel,
rowup and rowdel should be the same.

• If Qsel does not raise a warning or an error, Qup and
Qdel should not raise a warning or an error. In this case,
rowsel, rowup and rowdel should be the same.

2) CockroachDB and SQLite: We apply the following rules
to compare the execution results of Qsel, Qup and Qdel in a
query triple. If any rule is violated, DQE reports a bug.

• If Qsel raises an error, Qup and Qdel should raise the
same error. In this case, rowup and rowdel should be
empty. However, rowsel may not be empty, as discussed
in Section II-C.

TABLE III
BUGS REPORTED BY DQE

Bug Status Triggering Query
DBMS Submitted Confirmed Fixed Duplicate Not a bug SELECT UPDATE DELETE
MySQL 7 1 1 0 6 0 1 1
MariaDB 4 2 0 0 0 0 0 2
TiDB 37 37 10 0 0 20 17 17
CockroachDB 1 0 0 1 0 0 0 0
SQLite 1 1 0 0 0 1 0 0
Total 50 41 11 1 6 21 18 20

• If Qsel does not raise a warning or an error, Qup and
Qdel should not raise a warning or an error. In this case,
rowsel, rowup and rowdel should be the same.

IV. EVALUATION

We implement DQE based on SQLancer [27], which is
implemented in Java. We make the following improvements
to apply DQE. First, we add UPDATE and DELETE query
generation in our target DBMSs, e.g., MySQL, TiDB and
SQLite. Second, DQE requires to execute the three queries
in a query triple on the same database state. In MySQL,
MariaDB and TiDB, we use ROLLBACK transactions to roll
back all changes made by UPDATE and DELETE queries. In
CockroachDB and SQLite, we record the table content before
query execution and refill the table with the same content after
query execution. In total, we write about 2,600 lines of code
to implement DQE on five target DBMSs.

We evaluate the effectiveness of DQE by answering the
following two research questions:

• RQ1: What logic bugs can DQE detect in real-world
DBMSs?

• RQ2: How many bugs detected by DQE can be found by
existing approaches?

A. Experimental Methodology

Experimental setup. We evaluate DQE on five widely-
used DBMSs, i.e., MySQL, MariaDB, TiDB, CockroachDB
and SQLite. Detailed information about these DBMSs are
presented in Section II-B. We test these DBMSs with their
latest release versions when we start our experiment, i.e.,
MySQL 8.0.28, MariaDB 10.8.2, TiDB 5.2.0, CockroachDB
21.2.6 and SQLite 3.39.2. For TiDB, we also test version 5.3.0
and 5.4.0 after they are released.

We perform our experiment on a CentOS machine with 8
CPU cores and 32GB RAM. We deploy our target DBMSs
according to their own deployment requirements. Specifically,
we deploy MySQL and MariaDB using Docker containers.
We deploy TiDB in a local cluster with a TiKV instance, a
TiDB instance and a PD instance. We deploy CockroachDB
in a local cluster with three nodes. We embed SQLite within
DQE.

Experimental process. We run DQE to find bugs in our
target DBMSs. We do not set timeout for our experiment
and continuously run DQE until it finds bugs. The whole
experiment takes about one month. When DQE reports a

potential bug, we manually execute it through the interactive
terminal of the target DBMS to check whether this bug can
be reproduced. When successfully reproducing the reported
bug, we manually reduce the test case to a smaller size. We
apply the following three strategies to perform the test case
reduction. First, we remove the unused columns and optional
column constraints. Second, we remove data in tables by
eliminating all INSERT commands that do not change the bug
consequence. Third, we randomly remove some sub-clauses
in predicates without changing the bug consequence. We then
check whether this bug has been reported in the target DBMS’s
bug tracking system to avoid submitting duplicate bugs. After
reporting a bug, we wait for feedbacks from developers.

Experimental focus. The developers’ response time deter-
mines how much effort is spent on testing a DBMS. TiDB
developers give us more responsive confirmation than other
DBMS developers, which highly increases our confidence to
continue our test. Therefore, we spend most of our testing time
on TiDB and keep it up-to-date.

B. Overall Detection Results

To answer RQ1, we evaluate DQE on MySQL, MariaDB,
TiDB, CockroachDB and SQLite. In total, DQE reports 122
bugs among them. We manually reproduce and minimize the
test cases of these 122 reported bugs. If the minimized test
cases of some bugs are the same, we only keep one, and
consider others as duplicate bugs. Finally, we obtain 50 unique
bugs, and submit them to corresponding DBMS developers.
Specifically, we submit 7 bugs in MySQL, 4 bugs in MariaDB,
37 bugs in TiDB, 1 bug in CockroachDB and 1 bug in SQLite.
Note that, we do not submit the remaining 72 bugs, which are
considered as duplicate bugs by us and not false positives.

Table III shows the bug status of our submitted bugs
(column 2-6). Among the 50 submitted bugs, 41 bugs have
been confirmed as new bugs, in which 11 bugs have been fixed.
Among the 41 confirmed bugs, MySQL developers confirm
1 bug, MariaDB developers confirm 2 bugs, TiDB developers
confirm 37 bugs and SQLite developers confirm 1 bug. Among
the 11 fixed bugs, MySQL developers fix 1 bug and TiDB
developers fix 10 bugs. For the 9 bugs that have not been
confirmed, 1 bug in CockroachDB is considered as duplicate
to an existing bug, 6 bugs are considered as intended behaviors
by MySQL developers, and the remaining 2 bugs have not
been decided by MariaDB developers yet.

TABLE IV
BUG CONSEQUENCES IN SELECT, UPDATE AND DELETE QUERIES

Consequence SELECT UPDATE DELETE
Incorrect database state 0 18 18
Duplicate warning 5 0 0
Unexpected warning 6 0 2
Unexpected error 1 0 0
Incorrect warning message 6 0 0
Others 3 0 0
Total 21 18 20

Among the 41 confirmed bugs, 22 bugs are verified as
Major or Moderate. Note that, different DBMSs have different
severity levels. We use Major to denote Critical and Serious in
MySQL and MariaDB, and Major in TiDB. We use Moderate
to denote Moderate in TiDB. Moreover, SQLite developers do
not assign a severity level on the confirmed bug, so we do not
count it as Major or Moderate.

Table III also shows the triggering queries of the 41 con-
firmed bugs (column 7-9). 21 bugs are triggered by SELECT
queries, 18 bugs are triggered by UPDATE queries and 20
bugs are triggered by DELETE queries. Note that, one bug
can be triggered by more than one type of queries, so the total
number of triggering queries is more than the total number of
confirmed bugs.

Table IV shows the 41 confirmed bugs’ bug consequences
with the number of their triggering queries. Most of SELECT
queries cause incorrect warnings, e.g., duplicate warnings,
unexpected warnings and incorrect warning messages. The
remaining 3 SELECT queries cause the SHOW WARNINGS
command to fail to return errors. All UPDATE queries and
most of DELETE queries cause incorrect database states. The
remaining 2 DELETE queries cause unexpected warnings.

Among the 36 queries that lead to incorrect database states,
34 queries occur in TiDB and 2 queries occur in MySQL. All 5
queries that lead to duplicate warnings occur in TiDB. Among
the 8 queries that lead to unexpected warnings, 6 queries occur
in TiDB and 2 queries occur in MariaDB. One query that
leads to unexpected errors occurs in SQLite. All 6 queries
that lead to incorrect warning messages occur in TiDB. The
remaining 3 queries that lead to the execution failures of the
SHOW WARNINGS command occur in TiDB.

C. Comparing with Existing Approaches

To answer RQ2, we perform a qualitative comparison with
existing approaches (i.e., PQS [9], NoREC [10] and TLP
[11]) that aim to detect logic bugs in DBMSs. These three
approaches construct oracles to detect logic bugs in single
SELECT queries. Thus, they cannot detect the 20 logic bugs
in UPDATE and DELETE queries. Moreover, these three
approaches do not consider the normal errors that can be
unexpectedly raised by SELECT queries as logic bugs, e.g.,
the warnings in Listing 3. Unlike crashes caught by these
approaches, these normal errors do not crash the DBMS and
need a test oracle to validate their correctness. Thus, they
cannot detect 18 logic bugs related to this kind of errors

TABLE V
COVERAGE INFORMATION

Tool MySQL MariaDB
PQS 19 -
NoREC - 18
TLP 18 -
DQE 15 21

in SELECT queries. We further analyze the triggering test
cases and bug consequences of the remaining 3 logic bugs
in SELECT queries. We find that, none of these 3 bugs can
be triggered or captured by the oracles in these approaches.
Therefore, all our reported bugs cannot be detected by these
approaches theoretically.

Other DBMS testing approaches, e.g., SQLsmith [29],
APOLLO [30], AMOEBA [31], RAGS [8] and SparkFuzz
[32], cannot construct oracles to detect logic bugs, or cannot
detect logic bugs in a single DBMS because differential testing
needs multiple DBMSs. Therefore, we do not compare DQE
with these approaches.

D. Other Experimental Statistics

Test efficiency. During testing, before a bug we detect is
fixed by the DBMS developers, DQE will generate many test
cases that trigger the same bug. In total, DQE reports 122 bugs.
After filtering out duplicate bugs, we obtain 50 unique bugs.
The duplicate rate is 41% (50/122). Existing works [9]–[11]
also face the same problem. There is currently no practical way
to automatically filter out duplicate test cases for DBMSs. For
discovering these 50 unique bugs, we generate 1,776,124,512
query triples.

Query generation efficiency. We measure the query gen-
eration efficiency in DQE during testing. In this experiment,
we count every queries generated including those that create
the database and query triples. In DQE, we generate syntacti-
cally valid queries based on Abstract Syntax Trees (ASTs)
of SQL. However, SQL in different DBMSs should obey
many semantic constraints, which can cause DQE to generate
semantically invalid queries. For example, DQE may generate
an INSERT command that inserts a duplicate value into a
UNIQUE column. Such semantic errors can lower our success
rate of query generation. In MySQL, DQE generates 2,885
queries per second with a success rate of 88%. In MariaDB,
DQE generates 3,344 queries per second with a success rate
of 87%. In TiDB, DQE generates 1,566 queries per second
with a success rate of 89%. In CockroachDB, DQE generates
243 queries per second with a success rate of 72%. In SQLite,
DQE generates 12,313 queries per second with a success rate
of 97%.

Coverage. To demonstrate the sufficiency of our testing,
we compare code coverage with existing works, i.e., PQS [9],
NoREC [10] and TLP [11]. We run each tool with the same
experimental setting for 24 hours on MySQL and MariaDB4.

4We have not found a suitable way to perform code coverage measurements
in TiDB, SQLite and CockroachDB.

Table V shows our experiment results. PQS achieves 19% line
coverage in MySQL. NoREC achieves 18% line coverage in
MariaDB. TLP achieves 18% line coverage in MySQL. DQE
achieves 15% line coverage in MySQL and 21% line coverage
in MariaDB. We can see that DQE obtains similar coverage
with other works. This is reasonable, since DQE, PQS, NoREC
and TLP are all built on SQLancer, which share the similar
query generation. Note that, in SQLancer, NoREC does not
support testing MySQL, PQS and TLP do not support testing
MariaDB. Thus, we do not measure their code coverage.

Although DQE can generate thousands of queries per sec-
ond in MySQL and MariaDB, the coverage is low. This is
expected, because DQE only focuses on query processing in
DBMSs. DBMSs also provide many features that we do not
test, e.g., user management, configuration, and fault tolerance.

Parameter selection. We use some default parameters, e.g.,
maxTable=5, maxCol=10, and maxDept=3, to generate
databases and queries. These parameters may affect our bug
detection effectiveness. However, the impact of these parame-
ters could be low. The reasons are as follows. (1) Logic bugs
in DBMSs usually obey the small scope hypothesis [33]. That
said, a high proportion of logic bugs can be found by test
inputs within some small scopes, e.g., a small number of tables
and rows. (2) After minimizing our 50 submitted bugs, we find
that all 50 bugs can be detected on a single table, 47 bugs can
be detected with one row. maxTable, maxCol and maxDept
for these 50 submitted bugs are 1, 2 and 3, respectively.

E. Selected Bugs

In this section, we present some interesting bugs detected
by DQE according to their bug consequences. Table IV shows
the overall statistics of bug consequences. In the following
discussion, we illustrate each bug consequence using a repre-
sentative bug.

CREATE TABLE t1 (c1 INT);
INSERT INTO t1 VALUES (1); -- r1
1. SELECT * FROM t1 WHERE 0 ˆ ’0.5’;

-- Fetch empty result
-- Warning|1292|Truncated incorrect INTEGER

value: ’0.5’
2. UPDATE t1 SET c1 = 2 WHERE 0 ˆ ’0.5’;

-- Update r1
3. DELETE FROM t1 WHERE 0 ˆ ’0.5’;

-- Delete r1

Listing 2. TiDB#31708. The UPDATE and DELETE queries unexpectedly
change the database state.

Incorrect database state. Listing 2 shows a bug
TiDB#317085, in which the UPDATE and DELETE queries
unexpectedly change the database states. Table t1 consists of
an INT row with value 1. The predicate φ is 0 ˆ ‘0.5’. For
the SELECT query, TiDB first convert ‘0.5’ into an INT value
0 and then calculates 0 ˆ 0 that is equal to 0 (FALSE), and
finally returns an empty query result. For the UPDATE and
DELETE queries, TiDB unexpectedly evaluates the predicate
to TRUE and changes the database state without raising any
errors.

5https://github.com/pingcap/tidb/issues/31708

CREATE TABLE t1 (c1 FLOAT);
INSERT INTO t1 VALUES (0); -- r1
1. SELECT c1 FROM t1 WHERE c1 = ’a’;

-- Fetch r1
-- Warning|1292|Truncated incorrect DOUBLE

value: ’a’
-- Warning|1292|Truncated incorrect DOUBLE

value: ’a’
-- Warning|1292|Truncated incorrect DOUBLE

value: ’a’
2. UPDATE t1 SET c1 = 1 WHERE c1 = ’a’;

-- Update no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’
3. DELETE FROM t1 WHERE c1 = ’a’;

-- Delete no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’

Listing 3. TiDB#31711. The SELECT query raises duplicate warnings.

Duplicate warning. Listing 3 shows a bug TiDB#317116,
in which the SELECT query raises three same warnings on
row r1. Table t1 consists of a FLOAT row with value 0. The
predicate φ is c1 = ‘a’. TiDB evaluates it by checking whether
column c1’s value is equal to constant ‘a’. Because there is
only one row r1 in table t1, TiDB should evaluate the predicate
φ only once. Note that, column c1 is in different data type
with constant ‘a’, which is a string. Therefore, TiDB requires
a type conversion, i.e., converting ‘a’ to a DOUBLE value 0,
when evaluating the predicate φ. For the SELECT query, TiDB
returns three warnings to indicate such conversions. These
warnings will confuse users, because these three same warning
are raised on the same row r1. Note that, the warning message
raised by the UPDATE and DELETE queries is also incorrect,
because TiDB should convert the constant ‘a’ to a DOUBLE
value according to its reference manual [34], instead of INT
type.

CREATE TABLE t1 (c1 BLOB);
INSERT INTO t1 VALUES (’a’); -- r1
1. SELECT * FROM t1 WHERE c1;
-- Fetch empty result
-- Warning|1292|Truncated incorrect DOUBLE value

: ’a’
2. UPDATE t1 SET c1 = ’b’ WHERE c1;
-- Update no row
-- Error|1292|Truncated incorrect DOUBLE value:

’a’
3. DELETE FROM t1 WHERE c1;
-- Delete no row
-- Warning|1292|Truncated incorrect DOUBLE value

: ’a’

Listing 4. MariaDB#28140. The DELETE query raises an unexpected
warning.

Unexpected warning. Listing 4 shows a bug Mari-
aDB#281407 in the strict mode, in which the DELETE query
raises a warning instead of an error. In this bug, because the
SELECT query raises a warning, the same warning should
be treated as an error in the DELETE query. However, the
DELETE query raises a warning. In this bug, because the
predicate φ is c1, which value is ‘a’, the DELETE query

6https://github.com/pingcap/tidb/issues/31711
7https://jira.mariadb.org/browse/MDEV-28140

https://github.com/pingcap/tidb/issues/31708
https://github.com/pingcap/tidb/issues/31711
https://jira.mariadb.org/browse/MDEV-28140

evaluates φ to FALSE. Therefore, the DELETE query does not
change the database state. However, such unexpected warning
can lead to change the database state in some cases. For
example, if predicate φ is NOT c1, the DELETE query will
change the database state to an empty table unexpectedly.

CREATE TABLE t1 (c1 TEXT);
INSERT INTO t1 VALUES (’a’); -- r1
1. SELECT c1 FROM t1 WHERE (NULL == c1) AND

json_object(c1, c1);
-- Fetch no row
-- Runtime error: json_object() labels must

be TEXT
2. UPDATE t1 SET c1 = ’b’ WHERE (NULL == c1) AND

json_object(c1, c1);
-- Update no row

3. DELETE FROM t1 WHERE (NULL == c1) AND
json_object(c1, c1);
-- Delete no row

Listing 5. SQLite#12638. The SELECT query raises an unexpected error.

Unexpected error. Listing 5 shows a bug SQLite#12638
8, in which the SELECT query should not raise an er-
ror. Table t1 consists of a TEXT row with value ‘a’. The
predicate φ is (NULL == c1) AND json object(c1, c1).
The json object function accepts a pair of arguments, e.g.,
(label1, value1), and requires the data type of label1 to
be TEXT. For the SELECT query, SQLite returns an error,
which states that the json object function takes labels that
must be TEXT type. However, the label in the json object
function is indeed a TEXT column c1. We report this bug
to SQLite developers, who explain that the constant propaga-
tion optimization causes this problem. SQLite suffers from
“premature evaluation” of the json object function in this
bug. Specially, SQLite transforms predicate φ into (NULL
== c1) AND json object(NULL, NULL), and calculates
json object(NULL, NULL) in predicate φ without checking
(NULL == c1).

CREATE TABLE t1 (c1 TEXT);
INSERT INTO t1 VALUES (’a’); -- r1
1. SELECT c1 FROM t1 WHERE 1 << c0;

-- Fetch r1
-- Warning|1292|evaluation failed:

Truncated incorrect INTEGER value: ’a’
2. UPDATE t1 SET c1 = ’b’ WHERE 1 << c0;

-- Update no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’
3. DELETE FROM t1 WHERE 1 << c0;

-- Delete no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’

Listing 6. TiDB#31391. The SELECT query raises an incorrect warning
message.

Incorrect warning message. Listing 6 shows a bug
TiDB#313919, in which the SELECT query raises a warning
with an incorrect warning message. According to the error
reference manual10, the warning message format for the code

8https://sqlite.org/forum/forumpost/12638a0aea0602a8
9https://github.com/pingcap/tidb/issues/31391
10https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-

reference.html

1292 is “Truncated incorrect %s value: ‘%s’”. “evaluation
failed: ” should not appear in the SELECT query’s warning
message. This bug illustrates that cross-validating the evalu-
ation of a predicate among SELECT, UPDATE and DELETE
queries helps equip DQE with the ability to check the correct-
ness of warnings.

CREATE TABLE t1 (c1 INT);
INSERT INTO t1 VALUES (1); -- r1
1. SELECT * FROM t1 WHERE POW(0, -1);

-- Fetch empty result
--

2. UPDATE t1 SET c1=2 WHERE POW(0, -1);
-- Update no row
-- Error|1690|DOUBLE value is out of range

in ’pow(0,-(1))’
3. DELETE FROM t1 WHERE POW(0, -1);

-- Delete no row
-- Error|1690|DOUBLE value is out of range

in ’pow(0,-(1))’

Listing 7. TiDB#33292. The SELECT query triggers incorrect functionality
in the SHOW WARNINGS command.

Others. Listing 7 shows a bug TiDB#3329211, in which the
diagnostic command SHOW WARNINGS fails to return the
error raised by the SELECT query. The SHOW WARNINGS
command is a diagnostic command that returns warnings or
errors resulting from the current query execution [28]. Because
we use the SHOW WARNINGS command to obtain a query’s
raised warning in TiDB, DQE reports this bug due to a missing
warning in the SELECT query. DQE find another two bugs that
also happen in the SHOW WARNINGS command.

F. Not A Bug

In this section, we list a representative bug that is classified
as not a bug in MySQL.

CREATE TABLE t1 (c1 FLOAT);
INSERT INTO t1 VALUES (1); -- r1
CREATE UNIQUE INDEX i1 ON t1 (c1 DESC);
1. SELECT * FROM t1 WHERE (’a’|1) BETWEEN 0 AND

c1;
-- Fetch r1
-- Warning|1292|Truncated incorrect INTEGER

value: ’a’
-- Warning|1292|Truncated incorrect INTEGER

value: ’a’
-- Warning|1292|Truncated incorrect INTEGER

value: ’a’
2. UPDATE t1 SET c1=’b’ WHERE (’a’|1) BETWEEN 0

AND c1;
-- Update no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’
-- Warning|1292|Truncated incorrect INTEGER

value: ’a’
3. DELETE FROM t1 WHERE (’a’|1) BETWEEN 0 AND c1

;
-- Delete no row
-- Error|1292|Truncated incorrect INTEGER

value: ’a’
-- Warning|1292|Truncated incorrect INTEGER

value: ’a’

Listing 8. MySQL#106407. The SELECT query raises duplicate warnings.

11https://github.com/pingcap/tidb/issues/33292

https://sqlite.org/forum/forumpost/12638a0aea0602a8
https://github.com/pingcap/tidb/issues/31391
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://dev.mysql.com/doc/mysql-errors/5.7/en/server-error-reference.html
https://github.com/pingcap/tidb/issues/33292

Listing 8 shows a bug MySQL#10640712, in which the same
warning or error appears multiple times on an indexed column
r1. Table t1 consists of a FLOAT row with value 0. There
is an index built on column c1. The predicate φ is (‘a’ |
1) BETWEEN 0 AND c1. For the SELECT query, MySQL
converts ‘a’ to an INT value 0, and then performs bitwise OR
operation with 1, which result is 1, and finally checks whether
the result is in the range of 0 and the value of column c1.
Because the value of column c1 is 1, predicate φ is evaluated
to TRUE. Therefore, the SELECT query returns row r1, but
raises three same warnings. The UPDATE and DELETE queries
raise a warning and an error (with the same warning code and
message). We think there should be no duplicate warnings or
errors because there is only one row. We report it to MySQL
developers who confirm this issue, but explain that “duplicate
warnings, which are all identical, do not constitute a bug”.

V. DISCUSSION

Limitations. DQE has some limitations on detecting logic
bugs. First, DQE faces the same problem as differential
testing. DQE cannot detect a logic bug that occurs in all the
three SELECT, UPDATE and DELETE queries. Second, DQE
only supports common operations and functions supported by
SELECT, UPDATE and DELETE queries. For each query’s
specific operations and functions, DQE cannot compare its
execution results with other queries’ execution results. For
example, DQE cannot support aggregate-based functions, win-
dow functions and GROUP BY that are only used in SELECT
queries. Third, DQE cannot support non-deterministic func-
tions, e.g., RAND function that returns a random value in a
query.

Extend to other DBMSs. The core idea of DQE is simple
but rather applicable to other DBMSs, because most DBMSs
support data manipulation specified by predicates. We expect
that the key insight of DQE could be used in many database
systems in DB-engine ranking [17]. We list some of them
as follows. (1) Graph database systems, e.g., Neo4j [35],
Microsoft Azure Cosmos DB [36], and TigerGraph [37]. (2)
Key-value stores, e.g., Redis [38], Amazon DynamoDB [39],
and Hazelcast [40]. (3) Document stores, e.g., MongoDB [41],
CouchDB [42], and Google Cloud Datastore [43].

VI. RELATED WORK

Differential testing of DBMSs. Differential testing [44] is
effective to test DBMSs without facing the test oracle problem.
The core idea behind differential testing is by feeding the same
input to many functionally identical systems and comparing
their outputs to detect bugs. There are many existing works
applying differential testing on DBMSs [8], [30]–[32], [45]–
[49]. RAGS [8] executes the same SELECT query on different
DBMSs and observes discrepancies in their query results.
DT2 [46] feeds a group of transactions into multiple DBMSs
to detect transaction bugs. Grand [45] and RD2 [49] apply
differential testing on graph database systems. APOLLO [30]

12https://bugs.mysql.com/bug.php?id=106407

feeds the same SELECT query into two different versions
of the same DBMS to detect performance bugs. SparkFuzz
[32] validates a query result with a reference DBMS (e.g.,
PostgreSQL) or with a different Spark version. We develop a
novel differential testing approach, which executes SELECT,
UPDATE and DELETE queries with the same predicate in a
DBMS to detect logic bugs.

Database and SQL query generation. One key component
of automatic testing is an automatic input generator. Database
and SQL query generation have been widely explored by
existing works [21]–[26], [29], [50]–[57]. SQLsmith [29] is an
open source random SQL query generator, which is inspired
by Csmith [58]. Go-randgen [54] can generate various SQL
queries based on input SQL grammar. SQLRight [55] is a
mutation-based SQL query generator, in which an intermediate
representation is designed to perform mutations guided by cov-
erage feedback. A better database and SQL query generation
might improve the efficiency of our work in detecting logic
bugs.

Test oracles of DBMSs. Test oracles are the key to reveal
DBMS bugs. ADUSA [26] uses Alloy [59], an open source
language and analyzer, to analyze the expected query result
of a given SELECT query. PQS [9] synthesizes a SELECT
query, which is computed to fetch a randomly-selected pivot
row, and checks whether the pivot row is contained in its query
result. NoREC [10] rewrites a SELECT query as an equivalent
one that the DBMS cannot optimize, and compares their
results. TLP [11] leverages the ternary property of predicate
evaluation, where the evaluation result is one of TRUE, FALSE
and NULL, to partition a SELECT query into three partitioning
queries, whose combined query results are equal to the original
query’s query result. Troc [60] proposes how to build a test
oracle for a pair of transactions. Our work proposes a new test
oracle for DBMS testing, and is complementary to existing
approaches.

VII. CONCLUSION

Logic bugs in UPDATE and DELETE queries can cause
severer consequences, e.g., incorrect database states, and have
not been tackled by existing approaches. In this paper, we
propose a novel and general approach DQE to effectively
detect logic bugs in SELECT, UPDATE and DELETE queries.
We evaluate DQE on five widely-used DBMSs, i.e., MySQL,
MariaDB, TiDB, CockroachDB and SQLite. In total, we have
detected 41 previously-unknown logic bugs in these DBMSs.
We expect that the generality of DQE can help improve the
reliability of DBMSs.

ACKNOWLEDGMENTS

This work was partially supported by National Key R&D
Program of China (2021YFB1716000), National Natural Sci-
ence Foundation of China (62072444), Frontier Science
Project of Chinese Academy of Sciences (QYZDJ-SSW-
JSC036), and Youth Innovation Promotion Association at
Chinese Academy of Sciences.

https://bugs.mysql.com/bug.php?id=106407

REFERENCES

[1] “MySQL homepage,” https://www.mysql.com, 2022.
[2] “MariaDB homepage,” https://mariadb.org/, 2022.
[3] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,

Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song,
R. Sun, S. Yu, L. Zhao, N. Cameron, L. Pei, and X. Tang, “TiDB:
A Raft-based HTAP database,” Proceedings of the VLDB Endowment
(VLDB), vol. 13, no. 12, pp. 3072–3084, 2020.

[4] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger,
K. Niemi, A. Woods, A. Birzin, R. Poss, P. Bardea, A. Ranade, B. Dar-
nell, B. Gruneir, J. Jaffray, L. Zhang, and P. Mattis, “CockroachDB:
The resilient Geo-distributed SQL database,” in Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD),
2020, pp. 1493–1509.

[5] “SQLite homepage,” https://www.sqlite.org/index.html, 2022.
[6] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A structured english

query language,” in Proceedings of ACM SIGFIDET Workshop on Data
Description, Access and Control, 1974, pp. 249–264.

[7] “MySQL customers by industry,” https://www.mysql.com, 2022.
[8] D. R. Slutz, “Massive stochastic testing of SQL,” in Proceedings of

International Conference on Very Large Data Bases (VLDB), 1998, pp.
618–622.

[9] M. Rigger and Z. Su, “Testing database engines via pivoted query
synthesis,” in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020, pp. 667–682.

[10] ——, “Detecting optimization bugs in database engines via non-
optimizing reference engine construction,” in Proceedings of ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), 2020, pp. 1140–
1152.

[11] ——, “Finding bugs in database systems via query partitioning,” in
Proceedings of ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), vol. 4,
2020.

[12] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[13] B. Ding, S. Das, W. Wu, S. Chaudhuri, and V. Narasayya, “Plan
Stitch: Harnessing the best of many plans,” Proceedings of the VLDB
Endowment (VLDB), vol. 11, no. 10, pp. 1123–1136, 2018.

[14] T. Neumann and B. Radke, “Adaptive optimization of very large join
queries,” in Proceedings of International Conference on Management of
Data (SIGMOD), 2018, pp. 677–692.

[15] C. Wu, A. Jindal, S. Amizadeh, H. Patel, W. Le, S. Qiao, and S. Rao,
“Towards a learning optimizer for shared clouds,” Proceedings of the
VLDB Endowment (VLDB), vol. 12, no. 3, pp. 210–222, 2018.

[16] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska,
O. Papaemmanouil, and N. Tatbul, “Neo: A learned query optimizer,”
Proceedings of the VLDB Endowment (VLDB), vol. 12, no. 11, pp. 1705–
1718, 2019.

[17] “DB-Engines ranking,” https://db-engines.com/en/ranking, 2023.
[18] “Most widely deployed and used database engine,” https://www.sqlite.

org/mostdeployed.html, 2022.
[19] “Database topic in GitHub,” https://github.com/topics/database, 2023.
[20] “Unexpected delete when data truncation,” https://jira.mariadb.org/

browse/MDEV-27885, 2022.
[21] A. Neufeld, G. Moerkotte, and P. C. Lockemann, “Generating consistent

test data: Restricting the search space by a generator formula,” Proceed-
ings of the VLDB Endowment (VLDB), vol. 2, no. 2, pp. 173–214, 1993.

[22] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in Proceedings
of ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1994, pp. 243–252.

[23] N. Bruno and S. Chaudhuri, “Flexible database generators,” in Proceed-
ings of International Conference on Very Large Data Bases (VLDB),
2005, pp. 1097–1107.

[24] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data genera-
tion,” in Proceedings of International Conference on Very Large Data
Bases (VLDB), 2006, pp. 1243–1246.

[25] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu, “QAGen: Generating
query-aware test databases,” in Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2007, pp. 341–
352.

[26] S. Abdul Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in Proceedings
of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2008, pp. 238–247.

[27] “SQLancer homepage,” https://github.com/sqlancer/sqlancer, 2022.
[28] “SHOW WARNINGS statement,” https://dev.mysql.com/doc/refman/8.

0/en/show-warnings.html., 2022.
[29] “SQLsmith,” https://github.com/anse1/sqlsmith, 2015.
[30] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang, “APOLLO: Automatic

detection and diagnosis of performance regressions in database systems,”
Proceedings of the VLDB Endowment (VLDB), vol. 13, no. 1, pp. 57–70,
2019.

[31] X. Liu, Q. Zhou, J. Arulrai, and A. Orso, “Automatic detection of
performance bugs in database systems using equivalent queries,” in Pro-
ceedings of International Conference on Software Engineering (ICSE),
2022, pp. 225–236.

[32] B. Ghit, N. Poggi, J. Rosen, R. Xin, and P. Boncz, “SparkFuzz: Search-
ing correctness regressions in modern query engines,” in Proceedings of
the Workshop on Testing Database Systems (DBTest), 2020.

[33] A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov, “Evaluating the
“small scope hypothesis”,” in Proceedings of ACM Symposium on the
Principles of Programming Languages (POPL), vol. 2, 2003.

[34] “Type conversion in expression evaluation,” https://dev.mysql.com/doc/
refman/5.7/en/type-conversion.html, 2022.

[35] “Neo4j homepage,” https://neo4j.com/, 2022.
[36] “Azure cosmos DB,” https://azure.microsoft.com/en-us/products/

cosmos-db/, 2023.
[37] “TigerGraph,” https://www.tigergraph.com/, 2023.
[38] “Redis homepage,” https://redis.io/, 2022.
[39] “Amazon DynamoDB,” https://aws.amazon.com/cn/dynamodb/, 2023.
[40] “Hazelcast,” https://hazelcast.com/, 2023.
[41] “MongoDB,” https://www.mongodb.com/, 2022.
[42] “Apache CouchDB,” https://couchdb.apache.org/, 2023.
[43] “Datastore,” https://cloud.google.com/datastore, 2023.
[44] W. M. McKeeman, “Differential testing for software,” DIGITAL TECH-

NICAL JOURNAL, vol. 10, pp. 100–107, 1998.
[45] Y. Zheng, W. Dou, Y. Wang, Z. Qin, L. Tang, Y. Gao, D. Wang,

W. Wang, and J. Wei, “Finding bugs in Gremlin-based graph database
systems via randomized differential testing,” in Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2022, pp. 302–313.

[46] Z. Cui, W. Dou, Q. Dai, J. Song, W. Wang, J. Wei, and D. Ye,
“Differentially testing database transactions for fun and profit,” in Pro-
ceedings of IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2022.

[47] J. Fu, J. Liang, Z. Wu, M. Wang, and Y. Jiang, “Griffin: Grammar-free
DBMS fuzzing,” in Proceedings of IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2023.

[48] W. Lin, Z. Hua, L. Zhang, and T. Xie, “GDiff: Automated differential
performance testing for graph database systems,” in Proceedings of
International Conference on Software Engineering (ICSE), 2023.

[49] R. Yang, Y. Zheng, L. Tang, W. Dou, W. Wang, and J. Wei, “Randomized
differential testing of RDF stores,” in Proceedings of International
Conference on Software Engineering (ICSE Demo), 2023.

[50] J. Ba and M. Rigger, “Testing database engines via query plan guidance,”
in Proceedings of International Conference on Software Engineering
(ICSE), 2023.

[51] Z. Jiang, J. Bai, and Z. Su, “DynSQL: Stateful fuzzing for database
management systems with complex and valid SQL query generation,” in
Proceedings of USENIX Security Symposium (USENIX Security), 2023.

[52] Z. Hua, W. Lin, L. Ren, Z. Li, L. Zhang, W. Jiao, and T. Xie, “GDsmith:
Detecting bugs in Cypher graph database engines,” 2023.

[53] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database
engines via query partitioning,” in Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2023.

[54] “go-randgen,” https://github.com/pingcap/go-randgen, 2020.
[55] Y. Liang, S. Liu, and H. Hu, “Detecting logical bugs of DBMS

with Coverage-based guidance,” in Proceedings of USENIX Security
Symposium (USENIX Security), 2022, pp. 4309–4326.

[56] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “SQUIR-
REL: Testing database management systems with language validity and
coverage feedback,” in Proceedings of ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 58–71.

https://www.mysql.com
https://mariadb.org/
https://www.sqlite.org/index.html
https://www.mysql.com
https://db-engines.com/en/ranking
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://github.com/topics/database
https://jira.mariadb.org/browse/MDEV-27885
https://jira.mariadb.org/browse/MDEV-27885
https://github.com/sqlancer/sqlancer
https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html.
https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html.
https://github.com/anse1/sqlsmith
https://dev.mysql.com/doc/refman/5.7/en/type-conversion.html
https://dev.mysql.com/doc/refman/5.7/en/type-conversion.html
https://neo4j.com/
https://azure.microsoft.com/en-us/products/cosmos-db/
https://azure.microsoft.com/en-us/products/cosmos-db/
https://www.tigergraph.com/
https://redis.io/
https://aws.amazon.com/cn/dynamodb/
https://hazelcast.com/
https://www.mongodb.com/
https://couchdb.apache.org/
https://cloud.google.com/datastore
https://github.com/pingcap/go-randgen

[57] M. Wang, Z. Wu, X. Xu, J. Liang, C. Zhou, H. Zhang, and Y. Jiang,
“Industry practice of Coverage-guided enterprise-level DBMS fuzzing,”
in Proceedings of IEEE/ACM International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP), 2021, pp.
328–337.

[58] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), 2011, pp.
283–294.

[59] “Alloy,” https://alloytools.org/, 2022.
[60] W. Dou, Z. Cui, Q. Dai, J. Song, D. Wang, Y. Gao, W. Wang, J. Wei,

L. Chen, H. Wang, H. Zhong, and T. Huang, “Detecting isolation bugs
via transaction oracle construction,” in Proceedings of International
Conference on Software Engineering (ICSE), 2023.

https://alloytools.org/

	Introduction
	Preliminaries
	Database Management Systems and SQL
	Target DBMSs
	Query Execution Strategy

	Approach
	DQE Overview
	Database Generation
	Query Triple Generation
	Obtaining Execution Results
	Obtaining the errors raised by a query
	Obtaining the accessed rows by a SELECT query (Qsel)
	Obtaining the accessed rows by an UPDATE query (Qup)
	Obtaining the accessed rows by a DELETE query (Qdel)

	Comparing Execution Results
	MySQL, MariaDB and TiDB
	CockroachDB and SQLite

	Evaluation
	Experimental Methodology
	Overall Detection Results
	Comparing with Existing Approaches
	Other Experimental Statistics
	Selected Bugs
	Not A Bug

	Discussion
	Related Work
	Conclusion
	References

