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Abstract—As a special kind of graph database systems, RDF
stores have been widely used in many applications, e.g., knowl-
edge graphs and semantic web. RDF stores utilize SPARQL as
their standardized query language to store and retrieve RDF
graphs. Incorrect implementations of RDF stores can introduce
logic bugs that cause RDF stores to return incorrect query results.
These logic bugs can lead to severe consequences and are likely
to go unnoticed by developers. However, no available tools can
detect logic bugs in RDF stores.

In this paper, we propose RD2, a Randomized Differential
testing approach of RDF stores, to reveal discrepancies among
RDF stores, which indicate potential logic bugs in RDF stores.
The core idea of RD2 is to build an equivalent RDF graph for
multiple RDF stores, and verify whether they can return the
same query result for a given SPARQL query. Guided by the
SPARQL syntax and the generated RDF graph, we automatically
generate syntactically valid SPARQL queries, which can return
non-empty query results with high probability. We further unify
the formats of SPARQL query results from different RDF stores
and find discrepancies among them. We evaluate RD2 on three
popular and widely-used RDF stores. In total, we have detected
5 logic bugs in them. A video demonstration of RD2 is available
at https://youtu.be/da7XlsdbRR4.

Index Terms—RDF store, differential testing, SPARQL

I. INTRODUCTION

The Resource Description Framework (RDF) [1] graph
model has been regarded as a W3C standard for exchanging
graph data. We refer to the graph database systems (GDBs)
that are built on the RDF graph model as RDF stores [2]. The
representative RDF stores include MarkLogic [3], Apache Jena
[4], GraphDB [5], RDF4j [6], etc. They utilize SPARQL [7]
as their standardized query language, and play a significant
role in knowledge graphs [8], [9] and semantic web [10].

Similar to other GDBs that are built on the labeled
property graph model [11]–[13] and relational database sys-
tems (RDBMSs) [14]–[18], incorrect implementations of RDF
stores can introduce logic bugs that result in an incorrect query
result for a given SPARQL query, e.g., omitting a record.
Fig. 1 illustrates a real-world logic bug found in MarkLogic.
In this example, we first write an RDF triple (Line 2) into
MarkLogic, and then retrieve it by a FILTER expression
80596426678 ∗ 1719307142, which should be evaluated into
true (Line 5−7). We expect the RDF triple can be returned
(Line 9). However, MarkLogic mistakenly returns an empty
result (Line 8) because the expression is evaluated into false
due to decimal overflow. But, Apache Jena and RDF4j can
correctly return the RDF triple.

1 <!-- RDF graph data -->
2 <http://JohnSmith> <http://ages> 12.
3
4 <!-- SPARQL query -->
5 SELECT *
6 WHERE{ ?s ?p ?o .
7 FILTER ( 80596426678*1719307142 )}
8 -- {} ✘
9 -- {<http://JohnSmith> <http://ages> 12} ✔

Fig. 1. A logic bug in MarkLogic [3].

Logic bugs in RDF stores can easily go unnoticed by
developers. Existing GDB testing approaches, e.g., Grand
[11], GDsmith [12] and GDBMeter [13], detect logic bugs
in Gremlin-based or Cypher-based GDBs, which adopt the
labeled property graph model. Existing RDBMS testing ap-
proaches [14]–[20] detect bugs in RDBMSs. However, RDF
stores adopt totally different graph models and query syntaxes.
Existing approaches cannot be directly applied on RDF stores.

In this paper, we propose a randomized differential testing
technique RD2, to reveal discrepancies among RDF stores.
These discrepancies usually indicate logic bugs in RDF stores.
We first randomly build an equivalent RDF graph for multiple
RDF stores and write it into multiple target RDF stores. We
then generate random SPARQL queries. Finally, we compare
the query results returned by these RDF stores to check
whether discrepancies exist. To effectively reveal discrepan-
cies among RDF stores, we address two specific challenges.
(1) Randomly generated SPARQL queries can return empty
query results with high possibility. This can make differential
testing inefficient. To address this challenge, we combine the
SPARQL syntax and the generated RDF graph to construct
syntactically correct and valid SPARQL queries that can return
non-empty query results with high possibility. (2) Different
RDF stores usually have their own storage and query result
formats, which makes the comparison of query results chal-
lenging. To address this challenge, we develop a data mapping
approach to unify the formats of SPARQL query results in
different RDF stores.

To evaluate the effectiveness of RD2, we apply it on the
latest versions of three popular and widely-used RDF stores,
i.e., MarkLogic [3], Apache Jena [4], and RDF4j [6]. In total,
RD2 has detected 5 logic bugs in them. We have made RD2

publicly available at https://github.com/tcse-iscas/RD2.

https://youtu.be/da7XlsdbRR4
https://github.com/tcse-iscas/RD2
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Fig. 2. An RDF graph.

1 PREFIX foaf:<http://xmlns.com/foaf/0.1>
2 SELECT ?givenName ?age
3 WHERE {
4 ?person foaf:name ?name .
5 ?person foaf:age ?age .
6 ?name foaf:givenname ?givenName .
7 FILTER (!(?age = 20))
8 }
9 ORDER BY ?givenName

Fig. 3. A SPARQL query on the RDF graph in Fig. 2.

II. PRELIMINARIES

RDF triples. An RDF [1] triple can be denoted as <
subject, predicate, object >. Specifically, subject is an In-
ternationalized Resource Identifier (IRI) or a blank node,
predicate is an IRI, and object is an IRI, a literal or a blank
node. A literal is a value with a certain data type, e.g., String.
A blank node is a node without an IRI.

A set of RDF triples corresponds to an RDF graph.
Fig. 2 shows an RDF graph with ten RDF triples. In
Fig. 2, an ellipse represents an IRI or a blank node in
subject or object, a rectangle represents a literal, and a
directed edge represents an IRI in predicate. For exam-
ple, we can use <<http://John>, foaf:age, 20> to
describe a person with name John is 20 years old. We
can use a blank node to connect the IRI of Peter Green
(i.e., <http://PeterGreen>) and his given name (i.e.,
Peter) and family name (i.e., Green).

SPARQL queries. SPARQL [7] is a standardized query
language for RDF stores. Fig. 3 shows a SPARQL query on the
RDF graph in Fig. 2, which retrieves the given names and ages
of persons whose age is not 20. A SPARQL query generally
consists of four components, i.e., a prologue, a SELECT
clause, a WHERE clause and an optional solution modifier.
Specifically, the prologue declares prefix names, e.g., declar-
ing a prefix name <http://xmlns.com/foaf/0.1> as
foaf (Line 1). The SELECT clause specifies the variables to
return (Line 2). The WHERE clause specifies the graph pattern
to be queried with triple patterns, FILTER, etc. A triple pattern
is similar to an RDF triple except that the subject, predicate
and object may be a variable. In Fig. 3, the WHERE clause
contains three triple patterns and a FILTER expression (Line
3-8). For example, <?person, foaf:name, ?name>
(Line 4) matches the RDF triples with predicate foaf:name,
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Fig. 4. The overview of RD2.

and binds the values of subjects and objects in RDF triples to
?person and ?name. The FILTER expression filters persons
whose age is not 20. The solution modifier processes the query
results by sorting, limiting the number of returned results, etc,
e.g., ORDER BY sorts results by ?givenName (Line 9).

III. RD2

Fig. 4 shows the overview of RD2. RD2 first randomly
generates an RDF graph and writes it into multiple target
RDF stores (Section III-A). Then, RD2 randomly generates
SPARQL queries (Section III-B). Finally, RD2 runs a SPARQL
query on multiple target RDF stores, gets the query result
(Res for short in Fig. 4) of each target RDF store, and reveals
discrepancies among these query results (Section III-C).

A. RDF Graph Generation

An RDF graph consists of a prefix declaration and a set
of RDF triples. The prefix declaration is used to simplify
IRIs in each RDF triple, and we generate it by randomly
generating a prefix name and its corresponding IRI. Here,
the IRI is retrieved from the Python library Faker [21]. An
RDF triple consists of a subject (i.e., an IRI or a blank
node), a predicate (i.e., an IRI), and an object (i.e., an IRI,
a literal, or a blank node). To generate an RDF triple, we
first randomly generate a set of IRIs and literals, and then
randomly select corresponding data for subject, predicate,
and object, respectively. Specifically, we generate IRIs with
the Python library Faker [21]. To generate literals, we first
randomly choose a data type (e.g., String), and then generate
a random value for this data type. After that, we construct an
RDF triple by randomly selecting a generated IRI or a blank
node for subject, randomly selecting an IRI for predicate,
and randomly selecting an IRI, a literal or a blank node for
object. Finally, we write the generated RDF graph into target
RDF stores.

For example, in Fig. 2, we first generate a pre-
fix name foaf for <http://xmlns.com/foaf/0.1>.
Then, we generate RDF data to construct ten RDF
triples. For the first RDF triple, we select an IRI
<http://John>, an IRI foaf:age, and a literal 20
from the previously generated data to construct an RDF
triple <<http://John>, foaf:age, 20>. For the sec-
ond RDF triple, we select an IRI <http://PeterGreen>,
an IRI foaf:name and a blank node to construct an RDF
triple <<http://PeterGreen>, foaf:name, [ ]>.



B. SPARQL Query Generation

To generate syntactically correct and valid SPARQL queries,
we build Abstract Syntax Trees (ASTs) to generate SPARQL
queries, and choose values for parameters in a SPARQL query
from the generated RDF graph to increase the probability of
returning non-empty query results.

Generating SPARQL queries. We randomly build a
SPARQL query’s Abstract Syntax Tree (AST) based on the
SPARQL syntax. A SPARQL query consists of a prologue, a
SELECT clause, a WHERE clause, and an optional solution
modifier. The prologue is used to simplify IRIs in each RDF
triple, and we generate it with “PREFIX”, a prefix name and
its corresponding IRI generated in Section III-A (e.g., Line 1
in Fig. 3). Then we generate the WHERE clause with triple
patterns (e.g., Line 4−6 in Fig. 3) and FILTER expressions
(e.g., Line 7 in Fig. 3). To generate a triple pattern, we first
randomly generate a set of variables, and then randomly select
variables to bind to subject, predicate or object, respectively.
We generate a FILTER expression by building an expression
tree, which will be explained in the next paragraph. After that,
we generate the SELECT clause by randomly selecting several
variables (e.g., ?givenName and ?age in Line 2 of Fig. 3)
existing in the triple patterns of WHERE clause. Finally, we
optionally generate a solution modifier with ORDER BY and a
variable randomly selected from the triple patterns of WHERE
clause (e.g., Line 9 in Fig. 3).

For the FILTER expression in a WHERE clause, we ran-
domly generate it by building an expression tree with a
specified maximum depth. The data types of the expression’s
returning value can be Boolean, String or Numeric. Therefore,
we randomly select one of these data types for the root node
of the expression tree, and then recursively generate the nodes
of the expression tree until the maximum depth is reached.
Specially, each generated node must satisfy its required data
type. To generate a node, we randomly select an operator or
a value that matches its given data type. Leaf nodes can be
randomly generated as constants or variables that appear in
the query. For the expression !(?age = 20) in Fig. 3, we first
randomly choose an operator !, and then randomly create an
operator = as its operand. To create the operator =, we first
select a data type (e.g., Integer), and then generate a variable
?age and an Integer value 20 as its operands.

Generating parameter values. Without any guidance, the
IRIs and literals in a SPARQL query can be generated ran-
domly. This can cause almost all generated SPARQL queries
to return empty results. To tackle this problem, we select
IRIs or literals from the generated RDF graphs. Specifically,
for the IRI in a triple, we randomly select an IRI from the
existing IRIs in the RDF graph. For the constants in a FILTER
expression, we randomly select an existing value from the
RDF graph, or randomly generate a constant value.

C. Differentially Testing RDF Stores

We adopt differential testing to find discrepancies among
multiple target RDF stores. We write the same RDF graph
into multiple target RDF stores, and then execute the same

SPARQL queries on them. We compare the query results re-
turned by different RDF stores, and find discrepancies among
them. The query results can be a list of IRIs, literals or
blank node IDs. However, different RDF stores adopt different
strategies for generating blank node IDs. Thus, we need to
handle this special situation when comparing query results.

Unifying formats of blank node IDs. Since the formats
of blank node IDs are different in multiple RDF stores, we
need to convert the blank node IDs returned by multiple RDF
stores into a unified format. To achieve it, we generate a unique
ID bNodeID for each blank node when generating RDF graph
data. After writing a blank node to an RDF store, we extract its
actual ID actualID in the RDF store. Then we build a mapping
table to record the mapping relationship between bNodeID and
actualID in all target RDF stores. After obtaining the query re-
sults, we convert different formats of blank node IDs returned
by multiple target RDF stores into IDs in a unified format
through this mapping table. For example, the same blank node
has different actualIDs :bnode7293854958399345579 and b0
in MarkLogic and Apache Jena, respectively. We map them
into the same bNodeId 1.

IV. IMPLEMENTATION AND USAGE

We implement RD2 with around 2,300 lines of Java codes.
RD2 first establishes connections to target RDF stores. For
MarkLogic, RD2 uses MarkLogic APIs to connect the remote
MarkLogic Server. For Apache Jena and RDF4j, RD2 uses
Model and Repository APIs to create and visit a local graph
database, respectively. Then, RD2 invokes corresponding APIs
provided by each target RDF store to write the generated
RDF graph data into target RDF stores, executes the generated
SPARQL queries and obtains their returned results.

RD2 is implemented as a command line tool. After installing
target RDF stores, two main steps are needed for running RD2.

1) Run RD2. We can execute the command “java -jar
RD2.jar --dbname --host --port --username --
password --db-num --query-num” to run RD2.

• --dbname: The RDF graph database name to test.
• --host: The IP address.
• --port: The port.
• --username: The username to login.
• --password: The password to login.
• --db-num: The number of testing round.
• --query-num: The number of queries in each

testing round.

Note that only MarkLogic needs the first five param-
eters, since Apache Jena and RDF4j use local graph
databases. For example, to test MarkLogic with built-in
Apache Jena and RDF4j, we can execute the command
“java -jar RD2.jar --dbname tmpRDFGraph --host
127.0.0.1 --port 8000 --username root --password
123 --db-num 10 --query-num 100”. Then, RD2 will
execute queries on the three RDF stores and report
discrepancies among them.



TABLE I
TARGET RDF STORES

RDF Store DB-Engines
Ranking

GitHub
Stars

Initial
Release

MarkLogic 1 - 2001
Apache Jena 3 890 2000

RDF4j 9 308 2000

2) Check reports. A discrepancy report contains the RDF
graph, the executed SPARQL queries, and their query
results returned by each target RDF store.

V. EVALUATION

A. Methodology

Target RDF stores. We evaluate RD2 on three widely-used
RDF stores, i.e., MarkLogic [3], Apache Jena [4] and RDF4j
[6]. Table I shows their DB-Engines ranking of RDF stores
[22], GitHub stars and initial releases. We can see that, our
experimental subjects are popular and widely-used RDF stores.
Among these RDF stores, two of them (i.e., Apache Jena and
RDF4j) only support the RDF graph model, while MarkLogic
supports multiple models, e.g., RDF and document. We test
their latest versions when we started this work, i.e., MarkLogic
10, Apache Jena 3.3.0, and RDF4j 3.6.0.

Testing methodology. We run RD2 on these three RDF
stores for 10 testing rounds. In each testing round, we first ran-
domly generate an RDF graph database with 50 RDF triples,
and then randomly generate 1000 SPARQL queries. For each
query, we execute it on the three target RDF stores, and verify
whether their query results are the same. Any discrepancy
can be reported by RD2. For the reported discrepancies, we
manually simplify and analyze them to figure out which RDF
store performs unexpectedly and whether it can be identified as
a potential bug. After filtering out duplicated bugs, we submit
a bug report for each bug to the corresponding community on
GitHub or Stack Overflow.

B. Detection Results

RD2 takes about 94.5 seconds to run each testing round. In
each testing round, 30% of SPARQL queries return non-empty
results on average. For 10 testing rounds, RD2 reports 445
discrepancies in total. After filtering out duplicated discrep-
ancies, we finally find 6 discrepancies among the three RDF
stores. After analyzing these discrepancies, we identify 5 logic
bugs from 5 discrepancies, and the remaining one discrepancy
is caused by different SPARQL versions that these RDF
stores support. We have submitted these bugs to corresponding
developers. At the time of writing this paper, 2 bugs have been
confirmed, and the remaining 3 bugs have been considered as
intended behaviors due to different implementations of RDF
stores. The root causes of these bugs mainly relate to automatic
type conversion, numeric representation, and handling the
same values with different data types.

MarkLogic. We find four logic bugs in MarkLogic. In
the first bug, MarkLogic cannot convert a value with Integer
type to Double type automatically, which leads to decimal

overflow in FILTER expressions. In the second bug, Mark-
Logic omits equal values with different data types. In the
third bug, MarkLogic treats the same value with different
data types as equivalent, which does not follow the RDF
specification. In the fourth bug, MarkLogic returns literals
with different numeric representative format from the other
two RDF stores. For example, MarkLogic returns 1589301716
while Apache Jena and RDF4j return 1.589301716E9 for the
same literal. MarkLogic developers explain that the scientific
notation appears to be lost for Double in JSON.

RDF4j. We find one logic bug in RDF4j. RDF4j cannot
automatically perform type conversion between Integer and
its derived types, e.g., Int and Long. This prevents users from
retrieving data with derived types of Integer using the equal
values with Integer type. RDF4j developers have prepared a
feature proposal to fix this bug.

VI. RELATED WORK

Testing of graph database systems (GDBs). Some ap-
proaches [11]–[13], [23] are proposed to test GDBs. Grand
[11] and GDsmith [12] apply differential testing [24] to
detect logic bugs in Gremlin-based and Cypher-based GDBs,
respectively. GDBMeter [13] adopts metamorphic testing by
partitioning a given query into three derived sub-queries to
test GDBs. However, all of these works cannot detect bugs in
RDF stores due to different graph models and query syntaxes.

Testing of relational database systems (RDBMSs). Many
approaches [14]–[20], [25]–[33] are proposed to find bugs in
RDBMSs that use SQL as a standardized query language.
RAGS [14], APOLLO [31] and TAQO [32] utilize differential
testing for detecting bugs in RDBMSs. SQLsmith [33] is used
to detect bugs causing exceptions or crashes in RDBMSs. TLP
[15], NoREC [16], PQS [17] and DQE [18] develop various
test oracles to detect logic bugs and optimization bugs, and
have found many bugs in popular RDBMSs. DT2 [19] and
Troc [20] detect transaction bugs in RDBMSs. However, these
tools cannot be directly applied to test RDF stores because
SPARQL has different data models and query syntaxes from
SQL.

VII. CONCLUSION

We present RD2, an automated testing technique for reveal-
ing discrepancies among RDF stores and detecting logic bugs
in RDF stores. RD2 randomly generates an equivalent RDF
graph for multiple RDF stores, and checks whether these RDF
stores can return the same query result for a given SPARQL
query. Our experiment shows that RD2 has detected 5 logic
bugs in three widely-used RDF stores, and 2 bugs have been
confirmed by developers.

ACKNOWLEDGMENTS

This work was partially supported by National Natural
Science Foundation of China (62072444), Frontier Science
Project of Chinese Academy of Sciences (QYZDJ-SSW-
JSC036), and Youth Innovation Promotion Association at
Chinese Academy of Sciences.



REFERENCES

[1] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga, and P. Kalnis,
“Query optimizations over decentralized RDF graphs,” in Proceedings
of International Conference on Data Engineering (ICDE), 2017, pp.
139–142.

[2] W. Ali, M. Saleem, B. Yao, A. Hogan, and A. N. Ngomo, “A survey of
RDF stores & SPARQL engines for querying knowledge graphs,” The
VLDB Journal, vol. 31, no. 3, pp. 1–26, 2022.

[3] “MarkLogic,” https://www.marklogic.com/, 2022.
[4] “Apache Jena,” https://jena.apache.org/, 2022.
[5] “GraphDB,” https://www.ontotext.com/, 2022.
[6] “RDF4j,” https://rdf4j.org/, 2022.
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