
Detecting Isolation Bugs via Transaction Oracle
Construction

Wensheng Dou∗†‡§, Ziyu Cui∗†, Qianwang Dai∗†, Jiansen Song∗†, Dong Wang∗†, Yu Gao∗†, Wei Wang∗†‡§

Jun Wei∗†‡§, Lei Chen¶, Hanmo Wang¶, Hua Zhong∗†, Tao Huang∗†
∗State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

†University of Chinese Academy of Sciences
‡University of Chinese Academy of Sciences Nanjing College

§Nanjing Institute of Software Technology
¶Inspur Software Group Co., Ltd.

∗{wsdou, cuiziyu20, daiqianwang19, songjiansen20, wangdong18, gaoyu15, wangwei, wj, zhonghua, tao}@otcaix.iscas.ac.cn
¶{chen.leilc, wanghanmo}@inspur.com

Abstract—Transactions are used to maintain the data integrity
of databases, and have become an indispensable feature in mod-
ern Database Management Systems (DBMSs). Despite extensive
efforts in testing DBMSs and verifying transaction processing
mechanisms, isolation bugs still exist in widely-used DBMSs when
these DBMSs violate their claimed transaction isolation levels.
Isolation bugs can cause severe consequences, e.g., incorrect
query results and database states.

In this paper, we propose a novel transaction testing approach,
Transaction oracle construction (Troc), to automatically detect
isolation bugs in DBMSs. The core idea of Troc is to decouple
a transaction into independent statements, and execute them
on their own database views, which are constructed under
the guidance of the claimed transaction isolation level. Any
divergence between the actual transaction execution and the
independent statement execution indicates an isolation bug. We
implement and evaluate Troc on three widely-used DBMSs, i.e.,
MySQL, MariaDB, and TiDB. We have detected 5 previously-
unknown isolation bugs in the latest versions of these DBMSs.

Index Terms—Database system, transaction, isolation, oracle

I. INTRODUCTION

Database Management Systems (DBMSs), e.g., MySQL [1],
MariaDB [2], PostgreSQL [3], TiDB [4], and CockroachDB
[5], are widely used in many applications for efficiently storing
and retrieving data with Structured Query Language (SQL)
[6]. DBMSs treat the integrity of data as one of the most
important promises, and utilize transactions to maintain the
data integrity [7], [8]. In DBMSs, a transaction is a logical
unit of work that consists of one or more database operations,
i.e., SQL statements. DBMSs should ensure that all operations
in a transaction are executed as a whole.

To ensure consistency of DBMSs, transactions should be
executed in isolation from each other. Intermediate results
from simultaneously executed transactions should not be
visible to each other. However, stronger isolation among
transactions can degrade DBMSs’ performance more. There-
fore, DBMSs usually provide multiple isolation levels, e.g.,
Read Uncommitted, Read Committed, Repeatable
Read, and Serializable [9]–[11].

Wensheng Dou and Lei Chen are the corresponding authors.

To efficiently support different transaction isolation levels,
DBMSs adopt many complex transaction processing mecha-
nisms, e.g., lock-based concurrency control [12], [13], Multi-
Version Concurrency Control (MVCC) [14]–[17], and Opti-
mistic Concurrency Control (OCC) [18], [19]. Design flaws
or buggy implementations of these mechanisms can violate
their claimed isolation levels [20], i.e., causing isolation bugs.
These bugs can lead to weaker isolation levels than claimed,
and result in incorrect query results and database states.

To verify whether a DBMS actually provides the isolation
guarantee as it claims, existing approaches [21]–[23] care-
fully design specific transactions against the DBMS, record a
history of how these transactions are completed, and analyze
the history to identify isolation bugs. These approaches, e.g.,
Cobra [22] and Elle [23], usually adopt a simple key-value
data model, and read and write one row indexed by a key
with read(key) and write(key), respectively. Specially, the
value in Elle’s data model [23] should be accumulative,
e.g., AppendList. However, modern DBMSs, e.g., MySQL
and TiDB, usually adopt a much more complex relational
data model. They support many complex data structures (e.g.,
various data types, primary keys, and indexes), and access data
with complex interface (e.g., reading / writing multiple rows
through SQL). This introduces unique challenges to ensure
the correctness of transaction processing mechanisms. Existing
verification approaches cannot be generalized to verify trans-
actions that utilize these features.

Automatic database testing approaches [24]–[28] can sup-
port these complex features in modern DBMSs, and have been
proved as an effective technique to detect bugs in DBMSs. A
key challenge for automatic database testing is to construct
an effective test oracle, which can detect whether a DBMS
behaves correctly. Existing approaches can construct some
test oracles for single queries (i.e., SELECT statements). For
example, SQLancer constructs the query partitioning oracle
[27] and the containment oracle [26] for a single query.
However, these testing approaches do not involve transactions,
and cannot construct a test oracle for concurrent transactions
at a certain isolation level, thus failing to detect isolation bugs.

c1 c2

10 0

10 20

10 20

c1 c2

null 0

1 0

null 0

tx1 tx2

s12: update t set c1=10; s22: update t set c2=20 where c1;

s11: begin;

s13: commit;

s21: begin;

s23: commit;

Expected resultActual resultInitial table

❶
❷

❸

❹

❺

④

①
②

③

⑤
⑥

c1 c2

10 20

10 20

10 20

Fig. 1. An illustrative example that triggers a serious isolation bug in
MySQL [29]. tx1 and tx2 are executed at Read Committed isolation
level under the pessimistic transaction model. Black solid arrows show the
submitted order, and red dotted arrows show the execution order.

We use a real-world isolation bug to explain why existing
approaches cannot effectively detect isolation bugs in modern
DBMSs. Fig. 1 shows a test case that triggers a serious
isolation bug that we found in widely-used MySQL. This bug
occurs at Read Committed isolation level under the pes-
simistic transaction model. In this test case, two transactions,
i.e., tx1 and tx2, act on the initial table (the left table in Fig. 1).
tx1 updates column c1 with value 10, and tx2 updates column
c2 with value 20 where c1 is not NULL. The statements in tx1
and tx2 are submitted to MySQL in the order of black solid
arrows, i.e., s11 → s12 → s21 → s22 → s13 → s23. Because
s22 in tx2 tries to update the same rows as s12 in tx1, s22
will be blocked by MySQL. After tx1 commits (s13), s22 in
tx2 will be resumed. The red dotted arrows show the actual
execution order, i.e., s11 → s12 → s21 → s22(blocked) →
s13 → s22(resumed) → s23. After tx1 and tx2 complete,
the expected database state is shown in the right table, in
which all data in column c1 are 10, and all data in column
c2 are 20. However, the actual execution obtains an incorrect
database state shown in the middle table, in which column c2
in the first row (with value 0) is not changed as expected. We
reported this bug to MySQL developers, and they classified it
as serious. However, MySQL developers have not figured
out why this bug occurs yet.

Revealing the above isolation bug is challenging. We lack
a transaction oracle to judge whether the result of the ac-
tual transaction execution is correct. Existing approaches are
ineffective in detecting this bug. Automatic database testing
approaches like SQLancer [26]–[28] detect logic bugs for
single queries (i.e., SELECT statements) without considering
concurrent transactions, and cannot be applied on other state-
ments, e.g., UPDATE statements in s12 and s22. Transaction
verification approaches, e.g., Cobra [22] and Elle [23], use
read / write operation histories based on a key-value data
model, and cannot handle this table structure (without a key)
and multiple rows accessed in one SQL statement (e.g., s12).

To effectively detect isolation bugs in modern DBMSs,
we propose a novel and general transaction testing approach,

Transaction oracle construction (Troc). The core idea is to
solve the oracle problem of a pair of concurrent transactions by
decoupling them into a series of independent statements, each
of which can be executed on its own database view without
its original transaction context. Specially, for each statement
stmt in a given submitted order of two transactions tx1 and
tx2, we first automatically construct stmt’s own database
view under the guidance of the given isolation level. Based
on stmt’s own database view, we analyze whether tx1 and
tx2 conflict on stmt, and further infer its expected execution
result. Finally, we compare the actual transaction execution
results with these constructed independent statement execu-
tion results, and report an isolation bug if they diverge. By
decoupling concurrent transactions into a series of independent
statements and executing these statements independently, we
can avoid performing DBMSs’ complex transaction processing
mechanisms in our oracle construction. Therefore, Troc can
reveal bugs introduced in them.

To demonstrate the effectiveness of Troc, we implement it
for three widely-used production-level DBMSs, i.e., MySQL
[1], MariaDB [2] and TiDB [4], and test all their isolation
levels under the pessimistic transaction model. In total, we
have detected 12 bugs, in which, 10 bugs are isolation bugs and
the remaining 2 bugs are transaction-related. We have reported
these bugs to developers, and 7 bugs (5 isolation bugs and
2 transaction bugs) have been confirmed as new bugs, and
the remaining 5 isolation bugs are classified as duplicate. One
newly detected isolation bug has been fixed by developers. For
these 7 newly detected bugs, 4 bugs leave the database into an
incorrect state, and 3 bugs cause incorrect query results. We
have made Troc publicly available at https://github.com/tcse-
iscas/Troc.

In summary, we make the following contributions.
• We propose an oracle construction approach for testing a

pair of concurrent transactions in DBMSs.
• We propose Troc, a novel and general transaction testing

technique for detecting isolation bugs in DBMSs.
• We implement Troc and apply it on three widely-used

DBMSs, i.e., MySQL, MariaDB and TiDB. Our evalua-
tion has revealed 5 previously-unknown isolation bugs.

II. PRELIMINARIES

SQL and transaction. We primarily target DBMSs based
on the relational data model [30], i.e., relational DBMSs. Most
widely-used DBMSs like Oracle, MySQL, PostgreSQL and
TiDB are this type of DBMSs. Users usually interact with
relational DBMSs through Structured Query Language (SQL)
[6]. In relational DBMSs, a transaction is a logical unit of
work that is executed as a whole. A transaction starts with a
BEGIN statement, contains a list of SQL statements, and ends
with a COMMIT or ROLLBACK statement.

Target DBMSs. We focus on three widely-used production-
level DBMSs, i.e., MySQL, MariaDB, and TiDB. According
to DB-Engines Ranking [31] and GitHub stars [32] in Table I,
they are ones of the most widely-used and popular DBMSs.
All these DBMSs have been maintained for a long time. Note

https://github.com/tcse-iscas/Troc
https://github.com/tcse-iscas/Troc

TABLE I
TARGET DBMSS IN OUR STUDY

DBMS DB-
Engines

GitHub
stars Release Isolation levels

MySQL 2 8.7K 1995 RU, RC, RR, SER
MariaDB 13 4.7K 2009 RU, RC, RR, SER
TiDB 108 33.3K 2017 RC, RR

that, MySQL and MariaDB are traditional relational DBMSs,
while TiDB is an open-source NewSQL distributed DBMS.

MySQL and MariaDB adopt the pessimistic transaction
model, in which, if a SQL statement in transaction tx1
conflicts with another transaction tx2, tx1 will be blocked and
continue its execution after tx2 has completed, i.e., rolled back
or committed. TiDB supports both pessimistic and optimistic
transaction models and adopts the pessimistic transaction
model by default. In TiDB’s optimistic transaction model,
transaction tx1 can be aborted (decided by some strategies)
if tx1 conflicts with another transaction tx2. In our work, we
mainly explain Troc under the pessimistic transaction model,
which is implemented by all the three target DBMSs.

Transaction isolation levels. DBMSs usually provide mul-
tiple isolation levels to make a tradeoff between consistency
and performance. The stronger an isolation level is, the more
likely concurrent transactions are sequentially executed. There
are more than 10 isolation levels in existing works [9]–[11],
[33]–[37]. Here, we mainly explain the isolation levels under
the pessimistic transaction model in our target DBMSs.

As shown in Table I, these DBMSs support different isola-
tion levels under the pessimistic transaction model. MySQL
and MariaDB support four isolation levels [38], [39], i.e.,
Read Uncommitted, Read Committed, Repeatable
Read, and Serializable. TiDB supports two isolation
levels, i.e., Read Committed and Repeatable Read
[40]. In our work, we mainly explain Troc at the above four
isolation levels. We simply explain them as follows.

• Read Uncommitted (RU). RU in MySQL and Mari-
aDB prevents the data modified by an uncommitted trans-
action from being overwritten by another transaction (i.e.,
dirty writes), and allows transaction tx1 to see transaction
tx2’s modifications no matter tx2 is committed or not.

• Read Committed (RC). RC in MySQL, MariaDB
and TiDB requires that transaction tx1 can see transaction
tx2’s modifications if tx2 has been committed, and all
modifications of tx2 are visible to tx1.

• Repeatable Read (RR). RR in MySQL, MariaDB
and TiDB requires the rows read by transaction tx1 to be
from the same snapshot for transaction tx1, i.e., snapshot
read. RR further requires that tx1 can read its own writes,
and tx1’s writes can see the committed rows by another
transaction.

• Serializable (SER). SER in MySQL and Mari-
aDB is the strongest isolation level that DBMSs aim to
achieve, and requires that the execution of tx1 and tx2
is equivalent to the execution in their certain serial order.

Algorithm 1: Transaction test protocol under the pes-
simistic transaction model
Input: tx1, tx2, subOrder

1 for i← 1; i ≤ subOrder.length; i++ do
2 stmt← subOrder[i]
3 curTx← stmt.transaction
4 otherTx← curTx = tx1 ? tx2 : tx1
5 if curTx.blocked then
6 curTx.blockedStmts.add(stmt)
7 continue
8 execState← curTx.submit(stmt)

9 if execState.reportDeadlock() then
10 curTx.blocked← True
11 break
12 if execState.blocked then
13 curTx.blocked← True

14 if stmt.type = COMMIT | ROLLBACK then
15 otherTx.blocked← False
16 while otherTx.blockedStmts ̸= ∅ do
17 s←

otherTx.blockedStmts.removeF irst()
18 execState← otherTx.submit(s)

19 if !curTx.blocked ∧ !otherTx.blocked then
20 return database.state

III. APPROACH

We propose Transaction oracle construction (Troc), to au-
tomatically detect isolation bugs in DBMSs under the pes-
simistic transaction model. In the following, we first explain
the transaction test protocol in Troc (Section III-A), and then
explain how Troc works (Section III-B-III-F).

A. Transaction Test Protocol

For a group of transactions {tx1, tx2, tx3, ..., txn} under
the pessimistic transaction model, we can simultaneously
submit them to a target DBMS. However, it is challenging
to infer their expected execution results due to the following
reasons. First, for two simultaneously submitted SQL state-
ments from two transactions, which statement is scheduled
first by the DBMS is nondeterministic. Second, if more than
one transaction, e.g., tx1 and tx2, are blocked by the same
transaction tx, after tx completes, which transaction (tx1 or
tx2) is resumed and scheduled next is nondeterministic.

To address the above challenges, we focus on a relatively
simple transaction test scenario. First, a transaction test case
involves a pair of transactions, i.e., tx1 and tx2. Second, we
submit the SQL statements in tx1 and tx2 to the target DBMS
one by one, by following a certain submitted order. Under the
pessimistic transaction model, if the submitted order of each
statement in tx1 and tx2 are determined, we can only obtain
one deterministic execution order on the target DBMS, since
we can certainly know which statement is scheduled next.

Execute

tx1: s11, s12

tx2: s21, s22

Oracle

analysis

Actual result

Blocked: False

Query result: 1, 2

Expected result

Bug report

Blocked: True

Query result: 1, 3

≠

④

⑤

⑥ Compare

s22s21s12s11
Construct

view
Update

history

Submitted order

Blocked: False

Query result: 1, 2

s11

s21

Blocked: False

Query result: 1, 2
s11

s21

1

2

3

Transaction pair

tx1: s11, s12

tx2: s21, s22

Table

generation
①

② Transaction

generation

Continue with

① or② or ③…
…

Data history

Order

generation

③

Fig. 2. Troc’s workflow.

Algorithm 1 illustrates our transaction test protocol under
the pessimistic transaction model. In this protocol, we submit
the statements in the submitted order subOrder to the target
DBMS one by one. If a deadlock is reported, we set curTx
as blocked, and stop submitting the following statements
(Line 9-11). If transaction curTx is blocked at a statement
(Line 12-13), since curTx cannot be unblocked before the
other transaction otherTx terminates, we will block curTx’s
remaining statements (Line 5-7) until it is resumed by trans-
action otherTx (Line 14-15). Once curTx is resumed, all its
blocked statements will be executed first (Line 16-18). After
two transactions complete, we can retrieve the final database
state if no deadlock is detected (Line 19-20).

B. Troc Overview

Troc can automatically construct the transaction oracle for
a submitted order of a pair of transactions tx1 and tx2 under
the pessimistic transaction model, and then automatically
detect isolation bugs in DBMSs. Our key insight is that, a
SQL statement stmt in a transaction tx can be executed
independently (i.e., stmt is not executed in tx) on a specific
database view that can be constructed based on tx’s isolation
level, and returns the same result as its execution in tx. For
example, in Fig. 1, the execution results of tx1 and tx2 at
Read Committed should be equivalent to the results of
executing s12 and s22 sequentially on the initial table. If
the actual transaction execution diverges from the constructed
independent statement execution, we detect an isolation bug.

Fig. 2 shows the detailed steps of Troc. First, we create a
random table schema and populate the table with random data
1 . Based on the generated table, we generate two transactions,
each of which consists of a group of SQL statements 2 ,
and then randomly generate a submitted order of the two
transactions as a transaction test case 3 . For the generated
test case, we perform transaction oracle analysis to construct
each SQL statement’s expected execution results 4 . We then
submit the two transactions to the target DBMS in the same
submitted order and record their actual execution results 5 .
If the actual execution results are different from the expected
execution results, we detect an isolation bug in the target

DBMS 6 . For the next iteration, we can randomly continue
with 1 generating a new table, or 2 generating a new pair
of transactions, or 3 generating a new submitted order.

To construct the transaction oracle for a given submitted
order of tx1 and tx2, we need to figure out how each statement
is executed in this order, i.e., whether it is blocked, and
what its execution result is. Specifically, we need to address
three technical challenges. First, without understanding a SQL
statement stmt’s semantics (e.g., obtaining stmt’s semantics
through parsing stmt), how can we construct stmt’s own
database view? Note that, tx1 and tx2 can have different
database views at the same time. For example, tx1 and tx2
can only see their own snapshots at Repeatable Read
isolation level. Second, without modeling DBMSs’ inner lock
behaviors, how can we judge whether a statement stmt should
be blocked? Note that, DBMSs usually adopt complex and
non-standard lock implementations. Third, how can we ob-
tain stmt’s expected execution result without stmt’s original
transaction context?

We propose several novel techniques to address the above
challenges. To address the first challenge, we assign a unique
rowId for each row in the database table (Section III-C).
We further maintain a database change history for each row,
which records all modifications made by SQL statements in
tx1 and tx2 (Section III-E1). For each statement stmt in
transaction tx, we construct stmt’s database view (i.e., what
data it can see) based on the database change history and
tx’s isolation level (Section III-E2). For a SQL statement that
updates / inserts / deletes data, we identify the modified data
on stmt’s database view, and then update the database change
history (Section III-E4). To address the second challenge,
we perform a fine-grained row-based lock analysis based on
stmt’s database view (Section III-E3). Our lock analysis is
(almost) DBMS-agnostic, and can only lock necessary rows
and indexes, which are commonly supported by DBMSs. If
stmt accesses common data accessed by the other transaction,
stmt’s execution is blocked. To address the third challenge,
we execute stmt on its own database view, and obtain its
expected result without stmt’s original transaction context.

Based on the above techniques, Troc can construct oracle

for transactions with complex data structures and SQL in
DBMSs, without manually building a reference model for
SQL statements (e.g., SELECT and UPDATE). Troc treats
database and SQL statement execution as a black box (e.g.,
without understanding SQL statements’ concrete semantics by
interpreting SQL statements), and does not limit data structures
and SQL statements (except JOIN, UNION, sub queries and
cross-table queries that we cannot support) for target DBMSs.

C. Database and SQL Statement Generation

Random database [41]–[46] and SQL statement [24], [25],
[47], [48] generation has been widely explored, and is not
a contribution of this work. Troc can utilize existing database
and SQL statement generation approaches. Troc’s database and
SQL statement generation mainly bases on SQLancer [49].
Here, we explain our database and SQL statement generation
approach only for completeness.

For database generation, we use the CREATE TABLE state-
ment to create a table with at most maxCol (5 by default)
columns. For each column, we randomly assign a column type
and add column constraints, e.g., PRIMARY KEY, NOT NULL
and UNIQUE. We further use the CREATE INDEX statement
with randomly selected columns to add indexes on the table.

To populate random data into the generated database, we
use at most maxInsert INSERT statements to insert at most
maxInsert rows. We observe that isolation bugs can usually
be triggered with a limited number of rows. By default, we
set maxInsert = 10. Note that, the randomness can violate
column constraints, and cause execution failures. For example,
UNIQUE constraint prohibits the same value from appearing
more than once in a column. If we cannot insert any data rows
successfully, we discard the database.

Unique rowId. After database generation, we further add
a column rowId on the generated table. The column type of
rowId is set as INTEGER, and it has a UNIQUE constraint.
After we insert data rows using INSERT statements, we
assign a unique ID in a row if we find its rowId is empty.
Note that, the rowId column is only used in our transaction
oracle construction. We ensure that rowId is not used in the
following SQL statement and transaction generation.

1) SELECT columns FROM table WHERE condition
2) SELECT columns FROM table WHERE condition FOR

SHARE
3) SELECT columns FROM table WHERE condition FOR

UPDATE
4) UPDATE table SET (column = value)s WHERE condition
5) DELETE FROM table WHERE condition
6) INSERT INTO table(columns) VALUES values

Listing 1. SQL statements supported in Troc

For SQL statement generation, Troc generates six types of
SQL statements in Listing 1. Since different DBMSs support
different dialects, Troc randomly generates SQL statements
based on the grammar of respective DBMSs, and constructs
valid SQL statements specific to respective DBMSs. We use
the database schema to generate valid column references if
needed. For constants used in these SQL statements, e.g.,
inserted values, we randomly use one of the following two

strategies. (1) We randomly generate a new value. (2) We
randomly pick up a value from the corresponding column’s
value cache, which stores the generated values for the column.

Note that, we require that all statements in two transactions
act on the same table. For now, Troc can support many
complex data structures and SQL statements, e.g., primary
keys, indexes, various data types, and conditions that are
supported by SQLancer [49]. But, Troc cannot support JOIN,
UNION, sub queries, etc. Multiple tables and JOIN can
introduce complex cases for transaction oracle construction,
we leave them as our future work.

D. Transaction Test Case Generation

Transaction generation. We first randomly generate at
most txSize SQL statements in Listing 1 using the method
illustrated in Section III-C, and add them into a transaction.
We further append a start statement BEGIN, and an ending
statement COMMIT or ROLLBACK, which are randomly cho-
sen. txSize is a configurable parameter that can be used to
make a tradeoff between the transaction complexity and testing
efficiency. In our work, we set txSize = 10 by default.

Submitted order generation. Given a transaction pair tx1
and tx2, we submit the SQL statements in tx1 and tx2 to
DBMSs one by one according to the transaction test protocol
in Algorithm 1. There are N = Ctx1.len

tx1.len+tx2.len possible
submitted orders. For example, if both tx1 and tx2 contain
10 statements, there are C10

20 = 184, 756 possible submitted
orders. To avoid being stuck in testing one transaction pair, we
randomly generate one submitted order each time. The gener-
ation algorithm is simple. Each time, we randomly choose a
transaction from tx1 and tx2, and append one statement from
the chosen transaction into the submitted order.

E. Transaction Oracle Construction

To analyze the execution of a statement stmt in a transac-
tion tx, we need to obtain the database view that tx can see at
statement stmt. We simply call this database view as stmt’s
view. stmt’s view is decided by stmt’s type and tx’s isolation
level that specifies whether other transactions’ modifications
are visible to tx.

Concurrent transactions executing on the same table can
see different database views at the same time. To resolve this
challenge, we first record the database change history, which
stores the modification history of all rows in the database
under test (Section III-E1 and Section III-E4). We further
construct a statement’s database view (Section III-E2) based
on the database change history. Finally, we perform conflict
analysis and obtain the expected execution results based on the
constructed database view (Section III-E3 and Section III-E4).

1) Database Change History: The database change history
records the modification process performed by a transaction
test case. For each row, we store all its versions as a linked
list, and each node in the list represents a version that shows
how the row has been changed. Each version is represented
by a triple < data, tx, deleted >, in which, data contains
the row data in current version, tx records the transaction that

Database change history

rowId c1 c2

1 null 0

2 1 0

3 null 0

rowId c1 c2

1 10 0

2 1 0

3 10 0

(null, 0) init false

(1, 0) init false

(null, 0) init false

(10, 0) tx false

(10, 0) tx false

1

2

3

stmt: update t set c1=10

where c1 is null

Construct stmt’s

update view

Execute stmt

Update

tx

Fig. 3. Construct tx’s view and update database change history for statement
stmt on the initial table in Fig. 1.

creates the version, and deleted indicates whether the row has
been deleted.

Fig. 3 illustrates an example how we initialize and main-
tain the database change history for the initial table in
Fig. 1. For each row in the initial table, we construct a
list indexed by its rowId, and add an initial version, e.g.,
< (null, 0), init, false > for the first row with rowId = 1.
The lists in the dotted box show the initial database change
history. Note that, we use tx = init for all the initial versions
that are inserted by the database generation in Section III-C.

Assume that transaction tx executes an update statement
stmt on the initial table, and no other transactions act on
this table. We first construct stmt’s update view from the
database change history. Note that what versions are visible
for stmt depends on tx’s isolation level and stmt’s type,
and we will introduce the detailed construction strategy in
Section III-E2. Since no other transactions in this case, tx
reads all latest versions in the database change history, and
constructs stmt’s update view as the table in the top left
corner in Fig. 3. Based on this view, we can perform conflict
analysis to figure out whether stmt is blocked (Section III-E3).
In this example, stmt can be directly executed, and obtains
a new view (the table in the top right corner). We construct
a new SQL statement SELECT rowId FROM stmt.view
WHERE stmt.condition to obtain the updated rows, i.e.,
row 1 and 3 in Fig. 3. Finally, we update the database change
history by attaching the versions of the two updated rows.
Different kinds of statements have different update strategies,
and we introduce them in Section III-E4.

2) View Construction: For a statement stmt in transaction
tx1 and tx2, stmt’s database view determines what data stmt
can see when stmt is executed. stmt’s database view is
decided by two factors: stmt’s statement type and the isolation
level of stmt’s transaction. We do not need to interpret other
parts of stmt, e.g., stmt’s WHERE condition, to construct
stmt’s view. For easy presentation, we assume that stmt
belongs to tx1 in the following discussion, and all data in
the initial table is written by transaction init.

We first summarize the following four data visibility rules,
which are widely used in different DBMSs.

TABLE II
DATA VISIBILITY STRATEGIES IN MYSQL AND MARIADB

Statement Type Isolation Level
RU RC RR SER

SELECT V1, V2 V1, V3 V1, V4 V1
SELECT FOR SHARE V1, V3 V1, V3 V1, V3 V1
SELECT FOR UPDATE V1, V3 V1, V3 V1, V3 V1
UPDATE V1, V3 V1, V3 V1, V3 V1
INSERT V1, V3 V1, V3 V1, V3 V1
DELETE V1, V3 V1, V3 V1, V3 V1

• V1. The versions written by tx1 are visible to stmt.
The versions written by transactions committed before
tx1 starts are visible to stmt. For example, the versions
written by init are visible to stmt. If tx2 has been
committed before tx1 starts, the versions written by tx2
are visible to stmt.

• V2. The versions written by tx2 are visible to stmt, no
matter tx2 is committed or not.

• V3. The versions written by tx2 are visible to stmt only
if tx2 has been committed.

• V4. The committed versions before tx1 takes snapshot
are visible to stmt. For example, the versions written by
tx2 are visible to stmt only if tx2 has been committed
before tx1 takes snapshot.

DBMSs utilize different data visibility strategies for dif-
ferent isolation levels and SQL statements. Table II shows
the detailed data visibility strategies for the four isolation
levels used in MySQL and MariaDB. For example, if stmt
is a SELECT statement, all committed versions before tx1
performs snapshot (V4) and tx1’s writes (V1) are visible
to stmt. These data visibility strategies can be found in
DBMSs’ documentations about transaction models [39], [50].
Note that, TiDB does not support Read Uncommitted and
Serializable isolation levels [40]. But, the data visibility
strategies for the two isolation levels in TiDB are the same as
those used in MySQL.

Based on a DBMS’s data visibility strategy, we can obtain
the versions of each row in the database history that are visible
to stmt when stmt is executed. Troc then traverses each row
in the database history, and searches for its latest version lv
that is visible to stmt. If lv.deleted is false, then we add
< lv.rowId, lv.data > into stmt’s database view. We further
convert stmt’s database view into a database table. Thus, we
can execute SQL statements through DBMSs on the table to
perform the following conflict analysis (Section III-E3) and
statement execution analysis (Section III-E4).

3) Statement Conflict Analysis: DBMSs usually adopt com-
plex and non-standard lock behaviors, e.g., gap lock in
MySQL. It is impractical to model the detailed lock behaviors
in different DBMSs. Therefore, we perform a fine-grained
row-based lock analysis in a conservative way, in which
we only lock necessary rows and indexes based on current
database states. Our lock analysis is DBMS-agnostic, and
commonly supported by DBMSs. In the following discussion,
we assume that stmt belongs to tx1.

TABLE III
LOCK STRATEGIES IN MYSQL, MARIADB, AND TIDB

Statement Type MySQL & MariaDB TiDB
RU RC RR SER RC RR

SELECT - - - S: R&I, P - -
SELECT FOR SHARE S: R&I S: R&I S: R&I, P S: R&I, P S: R&I S: R&I
SELECT FOR UPDATE X: R&I X: R&I X: R&I, P X: R&I, P X: R&I X: R&I
UPDATE X: R&I X: R&I X: R&I, P X: R&I, P X: R&I X: R&I
INSERT X: R&I X: R&I X: R&I X: R&I X: R&I X: R&I
DELETE X: R&I X: R&I X: R&I, P X: R&I, P X: R&I X: R&I
S: Share lock. X: Exclusive lock. R&I: Row and index lock. P: Predicate lock.

Fine-grained row-based lock analysis. stmt can lock
a set of rows that it accesses, and a set of indexes (i.e.,
declared by PRIMARY KEY and UNIQUE INDEX in the
database schema). For example, a statement inserting a row
with primary key = 1 conflicts with another statement deleting
a row with primary key = 1, even though they access different
rows. We model stmt’s row and index lock as a triple
< type, lockRows, lockIndexes >. type denotes a lock’s
type, i.e., Share and Exclusive. lockRows denotes a set of
rows that are accessed by stmt. lockIndexes denotes a set
of < index, value > that are accessed by stmt, in which
index is type of UNIQUE INDEX or PRIMARY KEY in the
database schema.

We obtain lockRows based on stmt’s statement type.
If stmt is type of SELECT, UPDATE, DELETE and
SELECT FOR SHARE / UPDATE, it contains a condition
expression. We construct a new query SELECT rowId
FROM stmt.view WHERE stmt.condition, and obtain
all rowIds that stmt accesses. If stmt is type of INSERT,
after we execute stmt, we obtain the new inserted row’s
rowId, and put it in into lockRows.

For each row in stmt’s lockRows, we extract its PRIMARY
KEY and UNIQUE INDEX columns, and their corresponding
values to form < index, value > pairs, and put them into
lockIndexes. For INSERT and UPDATE statements, we also
take the index values updated or inserted by the statement
into consideration. We extract corresponding values from their
statements and database states, and form < index, value >
pairs that they write, and put them into lockIndexes. Note
that, for a composite unique index that consists of more than
one column, if the value of one column is NULL, we will not
add the corresponding < index, value > into lockIndexes.

The above analysis cannot handle predicate lock speci-
fied by statements having conditions, e.g., SELECT * FROM
table WHERE c1>0 FOR SHARE can lock all rows that
satisfy c1>0. Assume that stmt1 in tx1 has a condition, and
stmt2 belongs to tx2. First, if stmt1 and stmt2’s lockRows
or lockIndexes overlap, stmt1’s predicate lock conflicts
with stmt2. Second, if stmt2 (i.e., INSERT, UPDATE and
DELETE) can modify the table, we check if stmt2 affects
the execution of stmt1’s condition. We obtain lockRows and
lockIndexes of stmt1 before and after executing stmt2 on
stmt1’s database view, respectively, and check if they are the
same. If not, stmt2’s execution can affect stmt1’s condition,

and we consider stmt1’s predicate lock conflicts with stmt2.
Predicate locks also have two types, i.e., Share and Exclusive.

Conflict detection. stmt’s required locks are decided by
stmt’s statement type [51] and its isolation level. Table III
summarizes lock strategies in MySQL, MariaDB and TiDB.
We can see that MySQL and MariaDB adopt the same lock
strategy, while TiDB adopts a slightly different lock strategy.

To judge whether stmt1 in tx1 and stmt2 in tx2 conflict,
we first utilize Table III to extract their lock strategies based on
their statement types and isolation levels. We consider stmt1
in tx1 and stmt2 in tx2 as conflict when they satisfy two
conditions. (1) stmt1’s locks or stmt2’s locks are type of
Exclusive. (2) Their lockRows or lockIndexes overlap, or
their predicate locks conflict.

Note that, Troc’s conflict analysis bases on row-based locks,
and provides fine-grained lock analysis. DBMSs may lock
more rows than our inferred results due to few reasons, e.g.,
range queries [52] and query optimizations [53]. Assume that
a simple table has one column pk as primary key, and the table
contains two rows with values 1 and 10. At Serializable
isolation level, we infer that the first row with value 1 is
locked for a range query SELECT * FROM table WHERE
pk < 5. However, due to gap lock in MySQL, this query
can also lock the range [1, 10]. This makes our lock analysis
incomplete, i.e., some statements are blocked in DBMSs but
Troc infers that they should be executed. On the other hand,
our lock analysis is sound, i.e., if Troc infers that a statement
should be blocked, the statement must be blocked in DBMSs.

4) Statement Execution Analysis: When Troc decides that
a statement stmt in transaction tx1 should be blocked, we
switch to transaction tx2 and continue performing the above
analysis on its statements. If stmt is decided not to be blocked,
we execute it on its database view, and further update the
database change history based on the new view. We explain
the detailed strategies according to stmt’s statement type.

SELECT, SELECT FOR SHARE / UPDATE. We execute
stmt on its database view, and obtain its query result, which
is used as stmt’s expected execution result.

INSERT. We directly execute stmt on its view, and
compare stmt’s view before and after stmt’s execution to
obtain the newly inserted rows. We further construct a SQL
statement SELECT * FROM stmt.view WHERE rowId
= iRow for each inserted row iRow to obtain its inserted
data. We then add a new list in the database change history for

each newly inserted row. Each new list starts by the inserted
row’s rowId, and a row version that contains the inserted data.

UPDATE. We construct a new SQL statement SELECT
rowId FROM stmt.view WHERE stmt.condition to
obtain the updated rows. After we execute stmt on its
view, we construct a new SQL statement SELECT * FROM
stmt.view WHERE rowId = uRow for each updated
row uRow to obtain its new data. We then add new versions
at the tail of the database change history for each updated row.

DELETE. We construct a new SQL statement SELECT
rowId FROM stmt.view WHERE stmt.condition to
obtain the deleted rows. We then add a new version for each
deleted row, in which its deleted field is set as true.

ROLLBACK. When ROLLBACK is executed, all data mod-
ifications made by transaction tx1 are aborted. We remove all
versions in database change history whose tx field is tx1.

F. Detecting Isolation Bugs

Given a submitted order subOrder of transactions tx1 and
tx2, we follow the test protocol in Algorithm 1, and submit
each statement in subOrder to the target DBMS one by one.
For each SQL statement, we obtain two aspects of results, i.e.,
(1) whether a statement is blocked (Line 8-13) and (2) the
returned results for query statements (Line 8 and 18). After
tx1 and tx2 complete, we also obtain (3) the final database
state if no deadlock is detected (Line 19-20).

We analyze the statements in subOrder one by one, and
compare each statement’s actual execution result on the target
DBMS and the expected execution result in the constructed
transaction oracle. Note that, if either the actual result or the
expected result reports a deadlock at statement stmt, we no
longer compare its following statements in subOrder. For a
statement stmt, we can detect three kinds of isolation bugs.

Inconsistent blocking. If stmt is blocked in the expected
execution, but it is successfully executed in the actual execu-
tion, we report an isolation bug with inconsistent blocking. As
discussed in Section III-E3, we adopt a fine-grained row-based
lock analysis. It only locks necessary rows and indexes, while
DBMSs may lock more due to range queries, etc. Therefore,
if we infer that stmt is not blocked in the expected execution,
but stmt is blocked in the actual execution, we can hardly say
there is an isolation bug. To avoid reporting false positives, we
do not report isolation bugs in such case.

Incorrect query results. If stmt is both executed (i.e., not
blocked) in the actual execution and in the expected execution,
we further compare their execution results, e.g., returned data.
Any difference indicates an isolation bug.

Incorrect final database states. We compare the final
database states only when both the actual execution and the
expected execution follow the same order, and no deadlock is
detected. Any difference indicates an isolation bug.

IV. EVALUATION

To demonstrate Troc’s effectiveness, we evaluate Troc on
widely-used DBMSs, and detect real-world isolation bugs. Our
evaluation aims to address the following research questions:

• RQ1: How effective is Troc in finding real-world isola-
tion bugs? (Section IV-B)

• RQ2: What bugs can Troc find in real-world DBMSs?
(Section IV-C)

A. Experimental Methodology

Target DBMSs. To demonstrate the effectiveness of Troc,
we evaluate it on three widely-used DBMSs, i.e., MySQL,
MariaDB, and TiDB. As shown in Table I, all these relational
DBMSs provide good support for transactions, and are among
the most widely-used DBMSs. MySQL is a standalone DBMS,
and ranks on the top of the public ranking lists. MariaDB
is an open-source fork of MySQL. TiDB is a representative
of distributed NewSQL DBMS. For each target DBMS, we
perform our testing on the latest release versions when we
started this research, i.e., MySQL 8.0.25, MariaDB 10.5.12,
and TiDB 5.2.0.

Testing methodology. The experiment is performed in an
AliCloud server with 8 CPU core and 32 GiB memory. For
MySQL and MariaDB, we allocate a Docker container and
create a DBMS instance inside it. For TiDB, we test it in a
distributed manner with 2 TiDB instances, 3 TiKV instances
and 2 PD server instances. The whole experiment is performed
automatically. Our experiment uses 10% CPU and 13.6 GiB
memory at most.

For each testing iteration, we continuously run Troc on the
target DBMSs until we find bugs. Once a bug is detected
during testing, Troc produces a bug report, which contains
its bug type, the constructed oracle as well as the actual
execution result. Besides, it also contains all essential elements
for reproducing the bug, i.e., the initial table, two transactions,
the submitted order and isolation levels. If Troc cannot report a
bug in two weeks, we stop the current testing iteration. We then
inspect the reported bugs. For a reported bug, we first try to
manually reproduce it and simplify the test case by removing
statements and columns in the table that are not related to
the bug. Since the bug is triggered at a specific isolation
level, we further enumerate all possible isolation levels for
checking whether the bug can manifest at other isolation levels,
which can help understand the bug. At last, we summarize all
information and report the bug to developers for feedbacks. In
total, our experiment takes about two months.

B. Overall Bug Detection Results

Table IV shows all the bugs detected by Troc in different
DBMSs at different isolation levels (Column 2-5). Note that,
a bug can be triggered at different isolation levels. We count
the bugs at different isolation levels but having the same test
inputs and similar symptoms as the same bug. Finally, we find
17 bugs in total, and 12 bugs are unique.

For the 12 unique bugs, 9 bugs are found at Repeatable
Read, 5 bugs are found at Read Committed, 2 bugs
are found at Read Uncommitted, and 1 bug is found
at Serializable. Among the 12 unique bugs, 10 bugs
are isolation bugs. Note that, there is an overlap between
the bugs that can be triggered at different isolation levels.

TABLE IV
BUGS REPORTED BY TROC

Isolation levelDBMS RU RC RR SER
Total

(Unique)
New

(iBug)
Duplicate

(iBug)
MySQL 1 1 3 0 5 (4) 1 (1) 3 (3)
MariaDB 1 2 2 1 6 (4) 3 (3) 1 (1)
TiDB - 2 4 - 6 (4) 3 (1) 1 (1)
Total 2 5 9 1 17 (12) 7 (5) 5 (5)

TABLE V
NEW BUGS REPORTED BY TROC

Issue Isolation iBug Status Severity
MySQL#104833 RU, RC Y Verified Serious
MariaDB#27992 RC, SER Y Fixed Critical
MariaDB#26643 RU, RC Y Verified Critical
MariaDB#26642 RR Y Verified Critical
TiDB#28212 RR Y Verified Moderate
TiDB#28092 RC, RR N Verified Moderate
TiDB#28095 RC, RR N Verified Minor

The remaining 2 bugs can be triggered by using only one
transaction, no matter what isolation level is used. We name
them as transaction bugs. Listing 4 shows such a transaction
bug that we find.

For the 12 unique bugs, 7 bugs (5 isolation bugs and 2
transaction bugs) have been verified as new bugs by developers
(New), and one new isolation bug in MariaDB has been fixed
by developers. The remaining 5 isolation bugs are marked as
duplicate (Duplicate).

We list all our found new bugs in Table V. For these 7 new
bugs, 4 bugs leave the database into incorrect states, and 3 bugs
return incorrect query results. 1 isolation bug in MySQL is
classified as serious, 3 isolation bugs in MariaDB are classified
as critical, 1 isolation bugs in TiDB is classified as moderate,
and the remaining 2 transaction bugs are classified as moderate
and minor, respectively.

Comparison. We further investigate whether these 12
unique bugs can be revealed by existing approaches, e.g.,
SQLsmith [24], SQLancer [26]–[28], Elle [23] and Cobra
[22]. These approaches cannot generate the bug-revealing data
structures and SQL queries, or construct the corresponding
transaction oracle. Thus, none of these bugs can be detected
by these approaches theoretically. Specifically, existing verifi-
cation approaches on isolation bugs, e.g., Elle [23] and Cobra
[22], can only work on a simple key-value data model, which
accesses data with read(key) and write(key). They cannot
detect any of the 10 isolation bugs reported by Troc, which
involve complex relational data models and SQL queries,
e.g., writing multiple rows in the SQL statement s22 of
Fig. 1. Existing testing techniques for DBMSs, e.g., SQLsmith
[24] and SQLancer [26]–[28], cannot generate transaction test
cases, and do not have a test oracle for transaction test cases.

We also investigate whether the 6 isolation bugs (which
contain complete test cases) reported by Elle [23] and Cobra
[22] can potentially be detected by Troc, i.e., whether their
test cases violate Troc’s oracle. Troc can detect 5 of these
6 isolation bugs. The remaining one isolation bug that Troc
cannot detect requires more than two transactions to trigger,
which is not supported by Troc now.

Developer feedbacks. For the 7 newly detected bugs,
developers have fixed 1 isolation bug in MariaDB [54]. The
remaining 6 bugs have not been fixed yet. Based on the
feedbacks from developers, these 6 bugs can be divided into
three categories. First, the developers think they are too hard to
diagnose and fix (2/6). For example, the developer explains in

MySQL#104833 [29] when we discuss the root cause with
them: “The exact cause of the bug is not found yet, but
we are working on it very intensively”. Second, due to
compatibility issues, the developers have not decided to fix the
long-time lurking bugs for now, although the bugs have caused
severe impact, e.g., incorrect query results (2/6). A developer
mentions in MariaDB#26642 [55] “This is the impact of a
design decision of the InnoDB Repeatable Read, probably
present since the very first release (MySQL 3.23.49). If we
changed this now after all these years, some applications could
be broken”. Third, developers just leave issues open for no
reason (2/6). All these bugs belong to TiDB. Considering that
it is a new rising DBMS, we think developers are possibly too
busy to deal with a complex fix for our reported bugs.

C. New Bugs

We explain our newly-found bugs under the pessimistic
transaction model in detail. We have explained isolation bug
MySQL#104833 [29] found by Troc in Fig. 1. The test case
in Fig. 1 also causes isolation bug MariaDB#26643 [56]. We
will not explain these two isolation bugs further.

MariaDB#26642 [55]. Listing 2 shows an isolation bug
at Repeatable Read in MariaDB. In the test case, two
transactions tx1 and tx2 concurrently modify a table [(0, 0),
(1, 1)]. tx2 firstly updates c1 in the second row as 10 (Line
6) and commits successfully. Then, tx1 queries the table by
using snapshot read in Line 8 and obtains the correct result
[(0, 0), (1, 1)]. tx1 further updates c1 in all rows as 10 later
(Line 9). Since tx2 has committed, Line 9 can successfully
update all rows in table t. For the third SELECT statement
of tx1 (Line 10), tx1 should return all its modified data by
Line 9, i.e., [(10, 0), (10, 1)], but its actual execution result
is [(10, 0), (1, 1)]. Therefore, tx1 fails to see the effect of its
own write in Line 9.

1. /*init*/ CREATE TABLE t(c1 INT, c2 INT);
2. /*init*/ INSERT INTO t VALUES(0,0),(1,1);
3. /*tx1*/ BEGIN;
4. /*tx1*/ SELECT * FROM t; -- [(0,0),(1,1)]
5. /*tx2*/ BEGIN;
6. /*tx2*/ UPDATE t SET c1 = 10 WHERE c2 = 1;
7. /*tx2*/ COMMIT;
8. /*tx1*/ SELECT * FROM t; -- [(0,0),(1,1)]
9. /*tx1*/ UPDATE t SET c1 = 10 WHERE TRUE;
10. /*tx1*/ SELECT * FROM t; -- [(10,0),(1,1)]
11. /*tx1*/ COMMIT;

Listing 2. MariaDB#26642 reported at Repeatable Read

https://bugs.mysql.com/bug.php?id=104833
https://jira.mariadb.org/browse/MDEV-27992
https://jira.mariadb.org/browse/MDEV-26643
https://jira.mariadb.org/browse/MDEV-26642
https://github.com/pingcap/tidb/issues/28212
https://github.com/pingcap/tidb/issues/28092
https://github.com/pingcap/tidb/issues/28095

Interestingly, when diagnosing this isolation bug, we find it
is data-dependent. We observe that, only when Line 6 and
Line 9 update the same rows with the same data, this bug will
occur. Otherwise, Line 10 can return the correct result. For
example, if Line 6 is replaced by UPDATE t SET c1 = 9
WHERE c2 = 1, in which the original data 10 is changed to
9, Line 10 will correctly return [(10, 0), (10, 1)].

This isolation bug exists in MariaDB for a long time. We can
trigger it at versions from 5.5 to the latest 10.7. The developers
mark this bug as critical, but they have not decided to fix it
yet, since some applications (based on MariaDB) could be
broken if the wrong behavior is fixed.

Listing 2 can also trigger an isolation bug in TiDB for all
public versions (TiDB#28212 [57]). TiDB’s developers ex-
plain its root cause. In TiDB, SELECT statements use snapshot
read to read the data in its snapshot, while UPDATE statements
use current read to read the latest rows and further add
changed data to the transaction’s change buffer. In Listing 2,
tx1 first takes a snapshot of the initial table. After tx2 updates
the table as [(0, 0), (10, 1)] in Line 6, tx1’s SELECT in Line
8 directly reads from its snapshot as [(0, 0), (1, 1)]. However,
tx1’s UPDATE in Line 9 reads the latest data written by tx2,
i.e., [(0, 0), (10, 1)], and further updates it as [(10, 0), (10, 1)].
Note that, the second row (10, 1) is not changed by tx1, so
it is not added into tx1’s change buffer. At last, the SELECT
statement of tx1 in Line 10 reads from both its snapshot and
change buffer, and keeps the second row as its initial snapshot
version (1, 1), thus wrongly returning [(10, 0), (1, 1)].

MariaDB#27992 [54]. Listing 3 shows an isolation bug
in MariaDB, which can occur at Read Committed and
Serializable isolation levels. In this test case, tx1 first
updates c1 as 5 in Line 5, and tx2 tries to delete all rows
in Line 6, and is blocked since tx2 conflicts with tx1. Then,
tx1 further updates c1 as 3, and commits. Now, the DELETE
statement of tx2 in Line 6 is unblocked and further executed.
Since the DELETE statement of tx2 in Line 6 deletes all rows
in table t, the SELECT statement of tx2 in Line 9 should return
an empty result. However, it returns [(3)] wrongly. Worse,
table t still contains value 3 after tx2 commits in Line 10.
MariaDB developers have fixed this bug.

1. /*init*/ CREATE TABLE t(c1 INT PRIMARY KEY);
2. /*init*/ INSERT INTO t(c1) VALUES (8);
3. /*tx1*/ BEGIN;
4. /*tx2*/ BEGIN;
5. /*tx1*/ UPDATE t SET c1 = 5;
6. /*tx2*/ DELETE FROM t; -- tx2 is blocked
7. /*tx1*/ UPDATE t SET c1 = 3;
8. /*tx1*/ COMMIT; -- tx2 is unblocked
9. /*tx2*/ SELECT * FROM t FOR UPDATE; -- [(3)]
10. /*tx2*/ COMMIT;

Listing 3. MariaDB#27992 reported at Serializable

TiDB#28092 [58]. Listing 4 shows a transaction bug in
TiDB. Unlike isolation bugs that require multiple transactions
at a given isolation level, only one transaction in the test
case can trigger this bug. The initial table is special. We
restrict its first column as NOT NULL, but insert a NULL
value with IGNORE option (Line 2). Transaction tx1 executes

two UPDATE statements, i.e., u1 in Line 5 and u2 in Line 6.
In this case, u1 can be successfully executed, but u2 throws
an unexpected error “Truncated incorrect DOUBLE value:
‘”’. If we sequentially execute u1 and u2 in two different
transactions, e.g., tx2 and tx3, respectively, both u1 and u2
can be successfully executed, without throwing any exception.

1. /*init*/ CREATE TABLE t(c1 BLOB NOT NULL, c2
TEXT);

2. /*init*/ INSERT IGNORE INTO t VALUES(NULL,
NULL);

3. /*init*/ INSERT INTO t VALUES(0x32,’aaa’);
4. /*tx1*/ BEGIN;
5. /*tx1*/ UPDATE t SET c2 = ’abc’; -- []
6. /*tx1*/ UPDATE t SET c2 = ’xyz’ WHERE c1; --

[Truncated incorrect DOUBLE value: ‘’’’]
7. /*tx1*/ COMMIT;

Listing 4. TiDB#28092, an interesting transaction bug

Another bug TiDB#28095 [59] is similar to TiDB#28092,
but has completely different triggering conditions. Although
these two bugs are not isolation bugs according to their root
causes, we can see that, Troc is capable to find some transac-
tion bugs, in which a statement has different behavior when
being executed independently and in a specific transaction.

D. Other Experimental Statistics

Test effort. In our experiment, on average, Troc takes
0.3 seconds to generate a transaction test case (including
database generation), and takes 5.3 seconds for the oracle to
decide the outcome for a single transaction test case (including
transaction execution). In total, it takes 200 to 60000 test runs
(about 0.5 to 200 hours) for Troc to report a bug. Note that,
this is not the number of test runs that can reveal a new bug,
Troc may generate reports for the same bugs. If a bug has not
been repaired by developers, Troc can potentially trigger the
same bug with different test cases.

In addition, Troc discards about 12% of all test runs when it
cannot decide whether there is an isolation bug (Section III-F).

Code coverage. To estimate how much code of the DBMSs
we can test, we instrument MySQL and MariaDB1, and run
Troc on them for 24 hours. Troc achieves 20.6% and 25.1%
line coverage for MySQL and MariaDB, respectively. The
coverage appears to be low. However, this is expected, because
Troc currently only focuses on transaction implementations.
DBMSs also provide other features that we do not test, e.g.,
user management, configuration, and replication.

V. DISCUSSION

False positives. In Troc, we assume that the execution of a
single SQL statement in DBMSs is always correct. In fact, the
single SQL statement execution can be incorrect due to various
reasons, e.g., logic bugs [25]–[28]. Therefore, our transaction
oracle construction may obtain wrong oracle, and potentially
introduce false positives. However, we have not observed such
false positives in our experiment yet.

1We do not perform coverage experiment on TiDB, since we cannot find a
proper coverage measure tool for Golang and Rust, which are used in TiDB.

Migrating to new DBMSs. In Troc, SQL and database gen-
eration is DBMS-related, since DBMSs usually have different
dialects. However, Troc can utilize existing SQL and database
generation approaches, e.g., SQLancer [49]. Therefore, Troc
can be migrated to new DBMSs with little effort. For example,
migrating Troc from MySQL to TiDB only introduces about
100 LOC changes, which are mainly used to access DBMS-
related database structures, e.g., indexes.

Supporting new isolation levels. Troc has supported 4
isolation levels that are implemented in our target DBMSs.
There are other isolation levels, e.g., Read Stability
in DB2 [60]. To support other isolation levels, we need to
adjust data visibility strategies (Table II) and lock strategies
(Table III) according to new isolation levels. Troc’s view
construction and conflict analysis can be directly applied on
these adjusted data visibility strategies and lock strategies.

Supporting optimistic transactions. We mainly focus on
the pessimistic transaction model. Some DBMSs, e.g., TiDB
and PostgreSQL, support the optimistic transaction model. To
support the optimistic transaction model, we need to add two
extra rules for DBMSs’ behaviors. First, in spite of statement
conflicts, all statements should not be blocked, but the results
of conflict analysis are still stored. Second, when a transaction
tx1 is to be committed, and it conflicts with a committed
transaction tx2, then we use the database change history
update rule for ROLLBACK statement (Section III-E4) to abort
tx1. Based on these rules, Troc can construct oracles for
transactions under the optimistic transaction model.

Supporting more concurrent transactions. We mainly
focus on the scenarios where only two transactions submit
their statements concurrently. Extending Troc to more than two
transactions can introduce indeterminacy to transaction oracle
construction. For example, given three transactions tx1, tx2
and tx3, both tx1 and tx2 are blocked by tx3. When tx3
is committed, which transaction is the first to be resumed is
uncertain. A possible solution is to enumerate all scenarios
and take all analysis results as the oracle.

VI. RELATED WORK

Database testing. Many approaches have been proposed
for DBMS testing and graph database system testing [24]–
[28], [48], [61]–[74]. SQLsmith [24] randomly generates SQL
statements to detect crash bugs in DBMSs. Squirrel [48]
performs query generation guided by code coverage to test
DBMSs. LEGO [71] generates SQL sequences with abundant
types to improve DBMS fuzzing coverage. DynSQL [72]
utilizes stateful fuzzing to test DBMSs and find deep bugs.
Rigger et al. presents some approaches to construct oracles
for SELECT statements, e.g., PQS [26], TLP [27] and NoREC
[28]. QPG [69] utilizes query plans to guide database state
mutation for detecting bugs. DQE [67] detects logic bugs
by differentially executing SELECT, UPDATE and DELETE
statements in DBMSs. APOLLO [61] detects performance
regression bugs by generating regression-triggering queries.
Amoeba [63] detects performance bugs by generating two
semantically equivalent queries and comparing their execution

time. Some works utilize differential testing to effectively test
DBMSs and graph database systems [25], [64], [65], [68],
[74]. However, these approaches cannot construct test oracle
for detecting isolation bugs in DBMSs.

Transaction verification. Biswas et al. [21] utilizes an
axiomatic framework to characterize whether a transaction
execution history satisfies a certain isolation level. Cobra [22]
verifies the serializability of key-value stores. To improve
scalability, a SMT solver is used to tackle the computational
explosion problem. Elle [23] finds isolation bugs by check-
ing the transaction execution histories on specific designed
consistency models (e.g., AppendList). These works mainly
rely on transaction execution histories of specific database
models (e.g., key − value data model), and cannot test many
transaction features in modern DBMSs, e.g., reading multiple
rows in a SQL statement. In contract, Troc supports generating
transactions with complex relational data models and features
and detects isolation bugs by oracle construction for a pair of
concurrent transactions.

Combating transaction concurrency problems in
database applications. In recent years, researchers have
presented several approaches to detect or debug transaction
concurrency problems for applications relying on DBMSs
[75]–[81]. Tang et al. [81] conducts a comprehensive study
on transaction concurrency problems in ad hoc transactions
among database applications. Brutschy et al. [77] applies static
analysis to detect serializability violation behaviors in database
applications. Deng et al. [75] and Luo et al. [76] propose
several approaches for detecting transaction concurrency prob-
lems in database applications. CLOTHO [78], IsoDiff [79]
and MonkeyDB [80] detect transaction isolation violations in
database applications. These works aim to combat transaction
concurrency problems in database applications, which are
orthogonal to Troc.

VII. CONCLUSION

DBMSs can violate their claimed transaction isolation levels
and introduce isolation bugs. In this paper, we propose a
novel, general and effective transaction testing approach, Troc,
to automatically detect isolation bugs in DBMSs. The core
idea of Troc is to construct the oracle for each statement
in two concurrent transactions with the guidance of isolation
levels. We have applied Troc on three widely-used DBMSs,
i.e., MySQL, MariaDB and TiDB, and found 5 previously-
unknown isolation bugs in them. In the future, we plan
to extend Troc to test more complex transaction execution
scenarios, e.g., optimistic transactions and more than two
concurrent transactions.

ACKNOWLEDGMENTS

This work was partially supported by National Key R&D
Program of China (2021YFB1716000), National Natural Sci-
ence Foundation of China (62072444), Frontier Science
Project of Chinese Academy of Sciences (QYZDJ-SSW-
JSC036), and Youth Innovation Promotion Association at
Chinese Academy of Sciences.

REFERENCES

[1] (2022) MySQL. [Online]. Available: https://www.mysql.com
[2] (2022) MariaDB. [Online]. Available: https://mariadb.org
[3] (2022) PostgreSQL. [Online]. Available: https://www.postgresql.org
[4] (2022) TiDB, PingCAP. [Online]. Available: https://pingcap.com
[5] (2022) CockroachDB. [Online]. Available: https://www.cockroachlabs.

com/
[6] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A structured english

query language,” in Proceedings of ACM SIGFIDET Workshop on Data
Description, Access and Control (SIGFIDET), 1974, pp. 249–264.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., 1986.

[8] P. M. Lewis, A. Bernstein, and M. Kifer, “Databases and transaction
processing: An application-oriented approach,” ACM SIGMOD Record,
vol. 31, no. 1, pp. 74–75, 2002.

[9] (2022) The ANSI isolation levels. [Online]. Available: http://www.
adp-gmbh.ch/ora/misc/isolation level.html

[10] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil,
“A critique of ANSI SQL isolation levels,” in Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD),
1995, pp. 1–10.

[11] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica, “Highly available transactions: Virtues and limitations,” Pro-
ceedings of the VLDB Endowment (VLDB), vol. 7, no. 3, pp. 181–192,
2013.

[12] D. Potier and P. Leblanc, “Analysis of locking policies in database
management systems,” Communications of the ACM, vol. 23, no. 10,
pp. 584–593, 1980.

[13] S. Sippu and E. Soisalon-Soininen, Lock-Based Concurrency Control,
2014, pp. 125–158.

[14] D. P. Reed, “Naming and synchronization in a decentralized computer
system,” Tech. Rep., 1978.

[15] P. A. Bernstein and N. Goodman, “Multiversion concurrency con-
trol—theory and algorithms,” ACM Transactions on Database Systems
(TODS), vol. 8, no. 4, pp. 465–483, 1983.

[16] M. J. Carey, “Improving the performance of an optimistic concurrency
control algorithm through timestamps and versions,” IEEE Transactions
on Software Engineering (TSE), vol. SE-13, no. 6, pp. 746–751, 1987.

[17] X. Song and J. W.-S. Liu, “Performance of multiversion concurrency
control algorithms in maintaining temporal consistency,” in Proceedings
of Annual International Computer Software and Applications Conference
(COMPSAC), 1990, pp. 132–139.

[18] H.-T. Kung and J. T. Robinson, “On optimistic methods for concurrency
control,” ACM Transactions on Database Systems (TODS), vol. 6, no. 2,
pp. 213–226, 1981.

[19] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas, “TicToc: Time traveling
optimistic concurrency control,” in Proceedings of International Con-
ference on Management of Data (SIGMOD), 2016, pp. 1629–1642.

[20] (2022) Hermitage. [Online]. Available: https://github.com/ept/hermitage
[21] R. Biswas and C. Enea, “On the complexity of checking transactional

consistency,” in Proceedings of ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA), 2019, pp. 165:1–165:28.

[22] C. Tan, C. Zhao, S. Mu, and M. Walfish, “Cobra: Making transactional
key-value stores verifiably serializable,” in Proceedings of USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2020, pp. 63–80.

[23] K. Kingsbury and P. Alvaro, “Elle: Inferring isolation anomalies from ex-
perimental observations,” Proceedings of the VLDB Endowment (VLDB),
vol. 14, no. 3, pp. 268–280, 2020.

[24] (2022) SQLsmith. [Online]. Available: https://github.com/anse1/sqlsmith
[25] D. R. Slutz, “Massive stochastic testing of SQL,” in Proceedings of

International Conference on Very Large Data Bases (VLDB), 1998, pp.
618–622.

[26] M. Rigger and Z. Su, “Testing database engines via pivoted query
synthesis,” in Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2020, pp. 667–682.

[27] ——, “Finding bugs in database systems via query partitioning,” Pro-
ceedings of the ACM on Programming Languages, vol. 4, no. OOPSLA,
pp. 211:1–211:30, 2020.

[28] ——, “Detecting optimization bugs in database engines via non-
optimizing reference engine construction,” in Proceedings of ACM Joint
European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE), 2020, pp. 1140–
1152.

[29] (2022) Inconsistent behaviors of UPDATE under Read Uncommitted.
[Online]. Available: https://bugs.mysql.com/bug.php?id=104833

[30] E. F. Codd, “A relational model of data for large shared data banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, 1970.

[31] (2022) DB-Engines. [Online]. Available: https://db-engines.com/en/
ranking

[32] (2022) GitHub. [Online]. Available: https://github.com/
[33] A. Adya, “Weak consistency: A generalized theory and optimistic

implementations for distributed transactions,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 1999.

[34] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level defini-
tions,” in Proceedings of International Conference on Data Engineering
(ICDE), 2000, pp. 67–78.

[35] A. Cerone, G. Bernardi, and A. Gotsman, “A framework for transactional
consistency models with atomic visibility,” in Proceedings of Interna-
tional Conference on Concurrency Theory (CONCUR), 2015, pp. 58–71.

[36] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica,
“Scalable atomic visibility with RAMP transactions,” ACM Transactions
on Database Systems (TODS), vol. 41, no. 3, pp. 15:1–15:45, 2016.

[37] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev, “Serializability
for eventual consistency: Criterion, analysis, and applications,” in Pro-
ceedings of ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL), 2017, pp. 458–472.

[38] (2022) MySQL isolation. [Online]. Available: https://dev.mysql.com/
doc/refman/8.0/en/innodb-transaction-isolation-levels.html

[39] (2022) Isolation levels in MariaDB. [Online]. Available: https:
//mariadb.com/kb/en/set-transaction/

[40] (2022) TiDB Isolation. [Online]. Available: https://docs.pingcap.com/
tidb/v5.0/transaction-isolation-levels

[41] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu, “QAGen: Generating
query-aware test databases,” in Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD), 2007, pp. 341–
352.

[42] N. Bruno and S. Chaudhuri, “Flexible database generators,” in Proceed-
ings of International Conference on Very Large Data Bases (VLDB),
2005, pp. 1097–1107.

[43] E. F. Codd, “Relational completeness of data base sublanguages,”
Research Report, 1972.

[44] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in Proceedings
of ACM SIGMOD International Conference on Management of Data
(SIGMOD), 1994, pp. 243–252.

[45] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data genera-
tion,” in Proceedings of International Conference on Very Large Data
Bases (VLDB), 2006, pp. 1243–1246.

[46] S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in Proceedings
of IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), 2008, pp. 238–247.

[47] (2022) go-randgen. [Online]. Available: https://github.com/pingcap/
go-randgen

[48] R. Zhong, Y. Chen, H. Hu, H. Zhang, W. Lee, and D. Wu, “SQUIR-
REL: Testing database management systems with language validity and
coverage feedback,” in Proceedings of ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2020, pp. 58–71.

[49] (2022) SQLancer. [Online]. Available: https://www.manuelrigger.at/
dbms-bugs/

[50] (2022) InnoDB transaction model. [Online]. Available: https://dev.
mysql.com/doc/refman/8.0/en/innodb-transaction-model.html

[51] J. N. Gray, R. A. Lorie, and G. R. Putzolu, “Granularity of locks in a
shared data base,” in Proceedings of International Conference on Very
Large Data Bases (VLDB), 1975, pp. 428–451.

[52] (2022) Next-key locking in MySQL. [Online]. Available: https:
//dev.mysql.com/doc/refman/8.0/en/innodb-next-key-locking.html

[53] (2022) Execution plan information in MySQL.
[Online]. Available: https://dev.mysql.com/doc/refman/8.0/en/
execution-plan-information.html

[54] (2022) DELETE fails to delete record after blocking is released.
[Online]. Available: https://jira.mariadb.org/browse/MDEV-27992

[55] (2022) Weird SELECT view when a record is modified to
a same value by two transactions. [Online]. Available: https:
//jira.mariadb.org/browse/MDEV-26642

https://www.mysql.com
https://mariadb.org
https://www.postgresql.org
https://pingcap.com
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
http://www.adp-gmbh.ch/ora/misc/isolation_level.html
http://www.adp-gmbh.ch/ora/misc/isolation_level.html
https://github.com/ept/hermitage
https://github.com/anse1/sqlsmith
https://bugs.mysql.com/bug.php?id=104833
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://github.com/
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://mariadb.com/kb/en/set-transaction/
https://mariadb.com/kb/en/set-transaction/
https://docs.pingcap.com/tidb/v5.0/transaction-isolation-levels
https://docs.pingcap.com/tidb/v5.0/transaction-isolation-levels
https://github.com/pingcap/go-randgen
https://github.com/pingcap/go-randgen
https://www.manuelrigger.at/dbms-bugs/
https://www.manuelrigger.at/dbms-bugs/
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-model.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-model.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-next-key-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-next-key-locking.html
https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html
https://dev.mysql.com/doc/refman/8.0/en/execution-plan-information.html
https://jira.mariadb.org/browse/MDEV-27992
https://jira.mariadb.org/browse/MDEV-26642
https://jira.mariadb.org/browse/MDEV-26642

[56] (2022) Inconsistent behaviors of UPDATE under RU & RC isolation
level. [Online]. Available: https://jira.mariadb.org/browse/MDEV-26643

[57] (2022) Weird SELECT view when a record is modified to
the same value by two transactions. [Online]. Available: https:
//github.com/pingcap/tidb/issues/28212

[58] (2022) UPDATE has inconsistent behaviors in a transaction. [Online].
Available: https://github.com/pingcap/tidb/issues/28092

[59] (2022) UPDATE with CAST has inconsistent behaviors in transaction.
[Online]. Available: https://github.com/pingcap/tidb/issues/28095

[60] (2022) Isolation levles - IBM documentation. [Online]. Available:
https://www.ibm.com/docs/en/db2/10.5?topic=issues-isolation-levels

[61] J. Jung, H. Hu, J. Arulraj, T. Kim, and W. Kang, “APOLLO: Automatic
detection and diagnosis of performance regressions in database systems,”
Proceedings of the VLDB Endowment (VLDB), vol. 13, no. 1, pp. 57–70,
2019.

[62] M. Wang, Z. Wu, X. Xu, J. Liang, C. Zhou, H. Zhang, and Y. Jiang,
“Industry practice of coverage-guided enterprise-level DBMS fuzzing,”
in Proceedings of International Conference on Software Engineering:
Software Engineering in Practice (ICSE SEIP), 2021, pp. 328–337.

[63] X. Liu, Q. Zhou, J. Arulraj, and A. Orso, “Automatic detection of
performance bugs in database systems using equivalent queries,” in Pro-
ceedings of IEEE/ACM SIGSOFT International Conference on Software
Engineering (ICSE), 2022, pp. 225–236.

[64] Y. Zheng, W. Dou, Y. Wang, Z. Qin, L. Tang, Y. Gao, D. Wang,
W. Wang, and J. Wei, “Finding bugs in Gremlin-based graph database
systems via randomized differential testing,” in Proceedings of ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), 2022, pp. 302–313.

[65] Z. Cui, W. Dou, Q. Dai, J. Song, W. Wang, J. Wei, and D. Ye,
“Differentially testing database transactions for fun and profit,” in Pro-
ceedings of IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2022, pp. 35:1–35:12.

[66] Y. Liang, S. Liu, and H. Hu, “Detecting logical bugs of DBMS
with coverage-based guidance,” in Proceedings of USENIX Security
Symposium (USENIX Security), 2022.

[67] J. Song, W. Dou, Z. Cui, Q. Dai, W. Wang, J. Wei, H. Zhong, and
T. Huang, “Testing database systems via differential query execution,”
in Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE), 2023.

[68] R. Yang, Y. Zheng, L. Tang, W. Dou, W. Wang, and J. Wei, “Random-
ized differential testing of RDF stores,” in Proceedings of IEEE/ACM
International Conference on Software Engineering (ICSE Demo), 2023.

[69] J. Ba and M. Rigger, “Testing database engines via query plan guidance,”

in Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE), 2023.

[70] M. Kamm, M. Rigger, C. Zhang, and Z. Su, “Testing graph database
engines via query partitioning,” in Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA),
2023.

[71] J. Liang, Y. Chen, Z. Wu, J. Fu, M. Wang, Y. Jiang, X. Huang, T. Chen,
J. Wang, and J. Li, “Sequence-oriented DBMS fuzzing,” in Proceedings
of IEEE International Conference on Data Engineering (ICDE), 2023.

[72] Z.-M. Jiang, J.-J. Bai, and Z. Su, “DynSQL: Stateful fuzzing for database
management systems with complex and valid SQL query generation,” in
Proceedings of USENIX Security Symposium (USENIX Security), 2023.

[73] Z. Hua, W. Lin, L. Ren, Z. Li, L. Zhang, W. Jiao, and T. Xie, “GDsmith:
Detecting bugs in Cypher graph database engines,” in Proceedings
of ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), 2023.

[74] W. Lin, Z. Hua, L. Zhang, and T. Xie, “GDiff: Automated differential
performance testing for graph database systems,” in Proceedings of
IEEE/ACM International Conference on Software Engineering (ICSE),
2023.

[75] Y. Deng, P. Frankl, and Z. Chen, “Testing database transaction concur-
rency,” in Proceedings of IEEE International Conference on Automated
Software Engineering (ASE), 2003, pp. 184–193.

[76] H. Luo, M. Masud, and H. Ural, “Detecting offline transaction concur-
rency problems,” Journal of Software, vol. 7, pp. 1855–1860, 2012.

[77] L. Brutschy, D. Dimitrov, P. Müller, and M. Vechev, “Static serializ-
ability analysis for causal consistency,” in Proceedings of SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2018, pp. 90–104.

[78] K. Rahmani, K. Nagar, B. Delaware, and S. Jagannathan, “CLOTHO:
Directed test generation for weakly consistent database systems,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, no. OOPSLA,
pp. 117:1–117:28, 2019.

[79] Y. Gan, X. Ren, D. Ripberger, S. Blanas, and Y. Wang, “IsoDiff:
Debugging anomalies caused by weak isolation,” Proceedings of the
VLDB Endowment (VLDB), vol. 13, no. 12, pp. 2773–2786, 2020.

[80] R. Biswas, D. Kakwani, J. Vedurada, C. Enea, and A. Lal, “MonkeyDB:
Effectively testing correctness under weak isolation levels,” Proceedings
of the ACM on Programming Languages, vol. 5, no. OOPSLA, pp.
132:1–132:27, 2021.

[81] C. Tang, Z. Wang, X. Zhang, Q. Yu, B. Zang, H. Guan, and H. Chen,
“Ad hoc transactions in web applications: The good, the bad, and the
ugly,” in Proceedings of International Conference on Management of
Data (SIGMOD), 2022, pp. 4–18.

https://jira.mariadb.org/browse/MDEV-26643
https://github.com/pingcap/tidb/issues/28212
https://github.com/pingcap/tidb/issues/28212
https://github.com/pingcap/tidb/issues/28092
https://github.com/pingcap/tidb/issues/28095
https://www.ibm.com/docs/en/db2/10.5?topic=issues-isolation-levels

	Introduction
	Preliminaries
	Approach
	Transaction Test Protocol
	Troc Overview
	Database and SQL Statement Generation
	Transaction Test Case Generation
	Transaction Oracle Construction
	Database Change History
	View Construction
	Statement Conflict Analysis
	Statement Execution Analysis

	Detecting Isolation Bugs

	Evaluation
	Experimental Methodology
	Overall Bug Detection Results
	New Bugs
	Other Experimental Statistics

	Discussion
	Related Work
	Conclusion
	References

