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ABSTRACT
Database Management Systems (DBMSs) are widely used to ef-
ficiently store and retrieve data. DBMSs usually support various
metadata, e.g., integrity constraints for ensuring data integrity and
indexes for locating data. DBMSs can further utilize these metadata
to optimize query evaluation. However, incorrect metadata-related
optimizations can introduce metadata-related logic bugs, which can
cause a DBMS to return an incorrect query result for a given query.

In this paper, we propose a general and effective testing approach,
Raw database construction (Radar), to detect metadata-related logic
bugs in DBMSs. Given a database 𝑑𝑏 containing some metadata,
Radar first constructs a raw database 𝑟𝑎𝑤𝐷𝑏, which wipes out the
metadata in 𝑑𝑏 and contains the same data as 𝑑𝑏. Since 𝑑𝑏 and
𝑟𝑎𝑤𝐷𝑏 have the same data, they should return the same query
result for a given query. Any inconsistency in their returned query
results indicates a metadata-related logic bug. To effectively de-
tect metadata-related logic bugs, we further propose a metadata-
oriented testing optimization strategy to focus on testing previously
unseen metadata, thus detecting more metadata-related logic bugs
quickly. We implement and evaluate Radar on five widely-used
DBMSs, and have detected 42 bugs, of which 38 have been con-
firmed as new bugs and 16 have been fixed by DBMS developers.
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1 INTRODUCTION
Database Management Systems (DBMSs) are fundamental to data-
intensive applications that demand for efficient data storage and
retrieval. Among various kinds of DBMSs, relational DBMSs, e.g.,
MySQL [17], PostgreSQL [19], and SQLite [22], are among the most
popular DBMSs [8]. Relational DBMSs are built on the relational
data model [35], and adopt Structured Query Language (SQL) [33]
as their standard query language. In this work, we mainly focus on
relational DBMSs. Unless otherwise stated, we simply call relational
DBMSs as DBMSs.

In DBMSs, database metadata describes the organization of data
in a database, including the structure of the database (e.g., data
types and integrity constraints in the database schema), indexes,
and storage configurations for the database. DBMSs can utilize
these metadata to ensure data integrity in their managed databases.
For example, a column 𝑐1 with the TINYINT data type in a table can
only store numeric values between −128 and 127. If the NOT NULL
constraint is applied on column 𝑐1, then NULL values cannot be
stored in column 𝑐1. If the UNIQUE constraint is applied on column
𝑐1, then column 𝑐1 is not allowed to store duplicate numeric values.

DBMSs can also utilize database metadata (e.g., integrity con-
straints and indexes) to optimize query evaluation [32, 41, 47, 64].
For example, if the NOT NULL constraint is applied on column 𝑐1 in
table 𝑡1, when evaluating the query 𝑆𝐸𝐿𝐸𝐶𝑇 𝑐1 𝐹𝑅𝑂𝑀 𝑡1𝑊𝐻𝐸𝑅𝐸

𝐼𝑆𝑁𝑈𝐿𝐿(𝑐1), a DBMS can directly return FALSE for the predi-
cate 𝐼𝑆𝑁𝑈𝐿𝐿(𝑐1) rather than evaluating this predicate on every
record of column 𝑐1 in table 𝑡1 [12]. If an index is applied on col-
umn 𝑐1 in table 𝑡1, when evaluating the query 𝑆𝐸𝐿𝐸𝐶𝑇 𝑐1 𝐹𝑅𝑂𝑀
𝑡1𝑊𝐻𝐸𝑅𝐸 𝑐1 > 10, a DBMS can quickly find the records that match
the condition 𝑐1 > 10, and avoid unnecessary data accesses [3].

However, such complex metadata-related query optimizations
can potentially introducemetadata-related logic bugs, i.e.,𝑚𝑒𝑡𝑎𝐵𝑢𝑔s
for short.𝑚𝑒𝑡𝑎𝐵𝑢𝑔s can cause a DBMS to silently compute an in-
correct result for a given query, and can easily go unnoticed by
DBMS developers.𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in DBMSs are also difficult to detect
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1. -- Database db
2. CREATE TABLE t1(c1 INT NOT NULL);
3. INSERT INTO t1 VALUES (0);

4. -- Database rawDb
5. CREATE TABLE t1(c1 INT);
6. INSERT INTO t1 VALUES (0);

7. -- Query Q
8. SELECT CAST(IFNULL(c1,'0') AS DATE) FROM t1;
9. -- {0000 -00 -00} in database db ✘

10. -- {NULL} in database rawDb ✔

11. -- A simplified code patch for IFNULL function
12. if 𝑐1 has Constraint ‘NOT NULL’ then
13. - return 𝑐1
14. + 𝑐1′ ← 𝑇𝑦𝑝𝑒𝐶𝑎𝑠𝑡 (𝑐1,′ 0′ ) -- Change 0 to '0'
15. + return 𝑐1′
16. else
17. implement IFNULL correctly

Listing 1: TiDB#41734. The IFNULL function incorrectly
handles the NOT NULL constraint in TiDB.

automatically, since we lack effective strategies to specifically test
metadata-related optimizations, as well as effective test oracles
to judge whether the metadata-related optimization in a DBMS
behaves correctly for a given query.

Listing 1 shows a real-world𝑚𝑒𝑡𝑎𝐵𝑢𝑔 TiDB#41374 detected by
our approach in the widely-used DBMS TiDB [46]. The database
𝑑𝑏 contains a table 𝑡1, which has a column 𝑐1 with the INT data
type and the NOT NULL constraint (Line 1−3). Due to the incorrect
optimization in the IFNULL function shown in Line 13 (the IFNULL
function directly returns the value of column 𝑐1, i.e., an INT value
0), an incorrect value 0000 − 00 − 00 is returned (Line 9). In the
correct implementation (Line 14−15), the IFNULL function needs to
cast the INT value 0 into ‘0’, resulting in a correct query result NULL
(Line 10) [9]. We report this bug to TiDB developers, who classified
it as a Major bug and quickly fixed it.

Recently, researchers have proposed many approaches to detect
logic bugs in DBMSs [34, 43, 61–63, 65, 66, 68]. RAGS [65] executes
queries on multiple DBMSs, and identifies differences among their
query results. However, differential testing cannot detect bugs that
occur in all DBMSs and cannot test specific features of individual
DBMSs. DQE [66], NoREC [61], and TLP [62] construct queries that
are equivalent to original queries, and identify differences among
their execution results. However, such query transformations can-
not effectively disable the buggy metadata-related optimizations,
and thusmiss𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. MutaSQL [34] can detect logic bugs related
to indexes by adding indexes to tables and observing changes in the
query results. However, MutaSQL cannot support most database
metadata, e.g., NOT NULL, GENERATED, and FOREIGN KEY. Therefore,
existing approaches cannot effectively detect𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in DBMSs,
and may miss many real-world𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

Given a database 𝑑𝑏 with some metadata (e.g., integrity con-
straints and indexes), DBMSs can utilize these metadata to evaluate
a query 𝑄 in an optimized way. If we remove these metadata from
database 𝑑𝑏, DBMSs have to evaluate the same query 𝑄 in the cor-
responding unoptimized way. We observe that these two kinds of
query evaluations should return the same query result for query
𝑄 . Listing 1 shows such an example. If the NOT NULL constraint
is applied on column 𝑐1 in table 𝑡1, TiDB evaluates query 𝑄 in an
optimized way (Line 12−15). If we remove the NOT NULL constraint

(Line 5), TiDB evaluates 𝑄 in an unoptimized way (Line 16−17). If
any inconsistency occurs between the optimized and unoptimized
query evaluations, a𝑚𝑒𝑡𝑎𝐵𝑢𝑔 is revealed.

Based on the above observation, we propose Raw database const-
ruction (Radar), a general testing approach to detect𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in
DBMSs. Specifically, we first randomly generate a database 𝑑𝑏 that
contains some metadata. Then, we construct a raw database 𝑟𝑎𝑤𝐷𝑏,
which has the same data with 𝑑𝑏, but does not contain the metadata
in𝑑𝑏. Given a query𝑄 , we execute it on𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏, respectively,
and then compare their returned query results. Any inconsistency
in their returned query results indicates a𝑚𝑒𝑡𝑎𝐵𝑢𝑔 in the target
DBMS. As shown in Listing 1, the database 𝑑𝑏 and its correspond-
ing raw database 𝑟𝑎𝑤𝐷𝑏 return different query results for query
𝑄 (Line 8−10), thus we can detect this𝑚𝑒𝑡𝑎𝐵𝑢𝑔. To improve test-
ing efficiency and avoid testing databases with similar metadata,
we further propose a metadata-oriented testing optimization strat-
egy. So, we can continue testing databases with previously unseen
metadata, and detect more unique𝑚𝑒𝑡𝑎𝐵𝑢𝑔s quickly.

To evaluate the effectiveness of Radar, we implement and eval-
uate it on five widely-used DBMSs, i.e., MySQL [17], SQLite [22],
MariaDB [14], CockroachDB [5], and TiDB [24]. In total, we have
detected 42 bugs among these DBMSs, of which 38 have been con-
firmed as unique and previously unknown bugs, and 16 bugs have
been fixed by DBMS developers. Our experimental results also show
that the metadata-oriented testing optimization strategy can help
to test databases with diverse metadata faster and discover more
unique bugs. We further compare Radar with four state-of-the-art
DBMS testing approaches, i.e., DQE [66], NoREC [61], TLP [62],
and MutaSQL [34] in their bug detection capabilities. At most 13
out of the confirmed𝑚𝑒𝑡𝑎𝐵𝑢𝑔s can be detected by these approaches.
The DBMS developers greatly appreciate our approach, e.g., TiDB
developers want to integrate Radar to their internal testing pro-
cess [11]. We believe that the generality of Radar can greatly help
improve the reliability of DBMSs.

In summary, we make the following contributions.
• We propose Radar, a general and effective testing approach to

detect metadata-related logic bugs in DBMSs.We solve the test
oracle problem by comparing the query results on databases
that contain the same data but with different metadata.

• We propose a metadata-oriented testing optimization strategy
to improve Radar’s testing efficiency, which can test databases
with diverse metadata and discover unique bugs quickly.
• We implement Radar and evaluate it on five widely-used

DBMSs. We have found 42 bugs in these DBMSs, of which 38
have been confirmed as unique and new bugs.

2 PRELIMINARIES
We first introduce Database Management Systems (DBMSs) and
our target DBMSs (Section 2.1). Then we explain database metadata
(Section 2.2), and metadata-related query optimizations (Section 2.3)
in our target DBMSs.

2.1 Database Management Systems and SQL
Database Management Systems (DBMSs) provide efficient data
storage and retrieval for many business-critical applications. Specif-
ically, relational DBMSs (e.g., MySQL [17], PostgreSQL [19], and

https://github.com/pingcap/tidb/issues/41734


Table 1: Target DBMSs

DBMS DB-Engines Ranking GitHub Stars Type
MySQL 2 9.6K Traditional
SQLite 9 4.7K Embedded
MariaDB 13 5k Traditional
CockroachDB 64 28K NewSQL
TiDB 88 35K NewSQL

SQLite [22]) are built on the relational data model [35] that orga-
nizes data into tables composed of columns and rows. Relational
DBMSs are among the most widely-used DBMSs.

Relational DBMSs commonly support SQL as their standard
query language. According to the functionalities of SQL statements,
they can be roughly divided into four categories: (1) statements
for creating and modifying database metadata, e.g., CREATE TABLE,
ALTER TABLE and CREATE INDEX; (2) statements for retrieving
database metadata, e.g., SHOW CREATE TABLE; (3) statements for
modifying data, e.g., INSERT, UPDATE, DELETE and TRUNCATE; (4)
statements for retrieving data, e.g., SELECT.

In this work, we select five popular relational DBMSs (shown
in Table 1), including two traditional DBMSs (MySQL [17] and
MariaDB [14]), one embeddedDBMS (SQLite [22]) and twoNewSQL
DBMSs (CockroachDB [5] and TiDB [24]). MySQL, MariaDB, and
SQLite are among the most popular DBMSs according to the DB-
Engines Ranking [8]. CockroachDB and TiDB are among the most
popular DBMSs according to the GitHub Database Topic [6].

2.2 Database Metadata
DBMSs use database metadata to describe the organization and
structure of data in their managed databases. Figure 1 shows a
formal description for database metadata in our target DBMSs. A
database consists of one or more tables. Each table consists of a table
name (i.e., 𝑡𝑁𝑎𝑚𝑒), one or more columns (i.e., 𝑐𝑜𝑙𝑢𝑚𝑛), some op-
tional table constraints (i.e., 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ) and table configurations
(i.e., 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔). Each column consists of a column name (i.e., 𝑐𝑁𝑎𝑚𝑒),
a data type (i.e., 𝑡𝑦𝑝𝑒), and some optional column constraints (i.e.,
𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ). Note that all the above database metadata are user-
configurable metadata. We do not consider system-level metadata
as database metadata in our work, e.g., Write-Ahead Logging (WAL)
logs [48] and Manifest files [13], which are typically maintained by
the underlying DBMS.

Data types (i.e., 𝑡𝑦𝑝𝑒) define the type of values that can be stored
in a column. DBMSs support various data types, e.g., INT, VARCHAR,
BLOB, and BOOLEAN. Note that every column is required to have
a data type in MySQL, MariaDB, CockroachDB and TiDB, except
SQLite. When no type is specified on a column, SQLite uses BLOB
as its type affinity.

Column constraints (i.e., 𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ) are integrity constraints
that are directly attached to a specific column, and are used to
limit the values stored in the column. Our target DBMSs support
three kinds of column constraints, i.e., NOT NULL, DEFAULT, and
GENERATED. The NOT NULL constraint enforces a column not to store
NULL values. The DEFAULT constraint specifies the default value of a
column, e.g., 𝐷𝐸𝐹𝐴𝑈𝐿𝑇 0. The GENERATED constraint specifies how
values are automatically generated for a column through a specified

𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 :=< 𝑡𝑎𝑏𝑙𝑒+ >
𝑡𝑎𝑏𝑙𝑒 :=< 𝑡𝑁𝑎𝑚𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛+, 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∗, 𝑖𝑛𝑑𝑒𝑥∗, 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔∗ >

𝑐𝑜𝑙𝑢𝑚𝑛 :=< 𝑐𝑁𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒, 𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∗ >
𝑡𝑦𝑝𝑒 := 𝐼𝑁𝑇 | 𝑉𝐴𝑅𝐶𝐻𝐴𝑅 | 𝐵𝑂𝑂𝐿𝐸𝐴𝑁 | 𝐵𝐿𝑂𝐵 | 𝐷𝐴𝑇𝐸 |

𝐹𝐿𝑂𝐴𝑇 | 𝐷𝐸𝐶𝐼𝑀𝐴𝐿 | . . .
𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 := 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 | 𝐷𝐸𝐹𝐴𝑈𝐿𝑇 𝑐𝑜𝑛𝑠𝑡 | 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑒𝑥𝑝 )
𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 := [𝑃𝑅𝐼𝑀𝐴𝑅𝑌 𝐾𝐸𝑌 | 𝑈𝑁𝐼𝑄𝑈𝐸 ] (𝑐𝑁𝑎𝑚𝑒+) |

𝐶𝐻𝐸𝐶𝐾 (𝑒𝑥𝑝 ) | 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 (𝑠𝑟𝑐𝐶𝑜𝑙, 𝑡𝑎𝑟𝑔𝑒𝑡𝐶𝑜𝑙 )
𝑖𝑛𝑑𝑒𝑥 := [𝑈𝑁𝐼𝑄𝑈𝐸 𝐼𝑁𝐷𝐸𝑋 |𝐼𝑁𝐷𝐸𝑋 ] (𝑐𝑁𝑎𝑚𝑒+)

𝑡𝐶𝑜𝑛𝑓 𝑖𝑔 := 𝐸𝑁𝐺𝐼𝑁𝐸 | 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁𝐼𝑁𝐺 𝐵𝑌 𝐻𝐴𝑆𝐻 (𝑐𝑁𝑎𝑚𝑒 ) |
𝐶𝐻𝐴𝑅𝐴𝐶𝑇𝐸𝑅 𝑆𝐸𝑇 | 𝐶𝑂𝐿𝐿𝐴𝑇𝐸 | . . .

𝑒𝑥𝑝 := 𝑐𝑜𝑛𝑠𝑡 | 𝑐𝑁𝑎𝑚𝑒 |𝐹𝑈𝑁 (𝑒𝑥𝑝 ) | 𝑒𝑥𝑝 [+| − | × |÷] 𝑒𝑥𝑝 |
𝑒𝑥𝑝 [𝑂𝑅 |𝑋𝑂𝑅 |𝐴𝑁𝐷 | ] 𝑒𝑥𝑝 | 𝑁𝑂𝑇 𝑒𝑥𝑝 | . . .

Figure 1: A formal description for database metadata. 𝑡𝑒𝑟𝑚+
(e.g., 𝑡𝑎𝑏𝑙𝑒+) denotes one or more terms, and 𝑡𝑒𝑟𝑚∗ (e.g.,
𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡∗) denotes zero or more terms.

expression. For example, the value of a column 𝑐1with the INT data
type and the 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑐2 + 𝑐3) constraint is automatically
obtained by calculating the sum of values in columns 𝑐2 and 𝑐3.

Table constraints (i.e., 𝑡𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ) are integrity constraints
that can be applied to one or more columns. We focus on four types
of table constraints in our paper.

• The PRIMARY KEY constraint uniquely identifies each record
in a table. PRIMARY KEY must contain unique values, and
usually cannot contain NULL values. A table can have at most
one PRIMARY KEY. The PRIMARY KEY can be applied on one
or more columns. For example, the 𝑃𝑅𝐼𝑀𝐴𝑅𝑌 𝐾𝐸𝑌 (𝑐1, 𝑐2)
represents that the combination of columns 𝑐1 and 𝑐2 is a
unique row identifier.

• The UNIQUE constraint ensures that all values are unique. A
table can have zero or more UNIQUE constraints. A UNIQUE
constraint can be applied on one or more columns, and these
columns can contain NULL values. For example, the𝑈𝑁𝐼𝑄𝑈𝐸 (
𝑐1, 𝑐2) constraint requires that the combination of values in
columns 𝑐1 and 𝑐2 is unique.

• The CHECK constraint is used to limit the values that can be
stored in the table through an expression. The CHECK con-
straint can be applied on one or more columns. For example,
the 𝐶𝐻𝐸𝐶𝐾 (𝑐1 + 𝑐2 > 0) constraint specifies that the sum of
columns 𝑐1 and 𝑐2 should be greater than 0.

• The FOREIGN KEY constraint is used to define a relation-
ship between two columns in different tables. For example,
the 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 𝑡1.𝑐1 𝑅𝐸𝐹𝐸𝑅𝐸𝑁𝐶𝐸𝑆 𝑡2(𝑐2) constraint en-
forces the values of source column 𝑐1 in table 𝑡1 to be the
subset of the values of target column 𝑐2 in table 𝑡2.

Index (i.e., 𝑖𝑛𝑑𝑒𝑥) is an auxiliary data structure that optimizes
data querying on a table without having to search each row in the
table. An INDEX can be created using one or more columns of a
table, and may be declared as UNIQUE INDEX, which both creates an
index and applies the UNIQUE constraint on the specified columns.
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Figure 2: The architecture of Radar.

Table configurations (i.e., 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔) are used to customize vari-
ous aspects of the table’s performance and storage characteristics.
For example, we can use the ENGINE configuration in MySQL to
specify the storage engine used for the table. We can specify the
character set and collection by the CHARACTER SET and COLLATE
configurations, respectively. We can use the PARTITIONING config-
uration in TiDB to distribute data physically in a table.

2.3 Metadata-Related Query Optimization
According to how a database metadata affects a query 𝑄’s execu-
tion result on a database, we classify database metadata into two
categories, i.e., compulsory database metadata and optional data-
base metadata. Compulsory database metadata must be required
to execute a query 𝑄 , including table names, column names, data
types and partial table configurations (e.g., ENGINE and CHARACTER
SET). Optional database metadata cannot affect the execution result
of the query 𝑄 , including column constraints, table constraints,
indexes, and partial table configurations e.g., PARTITIONING.

DBMSs utilize optional database metadata to optimize query
evaluation [32, 41, 47, 64]. For example, for a column that has the
NOT NULL constraint, a DBMS can directly return the evaluation
results of some functions and operators (e.g., the IFNULL function
and the IS NULL operator) instead of evaluating the functions or
operators on each record in the table. Moreover, a DBMS can utilize
indexes to quickly match those records that satisfy a predicate. For
example, a hash index on some columns can help MySQL perform
efficient lookups for equality comparisons [16] on these columns.

3 APPROACH
We propose Radar to effectively detect𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in DBMSs. The
core idea of Radar is as follows. Given a database 𝑑𝑏 with some
optional database metadata (e.g., integrity constraints and indexes),
we can wipe out these optional database metadata, and construct
a raw database 𝑟𝑎𝑤𝐷𝑏. Since 𝑟𝑎𝑤𝐷𝑏 does not contain optional
database metadata, metadata-related optimizations in DBMSs will
be disabled when evaluating a query 𝑄 on 𝑟𝑎𝑤𝐷𝑏. Since 𝑑𝑏 and
𝑟𝑎𝑤𝐷𝑏 contain the same data, evaluating query𝑄 on𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏
should return the same query result. Any inconsistency in their
returned query results indicates a𝑚𝑒𝑡𝑎𝐵𝑢𝑔.

3.1 Radar’s Architecture
Figure 2 shows the architecture of Radar, which consists of five
components. The database generation component ( 1○) generates

Algorithm 1: The workflow of Radar
Input:𝑚𝑎𝑥𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (The number of generated queries)

1 repeat
2 𝑑𝑏 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 ( )
3 if 𝑖𝑠𝑁𝑒𝑤𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 (𝑑𝑏 ) then
4 𝑟𝑎𝑤𝐷𝑏 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑅𝑎𝑤𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 (𝑑𝑏 )
5 for 𝑖 ← 1 to𝑚𝑎𝑥𝑄𝑢𝑒𝑟𝑖𝑒𝑠 do
6 𝑄 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑑𝑏 )
7 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝐴𝑛𝑑𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑄,𝑑𝑏, 𝑟𝑎𝑤𝐷𝑏 )

8 until a fixed time budget

valid databases, and the query generation component ( 4○) utilizes
the generated databases to generate valid queries. Radar utilizes a
syntax-guided generation approach to avoid generating syntacti-
cally or semantically incorrect SQL statements. The raw database
construction component ( 3○) synthesizes SQL statements to create
a raw database 𝑟𝑎𝑤𝐷𝑏 for a given database 𝑑𝑏. These two databases
serve as a cross-reference oracle to validate the query executions in
the𝑚𝑒𝑡𝑎𝐵𝑢𝑔 identification component ( 5○). To improve the testing
efficiency, Radar utilizes themetadata-oriented testing optimization
component ( 2○) that filters out databases with similar metadata.

Algorithm 1 shows the workflow of Radar. We explain the work-
flow by using the example in Figure 2. We first randomly generate a
database 𝑑𝑏, e.g., a database contains a table 𝑡1, which has a column
𝑐1 with the INT data type and the NOT NULL constraint (Line 2).
We further obtain and analyze 𝑑𝑏’s metadata to check whether we
need to test 𝑑𝑏 (Line 3). If 𝑑𝑏’s metadata is new (i.e., has not been
previously tested), we will test 𝑑𝑏 (Line 4-7). Otherwise, we will
regenerate a new database (Line 2). For an interesting 𝑑𝑏 with new
database metadata, we construct its corresponding raw database
𝑟𝑎𝑤𝐷𝑏 by wiping out the optional database metadata in 𝑑𝑏 (e.g, the
NOT NULL constraint in column 𝑐1) (Line 4). We then generate a ran-
dom query𝑄 based on 𝑑𝑏 (Line 6). We execute𝑄 on 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏
respectively, compare the returned query results on 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏,
and report any inconsistency as a𝑚𝑒𝑡𝑎𝐵𝑢𝑔 (Line 7). We continue
testing 𝑑𝑏 (Line 6-7) until we have generated a configurable number
(i.e.,𝑚𝑎𝑥𝑄𝑢𝑒𝑟𝑖𝑒𝑠) of queries on 𝑑𝑏. We set𝑚𝑎𝑥𝑄𝑢𝑒𝑟𝑖𝑒𝑠 as 5, 000 in
our experiments. We repeat the above testing process (Line 2-7)
until a fixed time budget is exhausted.

3.2 Database and Query Generation
We present the database and query generation in Radar as follows.



Algorithm 2: Table generation
Input:𝑚𝑎𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠 (The maximum number of columns)

1 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑢𝑚 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (1,𝑚𝑎𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠 )
2 𝑠𝑡𝑚𝑡 ← ‘CREATE TABLE’
3 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑎𝑚𝑒 ( ) // e.g., t1
4 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘(’
5 for 𝑖 ← 1 to 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑢𝑚 do
6 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑟𝑎𝑛𝑑𝑜𝑚𝑁𝑎𝑚𝑒 ( ) // e.g., c1
7 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ ’ + 𝑟𝑎𝑛𝑑𝑜𝑚𝑇𝑦𝑝𝑒 ( ) // e.g., INT
8 if 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ( ) then
9 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ NOT NULL’

10 if 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ( ) then
11 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ DEFAULT ’ + 𝑟𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ( )
12 if 𝑟𝑎𝑛𝑑𝑜𝑚𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ( ) then
13 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘ GENERATED ALWAYS AS (’ +

𝑟𝑎𝑛𝑑𝑜𝑚𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ( ) + ‘)’
14 if 𝑖 ≠ 𝑐𝑜𝑙𝑢𝑚𝑛𝑁𝑢𝑚 then
15 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘,’

16 𝑎𝑝𝑝𝑒𝑛𝑑𝑅𝑎𝑛𝑑𝑜𝑚𝑇𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 (𝑠𝑡𝑚𝑡 ) // e.g., UNIQUE(c1)
17 𝑠𝑡𝑚𝑡 ← 𝑠𝑡𝑚𝑡 + ‘)’
18 𝑎𝑝𝑝𝑒𝑛𝑑𝑅𝑎𝑛𝑑𝑜𝑚𝑇𝑎𝑏𝑙𝑒𝐶𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑠𝑡𝑚𝑡 ) // e.g.,

ENGINE=InnoDB
19 return 𝑠𝑡𝑚𝑡

3.2.1 Database Generation. We generate a database in the target
DBMS by constructing and executing statements that are used to
create a database schema and populate data. Specifically, we first cre-
ate a database named 𝑑𝑏 by executing the𝐶𝑅𝐸𝐴𝑇𝐸 𝐷𝐴𝑇𝐴𝐵𝐴𝑆𝐸 𝑑𝑏
statement. We then create at most𝑚𝑎𝑥𝑇𝑎𝑏𝑙𝑒𝑠 tables by generating
and executing CREATE TABLE statements on 𝑑𝑏 according to the
database metadata in Figure 1 for the target DBMS.

Algorithm 2 illustrates the process of constructing CREATE TABLE
statements in Radar. Specifically, we generate a table with a ran-
dom name (Line 3) and a random number (at most𝑚𝑎𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠)
of columns (Line 5-15). Each column has a random name (Line 6),
a random data type (e.g., INT and DOUBLE) (Line 7) and some ran-
dom column constraints (e.g., NOT NULL, DEFAULT and GENERATED)
(Line 8-13). We further randomly add some table constraints (i.e.,
CHECK, PRIMARY KEY and UNIQUE) on some columns (Line 16), e.g.,
𝑈𝑁𝐼𝑄𝑈𝐸 (𝑐1). If the target DBMS supports table configurations
(e.g., MySQL and TiDB), we also randomly add some table configu-
rations with proper values (Line 18), e.g., ENGINE=InnoDB. During
table generation, we record the generated columns and table con-
straints to avoid violating semantic constraints in CREATE TABLE
statements. For example, if we have already generated a PRIMARY
KEY, we do not generate another one because a table can have at
most one PRIMARY KEY.

For the generated tables, we randomly build some indexes by ex-
ecuting at most𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥𝑒𝑠 CREATE INDEX statements. When the
generated database contains more than one table, we randomly add
FOREIGN KEY constraints by executing at most𝑚𝑎𝑥𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐾𝑒𝑦𝑠
ALTER TABLE statements. We finally populate random data into
each table by executing at most𝑚𝑎𝑥𝑅𝑜𝑤𝑠 INSERT statements. We
follow a similar statement generation process when generating
CREATE INDEX, ALTER TABLE, and INSERT statements.

SELECT [fields] FROM [table source] WHERE [predicate]

SELECT [fields] FROM t1 LEFT JOIN t2 WHERE [predicate]

SELECT t1.c1, t2.c2 FROM t1 LEFT JOIN t2 WHERE [predicate]

SELECT t1.c1, t2.c2 FROM t1 LEFT JOIN t2 WHERE t1.c1>1 AND t2.c2<3

① Randomly generate a table source

② Randomly generate fields based on the table source

③ Randomly generate an expression based on the table source

Figure 3: An illustrative example for query generation.

Radar supports generating databases with various metadata,
including various data types, column constraints, table constraints,
indexes, and table configurations. The SQL features used in database
generation can be either standard or dialectal.

Note that𝑚𝑎𝑥𝑇𝑎𝑏𝑙𝑒𝑠 ,𝑚𝑎𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠 ,𝑚𝑎𝑥𝑅𝑜𝑤𝑠 ,𝑚𝑎𝑥𝐼𝑛𝑑𝑒𝑥𝑒𝑠 and
𝑚𝑎𝑥𝐹𝑜𝑟𝑒𝑖𝑔𝑛𝐾𝑒𝑦𝑠 are all configurable. We set them as 3, 3, 30, 5 and
3 in our experiments, respectively. As shown in Figure 2, we can
generate a database 𝑑𝑏 that contains a table 𝑡1 with a column 𝑐1
and one row with value 0. The column 𝑐1 has the INT data type and
the NOT NULL constraint.

3.2.2 Query Generation. We generate queries based on the syn-
tax of SELECT statements and the database metadata in 𝑑𝑏. The
generated queries should be able to execute on both the generated
database 𝑑𝑏 and the raw database 𝑟𝑎𝑤𝐷𝑏 (Section 3.3), and produce
deterministic query results on these two databases.

Specifically, we randomly generate a select-from-where query,
and then randomly generate other optional clauses. Figure 3 illus-
trates an example for query generation. We first randomly generate
a table source based on the generated database metadata. The table
source may contain one table or multiple tables that are connected
with a join operator, e.g., 𝑡1 𝐿𝐸𝐹𝑇 𝐽𝑂𝐼𝑁 𝑡2 (step 1○). We then ran-
domly generate the select fields that contain some columns based
on the table source, e.g., 𝑡1.𝑐1, 𝑡2.𝑐2 (step 2○). We finally randomly
generate an expression based on the columns in the table source to
form the predicate, e.g., 𝑡1.𝑐1 > 1 𝐴𝑁𝐷 𝑡2.𝑐2 < 3 (step 3○). Simi-
larly, we can generate other optional clauses, e.g., GROUP BY, ORDER
BY and LIMIT, and append these optional clauses to the generated
select-from-where query.

Query generation in Radar supports almost all key features (e.g.,
joins, sub queries, and complex predicates) as specified by the SQL
standard, and tailored features (e.g., high_priority and straight_join
in MySQL) adopted by the target DBMS.

But, Radar cannot support some functions that can make it
ineffective. First, Radar cannot support queries that contain the
DEFAULT function and index hints. For example, the 𝐷𝐸𝐹𝐴𝑈𝐿𝑇 (𝑐1)
function requires that the column 𝑐1 should have the DEFAULT con-
straint, and the index hint@{𝐹𝑂𝑅𝐶𝐸_𝐼𝑁𝐷𝐸𝑋 = 𝑖0} requires the
existence of index 𝑖0. But, 𝑟𝑎𝑤𝐷𝑏 does not contain DEFAULT con-
straints and indexes, thus the above queries cannot be executed
on 𝑟𝑎𝑤𝐷𝑏. Second, Radar cannot support queries with database-
related functions that return information specific to databases, e.g.,
the CURRENT_DATABASE function that returns the name of current
databasewill return different names for𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏. Third, Radar
cannot support queries with non-deterministic functions, e.g., the
RAND function that returns different values in different executions.
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Figure 4: An example for constructing a raw database 𝑟𝑎𝑤𝐷𝑏 for a given database 𝑑𝑏.

𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 :=< 𝑡𝑎𝑏𝑙𝑒+ >
𝑡𝑎𝑏𝑙𝑒 :=< 𝑡𝑁𝑎𝑚𝑒, 𝑐𝑜𝑙𝑢𝑚𝑛+ >

𝑐𝑜𝑙𝑢𝑚𝑛 :=< 𝑐𝑁𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒 >

𝑡𝑦𝑝𝑒 := 𝐼𝑁𝑇 | 𝑉𝐴𝑅𝐶𝐻𝐴𝑅 | 𝐵𝑂𝑂𝐿𝐸𝐴𝑁 | 𝐵𝐿𝑂𝐵 | 𝐷𝐴𝑇𝐸 |
𝐹𝐿𝑂𝐴𝑇 | 𝐷𝐸𝐶𝐼𝑀𝐴𝐿 | . . .

𝑡𝐶𝑜𝑛𝑓 𝑖𝑔 := 𝐸𝑁𝐺𝐼𝑁𝐸 | 𝐶𝐻𝐴𝑅𝐴𝐶𝑇𝐸𝑅 𝑆𝐸𝑇 | 𝐶𝑂𝐿𝐿𝐴𝑇𝐸 | . . .

Figure 5: A formal description for database metadata in raw
databases.

3.3 Raw Database Construction
After generating a database 𝑑𝑏, we construct its corresponding raw
database 𝑟𝑎𝑤𝐷𝑏 by wiping out the optional database metadata in
𝑑𝑏. In the rest of this section, we first present a formal descrip-
tion for database metadata in raw databases in our target DBMSs
(Section 3.3.1), and then explain how we construct a raw database
𝑟𝑎𝑤𝐷𝑏 for a given database 𝑑𝑏 (Section 3.3.2).

3.3.1 Database Metadata in Raw Databases. A raw database can
only contain compulsory database metadata, and can not contain
any optional databasemetadata. Figure 5 shows a formal description
for database metadata in raw databases in our target DBMSs. A raw
database consists of one or more tables. Each table consists of a table
name (i.e., 𝑡𝑁𝑎𝑚𝑒), and one or more columns. Each column consists
of a column name (i.e., 𝑐𝑁𝑎𝑚𝑒) and a data type (i.e., 𝑡𝑦𝑝𝑒). Note
that a raw database may contain some table configurations (e.g.,
ENGINE in MySQL and TiDB), because such table configurations
are compulsory for these DBMSs.

3.3.2 Constructing Raw Databases. For a given database 𝑑𝑏, we
first create an empty database as its corresponding raw database
𝑟𝑎𝑤𝐷𝑏 by executing the CREATE DATABASE statement. Then we
analyze 𝑑𝑏’s database metadata, and construct 𝑟𝑎𝑤𝐷𝑏’s database
metadata according to Figure 5. Finally, we create the corresponding
tables in 𝑟𝑎𝑤𝐷𝑏 based on 𝑟𝑎𝑤𝐷𝑏’s metadata, and copy table data
in 𝑑𝑏 into 𝑟𝑎𝑤𝐷𝑏.

Construct database metadata in 𝑟𝑎𝑤𝐷𝑏. We construct data-
base metadata in 𝑟𝑎𝑤𝐷𝑏 by first obtaining all the database meta-
data in 𝑑𝑏 and then extracting compulsory database metadata in 𝑑𝑏.
DBMSs usually provide some SQL statements to obtain the meta-
data in a database, e.g., the 𝑆𝐻𝑂𝑊 𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸 statement in
MySQL, CockroachDB, and TiDB, and the 𝑃𝑅𝐴𝐺𝑀𝐴𝑇𝐴𝐵𝐿𝐸_𝐼𝑁 𝐹𝑂

statement in SQLite. We can obtain database metadata in 𝑑𝑏 by di-
rectly applying such statements on 𝑑𝑏 and formalizing the returned
results of these statements in the manner shown in Figure 1. Then
we construct the database metadata in 𝑟𝑎𝑤𝐷𝑏 by removing all the
optional metadata in 𝑑𝑏.

Create tables and copy data to 𝑟𝑎𝑤𝐷𝑏. Based on the metadata
in 𝑟𝑎𝑤𝐷𝑏, i.e., the table name, column names and data types in each
table, we first build the corresponding CREATE TABLE statements,
and execute these CREATE TABLE statements on 𝑟𝑎𝑤𝐷𝑏. Then we
copy the data in 𝑑𝑏’s tables into the corresponding tables in 𝑟𝑎𝑤𝐷𝑏.
Different DBMSs support different ways to copy table data from 𝑑𝑏

to 𝑟𝑎𝑤𝐷𝑏. We encounter two situations for our target DBMSs.
• SomeDBMSs, e.g., MySQL,MariaDB, CockroachDB, and TiDB,

support cross-database references. For these DBMSs, we can
directly utilize the INSERT INTO SELECT statement to copy
data across databases. For example, we can execute the 𝐼𝑁𝑆𝐸𝑅𝑇
𝐼𝑁𝑇𝑂 𝑟𝑎𝑤𝐷𝑏.𝑡1 𝑆𝐸𝐿𝐸𝐶𝑇 ∗ 𝐹𝑅𝑂𝑀 𝑑𝑏.𝑡1 statement to copy
the data of table 𝑡1 in 𝑑𝑏 into table 𝑡1 in 𝑟𝑎𝑤𝐷𝑏.

• Some DBMSs, e.g., SQLite, do not support cross-database ref-
erences. For these DBMSs, we first clone 𝑑𝑏 as 𝑟𝑎𝑤𝐷𝑏 (e.g.,
copying 𝑑𝑏’s database file in SQLite) and rename all the tables
in 𝑟𝑎𝑤𝐷𝑏 with different table names. For example, we rename
table 𝑡1 as 𝑡1𝑛𝑒𝑤 in 𝑟𝑎𝑤𝐷𝑏. We then create tables based on
the extracted metadata in 𝑟𝑎𝑤𝐷𝑏. These newly created tables
do not contain any optional metadata and have the same table
names, column names and data types as those in 𝑑𝑏. Then, we
can utilize the INSERT INTO SELECT statement to copy data
from 𝑡1𝑛𝑒𝑤 to 𝑡1 in 𝑟𝑎𝑤𝐷𝑏. Finally, we delete all the renamed
tables (e.g., 𝑡1𝑛𝑒𝑤 ) in 𝑟𝑎𝑤𝐷𝑏.

Figure 4 shows an example about how to construct a raw database
𝑟𝑎𝑤𝐷𝑏 for a given database 𝑑𝑏. The database 𝑑𝑏 contains two tables
𝑡1 and 𝑡2. Table 𝑡1 contains a column 𝑐1with the INT data type, and a
column 𝑐2with the INT data type and the𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑐1+1) con-
straint. Table 𝑡1 also contains a𝑈𝑁𝐼𝑄𝑈𝐸 (𝑐1) constraint on column
𝑐1. Table 𝑡2 contains a column 𝑐3with the INT data type and the NOT
NULL constraint. Table 𝑡2 also contains a 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 (𝑐3, 𝑡1.𝑐1)
constraint, indicating that column 𝑐3 refers to column 𝑐1 in table
𝑡1. We first obtain the metadata in 𝑑𝑏 (shown in the second part
in Figure 4), and extract the compulsory metadata in 𝑑𝑏 to con-
struct the metadata in 𝑟𝑎𝑤𝐷𝑏 (shown in third part in Figure 4).
We then build the CREATE TABLE statements based on 𝑟𝑎𝑤𝐷𝑏’s
metadata, i.e., table names 𝑡1 and 𝑡2, column names 𝑐1, 𝑐2, and
𝑐3, and data type INT. We build two CREATE TABLE statements,



Algorithm 3:𝑚𝑒𝑡𝑎𝐵𝑢𝑔 identification
Input:𝑄 (The generated query), 𝑑𝑏 (The generated database),

𝑟𝑎𝑤𝐷𝑏 (The corresponding raw database)
1 Function executeAndValidate(Q, db, rawDb) do
2 𝑅𝑑𝑏 , 𝐸𝑑𝑏 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑑𝑏,𝑄 )
3 𝑅𝑟𝑎𝑤𝐷𝑏 , 𝐸𝑟𝑎𝑤𝐷𝑏 ← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑎𝑤𝐷𝑏,𝑄 )
4 if 𝐸𝑑𝑏 ≠ 𝐸𝑟𝑎𝑤𝐷𝑏 | | 𝑅𝑑𝑏 ≠ 𝑅𝑟𝑎𝑤𝐷𝑏 then
5 𝑟𝑒𝑝𝑜𝑟𝑡𝑀𝑒𝑡𝑎𝐵𝑢𝑔 (𝑄,𝑑𝑏, 𝑟𝑎𝑤𝐷𝑏 )

i.e., 𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸 𝑡1 (𝑐1 𝐼𝑁𝑇 , 𝑐2 𝐼𝑁𝑇 ) and 𝐶𝑅𝐸𝐴𝑇𝐸 𝑇𝐴𝐵𝐿𝐸
𝑡2 (𝑐3 𝐼𝑁𝑇 ) (shown in the fourth part in Figure 4), and apply these
two statements on 𝑟𝑎𝑤𝐷𝑏. Finally, we copy data in 𝑑𝑏’s tables into
the corresponding tables in 𝑟𝑎𝑤𝐷𝑏, and obtain 𝑟𝑎𝑤𝐷𝑏 shown in the
right part in Figure 4. Note that 𝑟𝑎𝑤𝐷𝑏 does not contain the optional
database metadata in 𝑑𝑏, i.e., 𝑈𝑁𝐼𝑄𝑈𝐸 (𝑐1), 𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑐1 + 1)
and 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 (𝑐3, 𝑡1.𝑐1).

3.4 𝑚𝑒𝑡𝑎𝐵𝑢𝑔 Identification
For a query𝑄 generated in Section 3.2.2, evaluating𝑄 on a database
𝑑𝑏 and its corresponding raw database 𝑟𝑎𝑤𝐷𝑏 should return the
same query result.

We apply Algorithm 3 to identify 𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. We first execute
𝑄 on database 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏 to obtain their returned results, in-
cluding the query results 𝑅𝑑𝑏 and 𝑅𝑟𝑎𝑤𝐷𝑏 , and error messages 𝐸𝑑𝑏
and 𝐸𝑟𝑎𝑤𝐷𝑏 (Line 2-3). We then compare the query results and
error messages separately to identify𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. If 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏
return different query results or different error messages, a poten-
tial𝑚𝑒𝑡𝑎𝐵𝑢𝑔 is revealed in the target DBMS (Line 4-5). Note that
we compare the query results by ignoring the order of the items in
their result sets.

3.5 Metadata-Oriented Testing Optimization
Random database generation (Section 3.2.1) can generate many
databases with the same or similar database metadata. Testing on
these similar databases usually triggers duplicate𝑚𝑒𝑡𝑎𝐵𝑢𝑔s, and can
hardly reveal new𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. Therefore, we identify the databases
with similar database metadata, and avoid testing these databases to
improve testing efficiency and find more unique𝑚𝑒𝑡𝑎𝐵𝑢𝑔s quickly.

For a database 𝑑𝑏 generated in Section 3.2.1, table names (i.e.,
𝑡𝑁𝑎𝑚𝑒) and column names (i.e., 𝑐𝑁𝑎𝑚𝑒) cannot reflect its structure.
That said, we can only change 𝑑𝑏’s table names and column names
to create a different database that share the same structure as 𝑑𝑏.
Therefore, we remove 𝑑𝑏’s table names and column names, and
replace a reference to column 𝑐𝑜𝑙 with 𝑐𝑜𝑙 ’s metadata. In this way,
we construct an abstract database metadata without table names
and column names. If 𝑑𝑏’s abstract database metadata has not been
previously recorded (Section 3.5.2), we continue our testing on 𝑑𝑏.
Otherwise, we will discard 𝑑𝑏 and regenerate a new database.

3.5.1 Extracting Abstract Database Metadata. For a given database
𝑑𝑏, we remove the table names and column names from 𝑑𝑏’s meta-
data. For column references in the GENERATED constraint and table
constraints, we replace them by their data types (i.e., 𝑡𝑦𝑝𝑒) and col-
umn constraints (i.e., 𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ). We further ignore the constants
(i.e., 𝑐𝑜𝑛𝑠𝑡 ), functions (i.e., 𝐹𝑈𝑁 ) and operators (e.g., + and −) in the

1.       < t1, 
2.           < c1, INT>,
3.           < c2, INT, GENERATED (c1+1) >,
4.           UNIQUE (c1)
5.       >
6.       < t2,
7.           < c3, INT, NOT NULL >, 
8.           FOREIGN KEY (c3, t1.c1)
9.       >

<
    < INT >,
    < INT, GENERATED (INT) >,
    UNIQUE (INT)
>
< 
    < INT, NOT NULL >, 
    FOREIGN KEY (< INT, NOT NULL >, INT)
>

c3

c1
t1.c1

c1

Database metadata Abstract database metadata

Figure 6: An example for extracting abstract metadata. The
dashed lines denote how to replace column names with their
corresponding metadata.

𝑒𝑥𝑝𝑟 of the𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑒𝑥𝑝𝑟 ) and𝐶𝐻𝐸𝐶𝐾 (𝑒𝑥𝑝𝑟 ) constraints to
simplify the abstract database metadata.

Figure 6 shows an example for extracting the abstract database
metadata of𝑑𝑏. In𝑑𝑏’s databasemetadata, for table 𝑡1, we remove its
table name 𝑡1 (Line 1). For column 𝑐1 in table 𝑡1, we remove its col-
umn name 𝑐1, and remain its data type INT (Line 2). For column 𝑐2,
we first remove its column name 𝑐2, and then replace the expression
𝑐1+1 in the𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑐1+1) constraint by 𝑐1’s corresponding
data type INT, which is shown in the gray dashed line labelled by 𝑐1,
and finally obtain < 𝐼𝑁𝑇 ,𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝐼𝑁𝑇 ) > (Line 3). Similarly,
for the𝑈𝑁𝐼𝑄𝑈𝐸 (𝑐1) constraint, we replace 𝑐1 by its corresponding
data type INT, and obtain𝑈𝑁𝐼𝑄𝑈𝐸 (𝐼𝑁𝑇 ) (Line 4). For table 𝑡2, we
remove its table name 𝑡2 (Line 6). For column 𝑐3, we remove its
column name 𝑐3, and obtain < 𝐼𝑁𝑇 , 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 > (Line 7). For
the 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 (𝑐3, 𝑡1.𝑐1) constraint, we replace the source col-
umn reference 𝑐3 and the target column reference 𝑐1 in table 𝑡1 by
their corresponding metadata (i.e., < 𝐼𝑁𝑇 , 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 > and INT),
respectively, which is shown in the gray dashed line labelled by 𝑐3
and 𝑡1.𝑐1, and obtain 𝐹𝑂𝑅𝐸𝐼𝐺𝑁 𝐾𝐸𝑌 (< 𝐼𝑁𝑇 , 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 >, 𝐼𝑁𝑇 )
(Line 8). Note that the abstract metadata of 𝑑𝑏 does not contain the
table names 𝑡1, 𝑡2, and column names 𝑐1, 𝑐2, and 𝑐3.

Note that when a DBMS (e.g., MySQL and TiDB) consists of
compulsory table configurations, we analyze them as follows. If
a table configuration (i.e., 𝑡𝐶𝑜𝑛𝑓 𝑖𝑔) is applied on columns, we re-
place the column names (i.e., 𝑐𝑁𝑎𝑚𝑒) by their corresponding data
types (i.e., 𝑡𝑦𝑝𝑒) and column constraints (i.e., 𝑐𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ). Other-
wise, we do not handle them and store their textual values. For
example, if table 𝑡2 has the 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁𝐼𝑁𝐺 𝐵𝑌 𝐻𝐴𝑆𝐻 (𝑐3) con-
figuration, we replace column 𝑐3 by < 𝐼𝑁𝑇 , 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 >, and
get 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁𝐼𝑁𝐺 𝐵𝑌 𝐻𝐴𝑆𝐻 (< 𝐼𝑁𝑇 , 𝑁𝑂𝑇 𝑁𝑈𝐿𝐿 >). If a table
has the 𝐸𝑛𝑔𝑖𝑛𝑒 = 𝐼𝑛𝑛𝑜𝐷𝐵 configuration, we store its textual value.

3.5.2 Choosing Interesting Databases. We maintain a set 𝑢𝑛𝑖𝑞𝑢𝑒
𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 to record all tested abstract database metadata. After
extracting the abstract database metadata in 𝑑𝑏, we compare 𝑑𝑏’s
abstract database metadata with the recorded abstract database
metadata in 𝑢𝑛𝑖𝑞𝑢𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎 to check whether 𝑑𝑏’s abstract data-
base metadata has been previously tested. If the abstract metadata
has not been previously tested, we choose to test 𝑑𝑏 and store 𝑑𝑏’s
abstract metadata into 𝑢𝑛𝑖𝑞𝑢𝑒𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎.

When comparing two abstract database metadata, we only val-
idate whether two abstract database metadata contain the same
elements regardless of the order of their elements, since the order
is generally irrelevant to metadata-related query optimizations.



Table 2: Unique bugs detected by Radar

Bug Status Bug Categories
DBMS Total Confirmed Fixed Duplicate False Positive 𝑚𝑒𝑡𝑎𝐵𝑢𝑔 Non-𝑚𝑒𝑡𝑎𝐵𝑢𝑔
MySQL 4 3 0 1 0 3 0
SQLite 4 2 2 0 2 2 0
MariaDB 1 1 0 0 0 1 0
CockroachDB 2 1 1 0 1 0 1
TiDB 31 31 13 0 0 24 7
Total 42 38 16 1 3 30 8

4 EVALUATION
We implement Radar on five DBMSs, i.e., MySQL, SQLite, Mari-
aDB, CockroachDB, and TiDB. Radarmainly consists of three parts,
i.e., database and query generation, raw database construction and
metadata-oriented testing optimization. Database and query gen-
eration are implemented based on SQLancer [21] in Java. We im-
plement the general logic of our raw database construction and
metadata-oriented testing optimization with 179 LOC. To test our
target DBMSs, we implement the specific testing logic with 261,
192, 161, 243, 431 LOC for MySQL, SQLite, MariaDB, CockroachDB,
and TiDB, respectively.

We evaluate the effectiveness of Radar by answering the follow-
ing three research questions:
• RQ1. What𝑚𝑒𝑡𝑎𝐵𝑢𝑔s can Radar detect in real-world DBMSs?
• RQ2. How effective is the metadata-oriented testing optimiza-

tion in Radar?
• RQ3. How many bugs detected by Radar can be found by

existing approaches?

4.1 Experimental Setup
Target DBMSs. We evaluate Radar on five widely-used DBMSs.
We discuss their detailed information in Section 2.1. We test these
DBMSs with their latest release versions when we started this work,
i.e., MySQL 8.0.32, SQLite 3.41.0, MariaDB 11.0.3, CockroachDB
22.2.5, and TiDB 6.6.0. When a target DBMS releases a new version,
we update it to the latest version and test it.

Experimental infrastructure. We perform our experiments
on a machine with 8 CPU cores and 32GB RAM. We deploy MySQL
and MariaDB using Docker containers. We deploy CockroachDB in
a three-node cluster. We deploy TiDB in a distributed manner using
the official command 𝑡𝑖𝑢𝑝 𝑝𝑙𝑎𝑦𝑔𝑟𝑜𝑢𝑛𝑑 . SQLite does not require
additional deployments, and we embed it in Radar.

Experimental process. We run Radar on each target DBMS for
24 hours, and then stop Radar to analyze the generated bug reports
and submit the detected unique bug reports to DBMS developers.
After processing all the generated bug reports, we start a new testing
round. We present our bug report analysis process as follows.

For a generated bug report, we first leverage SQLancer [21] to
automatically simplify it. SQLancer supports two test case reduc-
tion techniques, i.e., statement-level reduction and syntax-based
reduction. Specifically, given a bug report with the query 𝑄 and
two databases 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏, we first simplify 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏, and
then simplify 𝑄 . For the database 𝑑𝑏, we first adopt the statement-
level reduction and attempt to remove some statements from the
database initialization statements randomly, e.g., removing some

data INSERT statements. Then we adopt the syntax-based method
to further simplify the database initialization statements. For the
database 𝑟𝑎𝑤𝐷𝑏, we adopt the approach explained in Section 3.3 to
regenerate a raw database based on the simplified database 𝑑𝑏. For
the query 𝑄 , we apply syntax-based reduction on 𝑄 , e.g., reducing
the number of operators or replacing constant expressions with
simple constants. Note that after each step of reduction, we check
if the bug can still be triggered. If not, we revert the changes and
try another round of reduction. We repeat the above steps until we
cannot remove any statements and operators in 𝑑𝑏 and 𝑄 .

After simplifying the generated bug reports, we automatically
cluster them based on the abstract database metadata of database𝑑𝑏
and SQL features in query 𝑄 . If two simplified bug reports contain
the same abstract database metadata of database 𝑑𝑏 and the same
SQL features in query 𝑄 , we assume that they are duplicates. We
further manually analyze the clustered bug reports and identify
unique bug reports.

4.2 Bug Detection Capability of Radar
To evaluate the effectiveness of Radar and answer RQ1, we apply
Radar on our target DBMSs and investigate whether Radar can
detect real-world𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in these DBMSs. We test each target
DBMS separately for a total of 10 rounds, running Radar for 24
hours in each round.

In total, Radar generates 1, 663 bug reports. We follow the pro-
cess mentioned in Section 4.1 to simplify and remove duplicate
bug reports. It took us about three weeks to filter out 42 unique
bugs from the generated bug reports. We consider the remaining
1, 621 bug reports as duplicate to these 42 unique bugs. We then sub-
mit these 42 unique bugs to the corresponding DBMS community.
Table 2 shows the details about these submitted bugs, including
4 bugs in MySQL, 4 bugs in SQLite, 1 bug in MariaDB, 2 bugs in
CockroachDB and 31 bugs in TiDB.

Bug status. 38 out of the 42 submitted bugs have been confirmed
as new bugs, and 16 bugs have been fixed by DBMS developers at
the timing of writing this paper. For the remaining 4𝑚𝑒𝑡𝑎𝐵𝑢𝑔s, one
bug in MySQL is considered as duplicate to an existing one by devel-
opers, and the remaining 3 bugs are considered as false positives (2
bugs in SQLite and 1 bug in CockroachDB). We will further discuss
the details about these three false positives in Section 4.6.2. The
above result shows that Radar is effective in detecting𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

Bug severity. 34 out of the 38 confirmed bugs are classified as
critical, e.g.,Critical,Major, Serious orModerate. Specifically, MySQL
developers classified 1 bug as Critical, and 1 bug as Serious. MariaDB
developer classified 1 bug as Major. TiDB developers classified 4



Table 3: Comparison of bug detection between Radar and Radar𝑟𝑎𝑛𝑑

Generated Databases Unique Databases Total Bugs Unique Bugs
DBMS Radar Radar𝑟𝑎𝑛𝑑 Radar Radar𝑟𝑎𝑛𝑑 Radar Radar𝑟𝑎𝑛𝑑 Radar Radar𝑟𝑎𝑛𝑑
MySQL 42,997 38,508 23,533 21,151 3 0 1 0
SQLite 99,872 62,643 31,102 21,495 1 1 1 1
MariaDB 20,850 11,668 10,498 6,223 1 1 1 1
CockroachDB 2,540 2,472 1,596 1,504 0 0 0 0
TiDB 2,503 2,318 1,523 1,339 120 116 19 12
Total 168,762 117,609 68,252 51,712 125 118 22 14

0 2 4 6 8 10 12
Time (hours)

0

5

10

15

20

U
ni

qu
e 

bu
gs

Radar
Radarrand

Figure 7: Unique bugs in TiDB detected by Radar and
Radar𝑟𝑎𝑛𝑑 .

bugs as Critical, 12 bugs asMajor, 14 bugs asModerate, and 1 bug as
Minor. For the remaining 4 bugs, 2 bugs are not classified by SQLite
developers, 1 bug is not classified by CockroachDB developers, and
1 bug is classified as Non-critical in MySQL. The above analysis
result shows that DBMS developers consider most of our submitted
bugs to be important.

Bug categories. 30 out of the 38 confirmed bugs are𝑚𝑒𝑡𝑎𝐵𝑢𝑔s,
including 3𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in MySQL, 2𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in SQLite, 1𝑚𝑒𝑡𝑎𝐵𝑢𝑔
inMariaDB, and 24𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in TiDB. The remaining 8 bugs are not
𝑚𝑒𝑡𝑎𝐵𝑢𝑔s, since they either return the same unexpected errors or
cause crashes for a database 𝑑𝑏 and its corresponding raw database
𝑟𝑎𝑤𝐷𝑏. Note that Radar can also detect these 8 bugs, since Radar
also checks whether a query throws unexpected errors or crashes.
𝑚𝑒𝑡𝑎𝐵𝑢𝑔 analysis. 23 out of the confirmed 30𝑚𝑒𝑡𝑎𝐵𝑢𝑔s bugs

occur on the generated databases with optional database metadata
(e.g, integrity constraints, and indexes), 7 bugs occur on the raw
databases. Note that for these 7 bugs, the queries on their corre-
sponding databases with optional database metadata return correct
results instead. Thus, we can detect these bugs.

4.3 Effectiveness of Metadata-Oriented Testing
Optimization

To answer RQ2, we implement Radar𝑟𝑎𝑛𝑑 that shares the same bug
detection process as Radar except for the metadata-oriented testing
optimization. That said, we disable the metadata-oriented testing
optimization in Radar𝑟𝑎𝑛𝑑 , and test all the generated databases.
We run Radar and Radar𝑟𝑎𝑛𝑑 on our target DBMSs for 12 hours,
respectively, and compare Radar and Radar𝑟𝑎𝑛𝑑 from two aspects,
i.e., bug detection (Section 4.3.1) and code coverage (Section 4.3.2).

Table 4: Code coverage comparison between Radar and
Radar𝑟𝑎𝑛𝑑

Function Coverage Line Coverage
DBMS Radar Radar𝑟𝑎𝑛𝑑 Radar Radar𝑟𝑎𝑛𝑑
MySQL 20.3% 19.7% 17.6% 17.4%
MariaDB 19.7% 19.3% 17.0% 16.9%

4.3.1 Bug Detection. We run Radar and Radar𝑟𝑎𝑛𝑑 on MySQL,
SQLite, MariaDB, CockroachDB, and TiDB for 12 hours. During this
experiment, we count the number of generated databases, unique
databases, total bugs, and unique bugs. If a database contains unique
abstract database metadata (Section 3.5.1), we assume that the gen-
erated database is unique. We follow the same method discussed in
Section 4.1 to filter out unique bugs.

Table 3 shows our experimental results. Radar can effectively
eliminate 45.2%, 68.8%, 49.6%, 37.1%, and 39.1% duplicate databases,
in MySQL, SQLite, MariaDB, CockroachDB, and TiDB, respectively.
Radar tests more unique databases than Radar𝑟𝑎𝑛𝑑 by 11.2%, 44.6%,
40.7%, 6.1%, and 13.7% in MySQL, SQLite, MariaDB, CockroachDB,
and TiDB, respectively. Moreover, Radar has detected 7 more bugs
and 8 more unique bugs than Radar𝑟𝑎𝑛𝑑 . Our experimental results
show that our metadata-oriented testing optimization strategy can
help Radar to focus on testing more databases with diverse meta-
data than Radar𝑟𝑎𝑛𝑑 and detecting more𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

We further analyze the time used to detect unique bugs in TiDB
by Radar and Radar𝑟𝑎𝑛𝑑 . As shown in Figure 7, Radar takes less
time to detect the same number of unique bugs as Radar𝑟𝑎𝑛𝑑 . Until
exhausting the predefined experimental time (i.e., 12 hours), Radar
detects 7 more unique bugs than Radar𝑟𝑎𝑛𝑑 . Note that we do not
provide the details about the time used to detect unique bugs in
other DBMSs, since Radar and Radar𝑟𝑎𝑛𝑑 detect few bugs on them.

4.3.2 Code Coverage. We analyze the code coverage in our target
DBMSs by running Radar and Radar𝑟𝑎𝑛𝑑 in MySQL and MariaDB
for 12 hours. During this experiment, we measure the function
coverage and line coverage [1] in testing MySQL and MariaDB.
Table 4 shows our experimental result, which indicates that Radar
can explore more functions and lines in our target DBMSs than
Radar𝑟𝑎𝑛𝑑 . Note that we do not find a suitable way to measure the
code coverage in testing SQLite, CockroachDB, and TiDB.

In the experiment, the code coverage appears to be low but
reasonable, since Radar focuses on validating the correctness of
query engines, especially for metadata-related query optimizations.
Our target DBMSs encompass a broad range of functionalities not



Table 5: Conceptual comparison with existing approaches

DBMS Radar DQE NoREC TLP MutaSQL
MySQL 3 1 2 1 2
SQLite 2 0 2 2 2
MariaDB 1 0 0 0 0
CockroachDB 0 0 0 0 0
TiDB 24 7 9 0 1
Total 30 8 13 3 5

limited to query processing, e.g., concurrency control, backup and
recovery, and user management, which we do not test in Radar.

The difference of code coverage between Radar and Radar𝑟𝑎𝑛𝑑 is
small in this experiment, since Radar and Radar𝑟𝑎𝑛𝑑 share the same
database and query generation approach. Even if the difference of
code coverage between Radar and Radar𝑟𝑎𝑛𝑑 is small, Radar can
test more databases with unique metadata and find more bugs than
Radar𝑟𝑎𝑛𝑑 .

4.4 Comparing with Existing Approaches
To answer RQ3, we compare Radar with four state-of-the-art ap-
proaches (i.e., DQE [66], NoREC [61], TLP [62], and MutaSQL [34])
that aim to detect logic bugs in DBMSs. All these approaches adopt
some random strategies to test DBMSs, e.g., random database gen-
eration. To avoid randomness in comparison, we first investigate
whether the 30 confirmed 𝑚𝑒𝑡𝑎𝐵𝑢𝑔s detected by Radar can also
be conceptually detected by these approaches (Section 4.4.1). We
then apply Radar and existing approaches on the target DBMSs for
the same amount of time, and compare their actual bug detection
results (Section 4.4.2).

4.4.1 Conceptual Comparison. Existing approaches can only detect
at most 13 out of our confirmed 30 𝑚𝑒𝑡𝑎𝐵𝑢𝑔s in our conceptual
comparison (Table 5), which indicates the effectiveness of Radar
in detecting𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. We show the detailed analysis as follows.

DQE evaluates a predicate on SELECT, UPDATE, and DELETE state-
ments and detects bugs by identifying inconsistencies in their exe-
cution results. For a𝑚𝑒𝑡𝑎𝐵𝑢𝑔, given the database 𝑑𝑏 and the query
𝑄 , we leverage the predicate of 𝑄 to construct UPDATE, and DELETE
statements. If these statements return consistent execution results
on 𝑑𝑏, DQE cannot detect it. Moreover, when 𝑄 queries on views
or multiple tables in SQLite, DQE cannot construct corresponding
UPDATE and DELETE statements. As a result, DQE can only detect 8
out of the 30 confirmed𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

NoREC transforms a given optimized query into another non-
optimized one, and detects bugs by comparing their execution
results. For a𝑚𝑒𝑡𝑎𝐵𝑢𝑔, given the database 𝑑𝑏 and the query 𝑄 , we
apply the same transformation on 𝑄 , and compare these two query
results. NoREC cannot detect the following𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. First, these
two queries return consistent query results on 𝑑𝑏. Second, 𝑄 does
not contain predicates, thus we cannot construct a non-optimized
query for NoREC. Third, 𝑄 returns errors or causes crashes. As a
result, NoREC can only detect 13 out of the 30 confirmed𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

TLP transforms a given query into three sub-queries, and detects
bugs by comparing the original query result with the combined
result of the three sub-queries. For a𝑚𝑒𝑡𝑎𝐵𝑢𝑔, given the database
𝑑𝑏 and the query 𝑄 , we extract the predicate of 𝑄 to construct

Table 6: Experimental comparison with existing approaches.
★ denotes𝑚𝑒𝑡𝑎𝐵𝑢𝑔, and ✩ denotes other kinds of bugs. If an
approach does not support testing the target DBMS, we mark
the corresponding bug using -.

Bug Id Radar DQE NoREC TLP
TiDB-1 ★ -
TiDB-2 ★ -
TiDB-3 ★ -
TiDB-4 ★ -
TiDB-5 ★ -
TiDB-6 ★ -
TiDB-7 ★ -
TiDB-8 ★ -
TiDB-9 ★ -
TiDB-10 ★ -
TiDB-11 ★ -
TiDB-12 ★ -
TiDB-13 ★ -
TiDB-14 ★ - ★

TiDB-15 ★ - ★

TiDB-16 ★ ★ - ★

TiDB-17 - ✩

TiDB-18 - ✩

TiDB-19 ✩ -
TiDB-20 ✩ -
TiDB-21 ✩ -
TiDB-22 ✩ -
MySQL-1 ★ -
MySQL-2 ★ - ★

MySQL-3 - ★

MySQL-4 - ✩

MariaDB-1 ★ ★ -
MariaDB-2 ✩ -
MariaDB-3 ✩ -
MariaDB-4 ✩ -
MariaDB-5 ✩ -
MariaDB-6 ✩ -
SQLite-1 ★

Total 20 9 2 8

three sub-queries, and compare the original query result with the
combined result of the three sub-queries. TLP cannot detect the
following𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. First, the combined query result of the three
sub-queries is the same with the original query result. Second, 𝑄
does not contain predicates, thus we cannot construct sub-queries
for TLP. Third, 𝑄 returns errors or causes crashes. As a result, TLP
can only detect 3 out of the 30 confirmed𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

MutaSQL reports logic bugs if adding indexes changes the query
result of a given query. For a𝑚𝑒𝑡𝑎𝐵𝑢𝑔, given the database𝑑𝑏 and the
query𝑄 , we first check whether 𝑑𝑏 contains indexes. If 𝑑𝑏 contains
indexes, we remove the indexes. Otherwise, we try to add some
indexes. Then we check if the result of 𝑄 is changed. As a result,
MutaSQL can only detect 5 out of the 30 confirmed𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

4.4.2 Experimental Comparison. We apply DQE, NoREC, TLP and
Radar on our target DBMSs for 12 hours, respectively1. We utilize
the method mentioned in Section 4.1 to de-duplicate bug reports
1We do not compare RadarwithMutaSQL, sinceMutaSQL [34] is not publicly available.



and identify unique bugs. For a bug that was not detected by Radar,
given the database 𝑑𝑏 and query𝑄 in the bug report, we attempt to
construct a corresponding raw database or a database containing
some metadata so that query 𝑄 would return different results on
the initial database 𝑑𝑏 and the database we constructed. If we can
construct such a database, we consider this bug as a𝑚𝑒𝑡𝑎𝐵𝑢𝑔, too.
Note that Radar, DQE, NoREC and TLP share the same database
and query generation approach in this experiment.

Table 6 shows the results, in which all these approaches have
detected 33 bugs in total, including 21𝑚𝑒𝑡𝑎𝐵𝑢𝑔s that have been
detected by Radar in Section 4.2. The remaining 12 bugs are other
kinds of bugs, e.g., logic bugs in UPDATE or DELETE statements
and error bugs. Radar detected 20 out of the 21 𝑚𝑒𝑡𝑎𝐵𝑢𝑔s, and
15𝑚𝑒𝑡𝑎𝐵𝑢𝑔s were only detected by Radar. While the alternative
approaches detected 6 out of the 21𝑚𝑒𝑡𝑎𝐵𝑢𝑔s. For the only one
𝑚𝑒𝑡𝑎𝐵𝑢𝑔 that Radar did not reveal, Radar did not generate the cor-
responding test case due to random database and query generation.
𝑚𝑒𝑡𝑎𝐵𝑢𝑔s are specifically introduced by the incorrect optimiza-

tions related to database metadata. Although existing approaches
[61, 62, 66] can effectively detect other kinds of logic bugs, they
cannot effectively detect𝑚𝑒𝑡𝑎𝐵𝑢𝑔s.

4.5 Other Experimental Statistics
Query testing efficiency. We measure the query testing efficiency
in Radar by running Radar on our target DBMSs separately for 12
hours, and counting the number of tested queries. In this experi-
ment, Radar tested 118, 4, 795, 948, 132, and 280 queries per second
in MySQL, SQLite, MariaDB, CockroachDB, and TiDB, respectively.

Overhead of raw database construction. We measure the
overhead of raw database construction by running Radar on our
target DBMSs separately for 12 hours. In this experiment, Radar
spent an average of 95ms, 33ms, 34ms, 2, 645ms, and 877ms to con-
struct a raw database in MySQL, SQLite, MariaDB, CockroachDB,
and TiDB, respectively.

4.6 Representative Bugs
In this section, we discuss 6 bugs detected by Radar, of which 3
are the confirmed 𝑚𝑒𝑡𝑎𝐵𝑢𝑔s (Section 4.6.1), and 3 bugs are false
positives (Section 4.6.2).

1. -- Database db
2. CREATE TABLE t1(c1 DOUBLE ZEROFILL);
3. CREATE INDEX i0 ON t1(c1);
4. INSERT INTO t1 VALUES (0);

5. -- Query Q
6. SELECT c1 FROM t1 WHERE (IFNULL(-1, '')) IN (c1);
7. -- {0} in db ✘
8. -- {} in rawDb ✔

Listing 2: MySQL#110125. This bug relates to the INDEX on
the DOUBLE ZEROFILL data type.

4.6.1 Selected Bugs. Listing 2 shows a bug MySQL#110125, in
which table 𝑡1 in database 𝑑𝑏 contains a column 𝑐1with the DOUBLE
data type and an optional metadata, i.e., index 𝑖0 on column 𝑐1
(Line 3). For query 𝑄 (Line 6), the 𝐼𝐹𝑁𝑈𝐿𝐿(−1, ‘′) expression is
expected to return the value ‘-1’, and the predicate should be evalu-
ated to FALSE, because column 𝑐1 does not contain a value equal to
‘-1’. However, MySQL incorrectly returns the value of column 𝑐1

when executing 𝑄 on 𝑑𝑏 (Line 7), while returns an empty set when
executing 𝑄 on the raw database 𝑟𝑎𝑤𝐷𝑏 (Line 8).

1. -- Database db
2. CREATE TABLE t1 (c1 INT UNSIGNED NOT NULL);
3. INSERT INTO t1 VALUES (0);

4. -- Query Q
5. SELECT c1 > - '7' FROM t1;
6. -- {0} in db ✘
7. -- {1} in rawDb ✔

Listing 3: TiDB#44219. This bug relates to the INT UNSIGNED
data type.

Listing 3 shows a bug TiDB#44219, in which table 𝑡1 in database
𝑑𝑏 contains a column 𝑐1 with the INT UNSIGNED data type and an
optional metadata, i.e., the NOT NULL constraint on column 𝑐1 (Line
1). However, for query Q (Line 5), 𝑑𝑏 and 𝑟𝑎𝑤𝐷𝑏 return different
query results due to the incorrect data conversion in 𝑑𝑏.

1. -- Database db
2. CREATE TABLE t1(c1 FLOAT GENERATED ALWAYS AS (c2), c2 FLOAT);
3. INSERT INTO t1(c2) VALUES (0.5822439);

4. -- Query Q
5. SELECT * FROM t1 WHERE (~ (CAST(c1 AS DATETIME)));
6. -- {} in db ✘
7. -- {0.5822439} in rawDb ✔

Listing 4: TiDB#44135. This bug relates to the GENERATED
constraint on the FLOAT data type.

Listing 4 shows a bug TiDB#44135, in which table 𝑡1 in database
𝑑𝑏 contains a column 𝑐1 with the INT data type and an optional
metadata, i.e., the GENERATED constraint on column 𝑐1 (Line 2). The
𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝐸𝐷 (𝑐2) constraint specifies the value of 𝑐1 should be
equal to 𝑐2. However, for query 𝑄 (Line 5), the database 𝑑𝑏 and
𝑟𝑎𝑤𝐷𝑏 return different query results.

1. -- Database db
2. CREATE TABLE t1 (c1 DECIMAL);
3. INSERT INTO t1 VALUES (1);
4. CREATE TABLE t2 (c2 DECIMAL PRIMARY KEY);
5. INSERT INTO t2 VALUES (1);

6. -- Query Q
7. SELECT c1 FROM t1 LEFT OUTER JOIN t2 ON (c2) IN (('a') ::

DECIMAL);
8. -- {1} in db
9. -- error in rawDb

Listing 5: CockroachDB#97672. This bug relates to the
PRIMARY KEY on the DECIMAL data type.

4.6.2 False Positives. Listing 5 shows a bug CockroachDB#97672,
in which the database 𝑑𝑏 returns a value 1, while 𝑟𝑎𝑤𝐷𝑏 returns
an error. CockroachDB developers argue that such behavior is
intended, because the optimizer eliminates the join clause with its
predicate in 𝑑𝑏. However, such optimization is disabled in 𝑟𝑎𝑤𝐷𝑏.

1. -- Database db
2. CREATE TABLE t1 (c1 INTEGER PRIMARY KEY);
3. INSERT INTO t1 VALUES (0);

4. -- Query Q
5. SELECT c1 FROM t1 ORDER BY c1, json_array_length (0, 0);
6. -- {0} in db
7. -- error in rawDb

Listing 6: SQLite#a2bde2b8f9. This bug relates to the PRIMARY
KEY on the INTEGER data type.

https://bugs.mysql.com/bug.php?id=110125
https://github.com/pingcap/tidb/issues/44219
https://github.com/pingcap/tidb/issues/44135
https://github.com/cockroachdb/cockroach/issues/97672


Listing 6 shows a bug SQLite#a2bde2b8f9, in which the database
𝑑𝑏 returns a value 0, while 𝑟𝑎𝑤𝐷𝑏 returns an error because of the
𝑗𝑠𝑜𝑛_𝑎𝑟𝑟𝑎𝑦_𝑙𝑒𝑛𝑔𝑡ℎ(0, 0) function. SQLite developers explain that
when the ORDER BY clause can determine the data order in 𝑑𝑏, it
does not need to invoke the JSON function.

1. -- Database db
2. CREATE TABLE t1 (c1 INTEGER);
3. CREATE TABLE t2 (c1 INTEGER , UNIQUE (c1));
4. INSERT INTO t1 VALUES (x''), (0.8874540680509563) , (NULL), (

' -2017888786 ');
5. INSERT INTO t2 VALUES (0 x47d9a1ab);

6. -- Query Q
7. SELECT ALL t1.c1 FROM t1, t2 WHERE (0 OR json_patch(t1.c1,

t2.c1)) AND (((t2.c1) BETWEEN (t1.c1) AND (t2.c1)));
8. -- {0.887454068050956 , -2017888786} in db
9. -- error in rawDb

Listing 7: SQLite#60f85edfaf. This bug relates to the UNIQUE
constraint on the INTEGER data type.

Listing 7 shows a bug SQLite#60f85edfaf, in which the data-
base 𝑑𝑏 returns a result, while 𝑟𝑎𝑤𝐷𝑏 returns an error due to the
𝑗𝑠𝑜𝑛_𝑝𝑎𝑡𝑐ℎ(𝑡1.𝑐1, 𝑡2.𝑐1) function. SQLite developers explain that
the predicate is a short-circuit expression evaluation, and SQLite
does not guarantee the evaluation order.

5 DISCUSSION
Undefined behaviors in query evaluation. The three false posi-
tives detected by Radar trigger undefined behaviors in query eval-
uation, since the SQL standard does not define the exact implemen-
tations of query evaluation [20]. Even though those bugs are con-
sidered as intended behaviors by DBMS developers, such undefined
behaviors should be noticed, because they can lead to unpredictable
execution results, and some may cause disastrous impacts.

Extend to other DBMSs. Similar to our target DBMSs, many
other DBMSs also utilize database metadata to optimize query eval-
uation. Thus, the idea of Radar can be extended to other DBMSs
that support optional database metadata to accelerate query eval-
uation, e.g., graph-oriented DBMSs Neo4j [18] and TigerGraph
[25], document-oriented DBMSs MongoDB [15] and Google Cloud
Datastore [7], and key-value stores Amazon DynamoDB [2] and
Microsoft Azure Cosmos DB [4]. However, we need to modify the
implementation of Radar to adapt it to the new DBMS.

Limitation. Radar may miss some bugs due to the following
reasons. First, random database and query generation may cause
Radar to miss some bugs. Second, Radar cannot detect bugs that
occur in both the generated database and its corresponding raw
database. Third, Radar cannot detect bugs that are caused by non-
deterministic functions, database-related functions and index hints,
since Radar does not support them during query generation.

6 RELATEDWORK
Database and query generation. Database and query generation
have been widely explored by existing works [10, 23, 26, 30, 31, 42,
44, 45, 50, 53, 58, 60, 69, 73]. For example, SQLsmith [23] generates
queries based on its built-in abstract syntax trees. Squirrel [73]
takes an input query, mutates it based on the designed intermediate
representation, and utilizes a coverage-based guidance to perform
their mutations. QPG [27] mutates database states with query plan

guidance. An improved database and query generation approach
could help our work to detect more bugs.

Differential testing on DBMSs. Some existing works apply
differential testing on DBMSs [36, 52, 59, 65, 70, 72]. Differential
testing on DBMSs is usually conducted by feeding the same test
cases into multiple DBMSs with the same type. For example, RAGS
[65], APOLLO [52] and AMOEBA [59] generate queries and execute
them on multiple relational DBMSs. Our approach adopts the idea
of differential testing by generating queries and evaluating them on
a given database and its corresponding raw database. These existing
approaches require multiple DBMSs as input to detect bugs, while
Radar can detect logic bugs on a single DBMS. Thus, Radar can be
applied to test DBMS-specific features.

Test oracles to detect bugs in DBMSs. Detecting bugs in
DBMSs requires test oracles to validate the execution results of state-
ments. Error bugs are usually detected by whitelists, e.g., SQLancer
[21] maintains a list of expected errors for different statements.
Crash bugs are usually detected by DBMS fuzzers by examining the
network status of DBMS servers, e.g., checking timeouts [23, 39, 40,
50, 56, 58, 69, 73]. Logic bugs are usually detected by constructing
equivalent statements, and observing discrepancies among their
execution results [28, 29, 34, 43, 49, 54, 57, 61, 62, 66, 68, 71]. Partic-
ularly, PQS [63] utilizes a containment oracle to detect logic bugs
by synthesizing queries to fetch pivot rows and checking their exis-
tence. PQS requires much manual effort to build its reference model.
PINOLO [43] synthesizes queries with different approximations
and identifies logic bugs by comparing these query results. Recent
works further analyze and build test oracles for concurrent transac-
tions, and detect transaction bugs in DBMSs [37, 38, 51, 55, 67]. The
above existing approaches cannot provide an effective test oracle
to detect metadata-related logic bugs, since they do not have test
oracles [23, 39, 40, 50, 56, 58, 69, 73], or they require a lot of manual
labor to make their test oracles effective [43, 63, 68]. But, Radar pro-
vides a general and effective test oracle to detect metadata-related
logic bugs.

7 CONCLUSION
Incorrectmetadata-related implementations can introducemetadata-
related logic bugs, which can cause a DBMS to silently return an
incorrect query result for a given query. Existing approaches can-
not efficiently detect metadata-related logic bugs. In this paper,
we propose a general testing approach Radar to effectively detect
metadata-related logic bugs in DBMSs. We implement and evaluate
Radar on five widely-used DBMSs, i.e., MySQL, SQLite, MariaDB,
CockroachDB, and TiDB. In total, we have detected 42 bugs, 38 of
which have been confirmed as previously unknown bugs and 16
bugs have been fixed. We expect that Radar can be widely used to
improve the reliability of DBMSs.
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