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Abstract
Hadoop MapReduce is a powerful open-source framework towards big data processing. For ordinary

users, it is not hard to write MapReduce programs but hard to specify memory-related configurations.
To help users analyze, predict and optimize job’s memory consumption, this technical report presents a
fine-grained memory usage model. The proposed model reveals the relationship among memory usage,
dataflow, configurations and user code. The task scheduler can also benefit from this model for better
scheduling.

1 Background

Although MapReduce is a simple divide-and-conquer programming paradigm, its detailed implementation
is rather complex. This section talks bout the basic knowledge of Hadoop internals. System layers subsection
describes the different views towards task’s memory usage in different layers. MapReduce dataflow depicts
the concrete data processing steps that each job will go through. JVM internals discusses the memory
management mechanism of JVM (Java Virtual Machine).

1.1 System layers

To achieve flexibility and isolation, Hadoop MapReduce consists of three system layers shown in Figure 1.1.
However, this complex architecture will aggravate user’s difficulty in understanding and optimizing job’s
performance, especially the memory consumption. In user layer, before submitting the job, users are
required to prepare the dataset, write user code and specify appropriate configurations. In framework
layer, each job is divided into several small map and reduce tasks. After that, each task will be scheduled
onto an appropriate node. In execution layer, the node will launch each task as a separate process (i.e.,
a JVM instance, JVM reuse is an exception). Then, each task will perform the relatively fixed processing
steps which are pre-defined by the framework.

Since JVM divides the heap space into two generations and manages them separately, execution layer is
the only one that knows the real fine-grained memory usage. The blue-green graph in Figure 1.1 shows the
realtime usage in New and Old generations of a JVM instance. Framework just treats memory as a large
continuous space and has little idea of the real usage. The memory space is intensively used for both data
storage (e.g., storing intermediate data) and data processing (e.g., map() reads and processes the input data).
At the highest layer, users usually feel hard to understand job’s memory usage, not to mention optimizing the
usage in the large space of configurations. However, new resource management and scheduling frameworks
such as YARN [6] and Mesos [8] not only require users to specify the maximum memory consumption but
also schedule tasks according to the consumption. Inappropriate configurations may lead to job’s runtime
error, performance degradation or the waste of memory.
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Figure 1.1: System layers of Hadoop MapReduce

1.2 MapReduce Dataflow

Dataflow contains two meanings: data processing steps and input/output/intermediate data in each step.
The processing steps are relatively fixed, and we can merge them into four phases (shown in Figure 1.2).
However, the size of input/output/intermediate data is more variable because there are many influencing
factors: 1) I/O ratio of the user code. User code contains map(), reduce() and optional combine(). 2)
Dataflow-related configurations. 3) Data properties which may cause data skew (e.g., some reducers will
need to process far more data than others). Below are the details about the processing steps and dataflow-
related configurations.

Map Stage: Mapper first fetches input split (typically 64MB) from HDFS, reads sequential 〈k1, v1〉 records
from this split, performs map() on each record and then outputs 〈k2, v2〉 with partition id into in-memory
spillBuffer. Partition id is usually produced by hash or range partition function on k2. Spill buffer
consists of three arrays: kvbuffer is a large byte[] that stores the serialized 〈k2, v2〉 records. Each record
is referenced by a tuple 〈partition id of k2, pointer to k2, pointer to v2〉 in kvindices (int[]). Each tu-
ple is referenced by a pointer in kvoffsets (int[]), so the size of kvoffsets is one third of that of
kvindices. Users can specify the size of these three arrays. Once the total size of records in spill buffer
achieves a bound, mapper will sort the cached 〈k2, v2〉 records by k2 (only pointers in kvoffsets are sorted),
perform combine() if any on them to generate new 〈k2, v2〉 records, and spill each piece onto the local file
system. Records with the same partition id are stored in the same partition. When map() outputs all the
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Figure 1.2: MapReduce dataflow in Hadoop

〈k2, v2〉 and more than one spill piece are generated, merge phase will start. Partitions with the same id will
be merged together into one segment. Combine() may be invoked in this merge process if necessary. In
the future, each segment will be fetched by one reducer according to the partition id.

Reduce Stage: Once some mappers finish (the concrete number is configurable), reducers will start and
then go through three phases (shuffle, sort and reduce). In shuffle phase, reducer fetches the correspond-
ing segments from finished mappers via HTTP. The fetched segments are first stored in memory. Once
their total size achieves MergeQueue, the segments will be sorted, combine()ed and merged onto disk as
OnDiskSeg. Since records in each segment are ordered, this merge called InMemShufMerge can be
performed just using a minimum heap. While merging, reducer can still fetch segments into memory until
the total size of in-memory segments achieves shuffleBound. This merge action will happen many times
if the total size of shuffled segments is much larger than MergeQueue. After each merge action finishes,
the merged segments will be cleared from memory. If a segment is too large, it will be fetched onto disk
directly. Figure 1.2 shows there are two waves of InMemShufMerge and two segments (f and g) are left
to be merged in the second wave. After all the segments are fetched from mappers, shuffle phase ends with
m segments in memory and n OnDiskSegs (m, n ≥ 0).

In the next sort phase, some ([0, m]) of the m segments will be merged to be an OnDiskSeg. The others
are still cached in memory in reduceBuffer. If reduceBuffer is set to 0, all the m segments will
be merged onto disk. We call this merge InMemSortMerge. After that, reducer just merges the left in-
memory segments and OnDiskSegs into a logical large segment which consists of 〈k2, list(v2)〉 records. We
call this merge MixSortMerge, but the actual merge action does not happen in this phase. In other words,
each 〈k2, list(v2)〉 record is not generated until reduce() tries to read it. In reduce phase, reducer reads
the 〈k2, list(v2)〉 records one by one, performs reduce() on each record and outputs the final 〈k3, v3〉 records
onto HDFS. There are some other dataflow-related configurations such as spilling threshold of spill buffer,
reducer number and compress. Some of them will be introduced in the memory usage model.

1.3 JVM Memory Structure and GC

Each Java process will launch a JVM instance which isolates the program from memory management.
Object allocation and garbage collection (GC) are controlled by specific algorithms. Based on the weak
generational hypothesis [4] (i.e., most objects have a short survival time), JVM divides the whole heap
space into new (young) and old (tenured) generations for storing objects with different survival time.
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New Generation: This generation consists of one large space called Eden and two small equal-sized
spaces called Survivor (S0 and S1). Most newly generated objects are first put into eden. When eden is
nearly full, young GC (also called minor GC) occurs and some long-lived objects are transferred into one
of the survivor spaces. The other space is always empty for swapping. If the long-lived objects cannot be
held in the survivor space, they will be transferred into Old generation. The ratio of eden to survivor can
be changed at runtime by GC algorithm. Maximum size of new generation (NGCMX) is fixed by default
once JVM starts. Figure 1.3 shows realtime committed (C) & used (U) memory in each generation, while a
WordCount mapper is running. More descriptions of the labels can be found at [5].
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Figure 1.3: Realtime Committed & Used & GC status in each generation of a mapper

Old Generation: This space is usually larger than new generation for storing long-lived objects. Large
objects such as big byte array are directly allocated in old space too. Long-lived objects in eden or sur-
vivor space may retire to old space when young GC or full GC occurs. Not enough old space for storing
incoming objects triggers full GC. Full GC needs to scan all the live objects in each generation and reclaim
unreferenced ones. So it is heavy and time-consuming. Maximum size of old space (OGCMX) is also fixed
once JVM starts, if no special configurations are specified. For mappers, spill buffer usually exists in this
space. For reducers, some segments usually live in this space. Figure 1.4 shows realtime committed & used
memory in each generation while a reducer is running.
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Figure 1.4: Realtime Committed & Used & GC status in each generation of a reducer

Permanent Generation: This generation (typically 64MB) is regarded as an independent space outside
heap. JVM’s reflective data such as Class and Method objects are stored in this space. For map/reduce
tasks, the usage of this space is usually stable because tasks run the same map/reduce function. More details
about this generation can be find at [4].

Memory Usage: Hadoop launches each task as a standard JVM instance, so parameters such as -Xmx
and -Xms are also applicable to map/reduce tasks. Once Xmx is specified, maximum size of heap is fixed.
The upper bound of each generation is also fixed if no special parameters are set. Some parameters can
specify the ratio of new generation to old generation or survivor space to eden space. Minimum size of the
heap (also as initial committed size) is determined by Xms. Formula Used < Committed < Max denotes
the relationship among these three memory usage. Used memory is the total size of currently live objects.
Committed memory represents the currently usable size. This size may grow or shrink according to the
current ratio of Used to Max. Max memory usually equals Xmx except that the physical memory cannot
guarantee the size of Xmx.

GC Collectors: JVM contains many different garbage collectors [1] for achieving different performance
goals. They can be classified into three types: Serial Collector only starts one thread to perform GC.
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Parallel Collector uses multi-threads, so it is suitable for multiprocessor and applications which process
large dataset. It is also the default collector of server-mode JVM. The last one is Concurrent Collector
which aims at decreasing GC pauses and runs the collecting thread in parallel with the application thread. If
the application runs on multiprocessor and has large set of long-lived objects, this collector is a good choice.

The concrete collectors are summarized as follows. The first three collectors work in new generation and
the next three ones work in old generation. G1 is a special collector which blurs the boundary of generations.

Table 1.1: Different GC collectors used in Hotspot JVM
Collectors Threads GC algorithm Other info
Serial Single Copy Default GC for client JVM
ParNew Multiple Copy Parallel version of Serial
Parallel Scavenge (PS) Multiple Copy Higher throughput
Serial Old Single Mark-Compact Can work with all
CMS Multiple Mark-Sweep Less pause time
Parallel Old Multiple Mark-Compact Can work with PS
G1 Multiple Mark-Compact + Copy Independent

There are two important issues that we need to make clear before building the memory usage model:

Object location: The Hotspot GC algorithms only guarantee a single object exists in a particular gener-
ation, but an object graph may span multiple generations. For example, a byte array like kvbuffer is
a single object, so it cannot span new and old generation. Another example is ArrayList<Segment>
which contains the ArrayList object itself, the Object[] object, and the references of Segment. So
the ArrayList object, the object array, and the referenced objects each will not span generations. How-
ever, different Segment objects can exist in different generations.

The boundary between new and old generation: The maximum heap size is fixed at JVM initialization.
By default the maximum size of old generation is also fixed at initialization. There are exceptions when
special configuration (e.g., UseParallelGC, UseParallelOldGC or UseG1GC) is specified. The
differences between the first two collectors are as follows:

Configuration GC in new gen GC in old gen Other info
UseParallelGC Parallel Scavenge Serial Old Default GC of server-mode JVM
UseParallelOldGC Parallel Scavenge Parallel Old

With UseParallelGC is specified and UseAdaptiveGCBoundary is turned on (it is on by default),
the GC algorithm can move space between new generation and old generation. However, a minimum size
of the new generation and a minimum size of old generation have to be observed [2]. In my practice, I have
not noticed any movement between new and old generations while the map/reduce tasks are running.

If UseG1GC is specified, JVM will use G1 (Garbage-First) collector which has a new memory man-
agement mechanism. A single large contiguous Java heap space is divided into multiple fixed-sized heap
regions. The new generation is a logical collection of non-contiguous regions and the collection changes
dynamically. Again, the maximum size of the heap does not increase and there are limits on the minimum
size of the new generation. More details can be found at [3]. Since G1 is still experimental in latest JDK 7,
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we focus on the default GC collectors of server-mode JVM (i.e., there are fixed boundary between new and
old generation).

2 Memory Usage Model

Last section talks a lot about the details of Hadoop and JVM internals. This section will concentrate on how
to build the memory model. More formally, given a job 〈dataset d, user code uc and configuration c〉, we
want to figure out the fine-grained memory usage of mappers and reducers.

Memory usage = f (dataset d, user code uc, configuration c)

More specially, we care about two concrete memory usages in each phase.

peak usage = max
t∈phase p

(∑
size

(
live objectt

))
resident usage = max

t∈phase p

(∑
size

(
referenced objectt

))
objectt represents a live object at time t in phase p. Live objects consist of referenced objects and

unreferenced objects (can be reclaimed but have not been reclaimed right now) .
Peak usage: the maximum Used memory. It reflects at most how much physical memory can be con-

sumed by currently live objects. For example, in Figure 1.3 in map&spill phase, the peak usage of new
generation is 600MB, but many objects have become unreferenced at that time. In Figure 1.4 in shuf-
fle&sort phase, the peak usage of old generation is 1000MB. Peak usage can help us judge whether JVM
configurations (e.g., maximum heap size) are reasonable.

Resident usage: the maximum size of all the currently referenced objects. After removing unreferenced
objects, peak usage is resident usage. It reflects the minimum heap space that we should guarantee. Or else,
JVM may run out of memory. For example, in Figure 1.3 in map&spill phase, the usage in new generation
can drop down below 100MB if the unreferenced objects are reclaimed by GC. In Figure 1.4 in shuffle&sort
phase, the resident usage of old generation can be lower than 1000MB because some objects may have
already become unreferenced.

To model the two usages, we need to solve three questions: 1) What are in-memory objects? 2) How to
calculate their sizes? 3) What is the relationship between in-memory objects and the two usages?

2.1 In-memory objects

We classify in-memory objects into two types: user objects and framework objects. User objects are gen-
erated by user-defined methods such as setup(), map(), combine() and reduce(). The method setup() can be
invoked to do some preparation (e.g., read a dictionary into in-memory HashMap) before map()/reduce()
performs on each input record. Framework objects are generated by framework for serving user code,
including data buffers and in-memory intermediate data. Figure 2.1 & Figure 2.2 illustrate the detailed pro-
cessing steps and in-memory objects in map & reduce stage. The orange ones represent user code and user
objects, while the blue ones stand for framework objects. Figure 2.3 depicts the general processing steps
and typical objects in user code.

In detail, we classify in-memory objects into the following types. Framework objects only include the
first two types. For simplicity, some objects’ names are different with the original ones in Hadoop source
code.
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Data buffers: In map stage, mapper first reads a piece of raw data from input split into a tiny readbuffer,
then it uses read() to convert the buffered data into 〈k1, v1〉 records one by one. This process is per-
formed repeatedly and readbuffer is reusable. Spill buffer (i.e., kvbuffer, kvindices and kvoffsets)
occupies a large fixed space for caching serialized map output records. Increasing this space may reduce
spill times and disk I/O. In reduce stage, shuffled segments are first stored in logical buffers (MergeQueue
& ShuffleBound). After shuffle phase finishes, the unmerged segments are cached in reduceBuffer.
SortMergeQueue stores the pointers of all the in-memory and on-disk segments, so 〈k2, list(v2)〉 records
can be generated one by one by merging the referenced segments. In user code, users may also allocate data
buffers such as byte array, ArrayList, HashMap and other in-memory data structures. These buffers are used
to keep intermediate computing results or external data. In addition, input/output/flush/compress streams
may contain small-sized buffers like readbuffer.

Records: Records has two types: the input/output records of user code and the records stored in in-
memory segments. User code has three features: independent, arbitrary and streaming-style. Independent
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means user code only interacts with framework through records I/O. Each user code also has its own life
cycle (shown in Figure 2.4), so objects generated in current user code will become useless when the next user
code is invoked by the framework. For example, objects used in map() will not be available in combine().
Arbitrary means there is no constraint on user code except the input/output format, so any objects may be
defined and generated in user code. Streaming-style means records are read, processed and outputted one by
one. So current input record and its associative intermediate computing results may become unreferenced
when the next record is read in. The records stored in-memory segments are framework objects, because
they are managed by framework.

Intermediate objects: There are also two types of intermediate objects in user code. One is the record-
related objects that are generated by type conversion. Since input/output records are serialized objects
(extends Writable), it is not convenient to process them directly. In general, method decode() is used
to convert input records to ordinary Java objects, while encode() does the reverse job. So the number and
size of these record-related objects always have linear correlation with the input/output records. The other
type is the intermediate processing results that are generated during the concrete computation. For example,
the words tokenized from the input string are regarded as intermediate objects in WordCount mapper. Most
intermediate objects are useless while the next record is going to be processed, but some of them may be
kept in data buffer for further use. For example, de-duplication will allocate a HashSet to cache each
unique intermediate object generated from current input record.

Temporary objects: While performing decode() and encode() on each record, temporarily referenced ob-
jects such as char[], byte[], String and so on may be generated accordingly. These objects are different from
intermediate objects because temporary objects are useless once the type conversion is over. For example,
A WordCount mapper produces massive java.nio.HeapCharBuffer objects while encoding the to-
kenized String objects to Text objects. The number of HeapCharBuffer objects is as same as the
output records of map() and their total size is more than 7 times of the input split (shown in Table Table 2.1).

Other objects: Apart from the framework, other components in Hadoop such as the scheduler, monitor,
and task tracker may generate some small objects while tasks are running. We regard these objects as other
objects but not consider them in the memory usage model.
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To give a detailed example, we collect the top memory-consuming objects while WordCount mapper
and reducer are running.

Table 2.1: Dataflow counters and top memory-consuming objects in a WordCount mapper
Abbreviation Dataflow counters Value
mapInRecs Map input records 3,964
mapOutRecs Map output records 10,486,900
combineInRecs Combine input records 12,114,758
combineOutRecs Combine output records 2,342,038

bytes number of objs object names generated by
503,371,200 10,486,900 java.nio.HeapCharBuffer encode()
503,371,200 10,486,900 java.nio.HeapByteBuffer encode()
335,580,800 10,486,900 java.lang.String intermediate objects
310,333,240 10,486,900 char[] encode()
264,945,096 10,486,900 byte[] encode()
199,229,456 1 byte[] kvbuffer
150,953,328 18,391 byte[] input stream buffer
134,309,656 3,964 char[] decode()
133,835,536 3,964 char[] decode()

7,864,336 1 int[] kvindices
5,660,592 117,929 java.nio.HeapByteBuffer encode()
3,733,872 1,010 byte[] other object
2,621,456 1 int[] kvoffsets
2,566,272 26,732 int[] other object
2,206,920 18,391 int[] other object
2,158,704 263 byte[] input stream buffer
1,800,264 31 byte[] enlarged readbuffer
1,733,760 54,180 java.util.HashMap$Entry other object

Table 2.2: Dataflow counters and top memory-consuming objects in a WordCount reducer
Abbreviation Dataflow counters Value
shuffledBytes Reduce shuffle bytes 204,417,281
combineInRecs Combine input records 11,887,515
combineOutRecs Combine output records 3,211,905
reduceInKeys Reduce input groups 3,424,006
reduceInRecs Reduce input records 4,325,892
reduceOutRecs Reduce output records 3,424,006
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bytes number of objs object names generated by
164,352,288 3,424,006 java.nio.HeapByteBuffer encode()
164,352,288 3,424,006 java.nio.HeapCharBuffer encode()
140,611,248 17,131 byte[] input stream buffer
109,568,192 3,424,006 java.lang.String intermediate objects
82,559,704 3,424,006 byte[] encode()
82,187,840 3,424,006 char[] encode()
82,176,144 3,424,006 byte[] intermediate objects
43,765,272 32 byte[] Segments/Records
43,728,480 32 byte[] Segments/Records
39,647,648 29 byte[] Segments/Records
39,304,792 29 byte[] Segments/Records
37,973,432 28 byte[] Segments/Records
37,378,320 570 byte[] write stream buffer
10,426,584 159 byte[] write stream buffer

2.2 Life cycle

The life cycles of objects are important to determine the peak and resident usage.

Type Abbreviation Concrete type Life cycle
Framework data buffer phase

records buffer
User code tObj temporary objects record

intermediate objects record
rObj data buffer user code

Framework objects: Data buffer is phase level, since it will exist in memory from the beginning to the
end of the phase. Records are buffer level because records are first stored in the buffer and will be merged
onto the disk when the buffer is nearly full.

User objects have two types: tObjs represents temporarily referenced objects, while rObjs stands for
resident objects. tObjs are record level and consist of two subtypes. Temporary objects can be reclaimed
once the corresponding record finishes type conversion. Intermediate objects can be reclaimed once the
next record is read in, except that they are kept in long-lived data buffer. rObjs are user code level, because
necessary intermediate objects or external data will be kept in the data buffer until the user code ends.

To detail the user code level, Figure 2.4 shows the concrete life cycle of each user code. Although setup()
actually runs before map(), the rObjs in it can exist in memory until map() finishes. Each combine() is in-
dependent, so rObjs which exist in current memCombine() can be reclaimed when the next memCombine()
is invoked.
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Figure 2.4: The life cycles of user code and framework objects

2.3 Size calculation

Suppose we have known the dataflow counters (i.e., the data size in each processing step), we can model the
size of in-memory objects in different phases.

Size (objects) = f (dataflow d, user code uc, configuration c)

Some framework objects like kvbuffer are only related to the configuration, while others like Segment
is affected by both the dataflow counters and configurations.

User objects are hard to estimate before the job runs. We do not know whether users will define data
buffer and how many intermediate data will be kept in the buffer. We also do not know the size of tObjs. But
from Table 2.1 and Table 2.2, we can see that there is a linear relationship between tObjs and input/output
records. So, if the job has run before, we can profile the buffer size and estimate the ratio of tObjs to
input/output records using linear regression.

The following tables reflect the concrete f () in each phase. Configurations are marked with blue. U is
user objects, while F is framework objects. tObj(counter) denotes the size of total tObjs is affected by the
counter. rObj(method) stands for the size of resident objects in that method. Some counters like mapInRecs
will be detailed in the next section.

After computing the size and life cycles of in-memory objects, we can model the peak and resident
usage. The peak usage model assumes all the in-memory objects are not reclaimed in the current phase,
while resident usage model does not consider unreferenced objects.
Setup phase

Objects Type U or F Total size
setup() Data buffer U rObj(setup)

Map & Spill phase

Objects Type U or F Total size
kvbuffer Data buffer F io.sort.mb * (1 - io.sort.record.percent)
kvoffsets Data buffer F io.sort.mb * io.sort.record.percent / 4
kvindices Data buffer F 3 * kvoffsets
map() Data buffer U tObj(mapInRecs) + tObj(mapOutRecs) + rObj(map)

tObjs
memCombine() Data buffer U

∑SpillTimes
i=1 {tObj(memCombineInRecsi)

tObjs +tObj(memCombineOutRecsi)
+rObj(memCombinei)}
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total(map) = kvbuffer + kvindices + kvoffsets + map() + memCombine()

peak usage = min (total(map),maxHeapSize)

resident usage = kvbuffer + kvindices + kvoffsets + rObj(map) + max
1≤i≤SpillTimes

(rObj(memCombinei))

Merge phase

Objects Type U or F Total size
diskCombine() Data buffer U

∑ReduceNum
i=1 {tObj(diskCombineInRecsi)

tObjs +tObj(diskCombineOutRecsi)
+rObj(diskCombinei)}

peak usage = min(total(map) + diskCombine(),maxHeapSize)

resident usage = max(rObj(diskCombinei))

If the objects in map & spill phase have been reclaimed before merge phase, the peak usage of merge
phase will decrease.

Shuffle & Sort phase

Objects Type U or F Total size
Segment Records F shuffledSegments
(Total shuffled)
Segment Records F min(shuffledSegments,MergeQueue)
(MergeQueue)
Segment Records F min(shuffleBound, shuffledSegments)−MergeQueue
(ShuffleQueue) or 0 (if shuffledSegments < MergeQueue)
memCombine() Data buffer U

∑MergeTimes
i=1 {tObj(memCombineInRecsi)

tObjs +tObj(memCombineOutRecsi)
+rObj(memCombinei)}

The first segment denotes the total shuffled segments in a reducer. The second one represents the max-
imum size of segments in MergeQueue. The third one stands for the maximum size of segments in shuffle-
Bound but not in MergeQueue.

shuffleSegments = uncompressed(reduce shuffle bytes)

shuffleBound = maxHeapSize ∗mapred.job.shuffle.input.buffer.percent

MergeQueue = shuffleBound ∗mapred.job.shuffle.merge.percent

total(shuffle&sort) = shuffledSegments + memCombine()

peak usage = min(total(shuffle&sort),maxHeapSize)

resident usage = min(shuffledSegments, shuffleBound) + max
1≤i≤MergeTimes

(rObj(memCombinei))
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Reduce phase

Objects Type U or F Total size
Segment Records F min(reduceBuffer, shuffledSegements % MergeQueue)
(reduceBuffer)
reduce() Data buffer U tObj(reduceInRecs) + tObj(reduceOutRecs)

tObjs +rObj(reduce)

By default, reduceBuffer (mapred.job.reduce.input.buffer.percent) is set to 0, so all the segments have
been merged onto disk before reduce phase starts.

total(reduce) = Segment(reduceBuffer) + reduce()

peak usage = min (total(shuffle&sort) + total(reduce),maxHeapSize)

resident usage = Segment(reduceBuffer) + rObj(reduce)

After a job finishes, the driver program, which is originally used to submit the job, can also be used to
collect the outputs of reducers. This collector is common in iterative jobs like Mahout jobs, but not every
job has it.

Collect phase

Objects Type U or F Total size
Collect() Data buffer U tObj(reduceOutRecs) + rObj(collect)

tObjs

peak usage = min (tObj(reduceOutRecs) + rObj(collect),maxHeapSize)

resident usage = rObj(collect)

2.4 Dataflow model

As seen from above, size of in-memory objects is closely related to dataflow counters. So we need to have
a dataflow model. Many materials such as [7] have invented this wheel. Here, we give a simplified version
which focuses on the memory-related dataflow counters. Some formulas assume there is no data skew.

Notations
r(methodInRecs) represents the output records of the method, given the input records.
bpr denotes the bytes per record in current counter.
bpr is different in different counters, but we use the same notation in each counter for simplicity.
r(memCombine) = r(diskCombine) = 1, if there is no combine() in the job.
Recs is the abbreviation of records.

Map stage
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Counters Calculation
mapInRecs InputSplit/bpr
mapOutRecs mapInRecs ∗ r(mapInRecs)
memCombineInRecs

∑SpillTimes
i=1 (memCombineInRecsi)

memCombineOutRecs
∑SpillTimes

i=1 (r(memCombineInRecsi))
diskCombineInRecs

∑ReduceNum
i=1 (diskCombineInRecsi)

diskCombineOutRecs
∑ReduceNum

i=1 (r(diskCombineInRecsi))

spillPercent = io.sort.spill.percent

spillRecords = min
(
kvbuffer ∗ spillPercent

bpr
,

kvoffsets ∗ spillPercent
4

,mapOutRecs
)

SpillTimes =

⌈
mapOutRecs
spillRecords

⌉
memCombineInRecsi = spillRecords, (i f 1 ≤ i < spillTimes)

memCombineInRecsi = mapOutRecs % spillRecords, (i f i = SpillTimes)

diskCombineInRecsi =
memCombineOutRecs

ReduceNum

Reduce stage

Counters Calculation
shuffledSegments

∑MapperNum
i=1 (diskCombineOutRecs ∗ bpr/reduceNum)

memCombineInRecs
∑MergeTimes

i=1 (memCombineInRecsi)
memCombineOutRecs

∑MergeTimes
i=1 (r(memCombineInRecsi))

reduceInRecs memCombineOutRecs + (shuffledSegments % MergeQueue)/bpr
reduceOutRecs r(reduceInRecs)

MergeTimes =

⌊
shuffledSegments

MergeQueue

⌋
memCombineInRecsi =

min (
∑

(unmerged segment),MergeQueue)
bpr

2.5 Peak & resident usage in each generation

Until now, we have calculated the peak and resident memory usage in mapper/reducer. If we want to delve
into the memory usage in each generation, the following will help.

In this section, we will model the peak usage in each generation by analyzing the object locations and
GC’s effects. We first map the in-memory objects into each generation. Then, we will discuss how the GC
affects the peak usage. A general model is summarized based on the memory management mechanism of
JVM and the life cycles of in-memory objects.
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Figure 2.5: General JVM model of mappers and reducers

Object locations
The location rules are applicable to most jobs but not all the jobs. JVM will put large objects and old

enough objects into old gen (abbr. of generation). Temporarily referenced objects are mainly allocated and
reclaimed in new gen. There are also exceptions: when old gen is full, some long-lived objects will still
exist in new gen (e.g., the green segment in MergeQueue or shuffleBound). Resident objects are easy to
retire to old gen if the new gen is too small.

Mapper JVM Since spillBuffer is large enough and exists in memory for a long time, it is assumed to be
in the old gen. tObjs generated in map() and combine() are only referenced while the corresponding record
is being processed. As a result, few tObjs are transferred to old gen. rObjs are assumed to be first allocated
in new gen, then some of them may retire to old gen. For example, map() allocates an ArrayList to keep all
the decoded input records. Some early added records may retire to old gen, while others may still exist in
new gen. However, if the ArrayList is substituted by a large byte buffer, the buffer will exist in old gen as
same as spill buffer.

Figure 1.3 shows the realtime usage of a mapper JVM every 2 seconds. After a minor GC, most tObjs
are reclaimed and the usage drops down dramatically. The usage of old gen is stable because only spill
buffer exists in it.

Reducer JVM In shuffle & sort phase, shuffled segments are first fetched into the new gen. When new gen
is nearly full, minor GC will occur. Some segments will retire to old gen since different segments can exist
in different generations as mentioned in section 1.3. Segments in MergeQueue are easier to be transferred
to old gen because time-consuming merge will make them long-lived. Other segments in MergeQueue may
still exist in new gen because old gen may have not enough space. After segments are merged onto disk,
they become unreferenced and will be reclaimed if full GC occurs. Segments in shufflebound but not in
MergeQueue are relatively fresh, so they may exist in new gen except that new gen is full. In reduce phase,
the left segments in reducebuffer are supposed to be in old gen because they are old enough. The locations
of tObjs and rObjs are as same as them in map().

Note that the following models are general but not absolute. For example, some objects in the new gen
may retire to old gen at run time.
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Peak usage

Phase New Old
Map & spill map() + memCombine() spillBuffer
Merge diskCombine()
Shuffle & sort shuffledSegments + memCombine() Segments(MergeQueue)
Reduce reduce() Segments(reduceBuffer)

Resident usage

Phase New Old
Map & spill rObj(MapInRecs) + max(rObj(memCombinei)) spillBuffer
Merge max(rObj(diskCombinei))
Shuffle & sort Segment(shuffleQueue) + max(rObj(memCombinei)) Segment(MergeQueue)
Reduce rObj(ReduceInRecs) Segments(reduceBuffer)
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