
Finding Bugs in Gremlin-Based Graph Database Systems via
Randomized Differential Testing

Yingying Zheng
State Key Lab of Computer Science at
ISCAS, University of CAS, China

zhengyingying14@otcaix.iscas.ac.cn

Wensheng Dou∗
State Key Lab of Computer Science at
ISCAS, University of CAS, University

of CAS Nanjing College, China
wsdou@otcaix.iscas.ac.cn

Yicheng Wang
State Key Lab of Computer Science at
ISCAS, University of CAS, China
wangyicheng19@otcaix.iscas.ac.cn

Zheng Qin
State Key Lab of Computer Science at
ISCAS, University of CAS, China
qinzheng19@otcaix.iscas.ac.cn

Lei Tang
State Key Lab of Computer Science at
ISCAS, University of CAS, China
tanglei20@otcaix.iscas.ac.cn

Yu Gao
State Key Lab of Computer Science at
ISCAS, University of CAS, China

gaoyu15@otcaix.iscas.ac.cn

Dong Wang
State Key Lab of Computer Science at
ISCAS, University of CAS, China
wangdong18@otcaix.iscas.ac.cn

Wei Wang∗
State Key Lab of Computer Science at
ISCAS, University of CAS, University

of CAS Nanjing College, China
wangwei@otcaix.iscas.ac.cn

Jun Wei
State Key Lab of Computer Science at
ISCAS, University of CAS, Nanjing
Institute of Software Technology,

China
wj@otcaix.iscas.ac.cn

ABSTRACT
Graph database systems (GDBs) allow efficiently storing and retriev-
ing graph data, and have become the critical component in many
applications, e.g., knowledge graphs, social networks, and fraud
detection. It is important to ensure that GDBs operate correctly.
Logic bugs can occur and make GDBs return an incorrect result for
a given query. These bugs are critical and can easily go unnoticed
by developers when the graph and queries become complicated.
Despite the importance of GDBs, logic bugs in GDBs have received
less attention than those in relational database systems.

In this paper, we present Grand, an approach for automatically
finding logic bugs in GDBs that adopt Gremlin as their query lan-
guage. The core idea of Grand is to construct semantically equiva-
lent databases for multiple GDBs, and then compare the results of a
Gremlin query on these databases. If the return results of a query on
multiple GDBs are different, the likely cause is a logic bug in these
GDBs. To effectively test GDBs, we propose a model-based query
generation approach to generate valid Gremlin queries that can
potentially return non-empty results, and a data mapping approach
to unify the format of query results for different GDBs. We evaluate
Grand on six widely-used GDBs, e.g., Neo4j and HugeGraph. In

∗Wensheng Dou andWei Wang are the corresponding authors. CAS is the abbreviation
of Chinese Academy of Sciences. ISCAS is the abbreviation of Institute of Software,
Chinese Academy of Sciences.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’22, July 18–22, 2022, Virtual, South Korea
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9379-9/22/07. . . $15.00
https://doi.org/10.1145/3533767.3534409

total, we have found 21 previously-unknown logic bugs in these
GDBs. Among them, developers have confirmed 18 bugs, and fixed
7 bugs.

CCS CONCEPTS
• Information systems→ Database query processing; • Soft-
ware and its engineering→ Software testing and debugging.

KEYWORDS
Graph database systems, differential testing, Gremlin

ACM Reference Format:
Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu
Gao, Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-
Based Graph Database Systems via Randomized Differential Testing. In
Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’22), July 18–22, 2022, Virtual, South Korea. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3533767.3534409

1 INTRODUCTION
Graph database systems (GDBs) are built on the labeled property
graph model [55] or the Resource Description Framework (RDF)
graph model [25], and support efficient storage and queries for
graph data, which consists of vertices and edges. The popularity of
GDBs has increased dramatically recently, and GDBs have played
a significant role in many applications, e.g., knowledge graphs
[28, 43], social networks [33], and fraud detection [47]. Examples
of the most popular GDBs include Neo4j [7], OrientDB [11], Janus-
Graph [6] (extended from Titan [20]), Nebula [10], HugeGraph [3],
TinkerGraph [16], ArcadeDB [9] and so on.

Similar to relational database systems, GDBs also suffer from
logic bugs, in which a query returns an unexpected result with-
out crashing the GDBs. The unexpected results could be incorrect
query results (e.g., omitting a vertex in a graph), or unexpected

https://doi.org/10.1145/3533767.3534409
https://doi.org/10.1145/3533767.3534409

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

1 hugegraph.schema ().vertexLabel("vLabel").properties("prop")

.nullableKeys("prop").create ();

2 hugegraph.schema ().indexLabel("index").onV("vLabel").by("

prop").shard().ifNotExist ().create ();

3
4 Vertex v1 = new Vertex("vLabel").property("prop", 5);

5 Vertex v2 = new Vertex("vLabel").property("prop", 1);

6 Vertex v3 = new Vertex("vLabel").property("prop", 3);

7 addVertices(Arrays.asList(v1, v2, v3));

8
9 g.V().has('prop', between (0,4).or(lt(2))).count();

10 -- {3} ✘ {2} ✔

Figure 1: An illustrative Gremlin query that triggers a logic
bug in HugeGraph.

errors. Figure 1 shows a test case that triggers a logic bug, which
we found in HugeGraph [3]. In this test case, we first create a graph
schema with a vertex label 𝑣𝐿𝑎𝑏𝑒𝑙 and its property 𝑝𝑟𝑜𝑝 (Line 1).
We further create an 𝑖𝑛𝑑𝑒𝑥 on property 𝑝𝑟𝑜𝑝 (Line 2). Based on this
graph schema, we create three vertices 𝑣1, 𝑣2 and 𝑣3 with differ-
ent 𝑝𝑟𝑜𝑝 of 5, 1, and 3, respectively (Line 4-6), and add them into
the graph (Line 7). We count the vertices whose property 𝑝𝑟𝑜𝑝 is
between 0 and 4, or less than 2 (Line 9). We can see that vertex 𝑣2
and 𝑣3 satisfy this condition, and this query should return 2. How-
ever, HugeGraph returns an incorrect result 3 because HugeGraph
forgets to deduplicate overlapping values for OR operation.

For relational database systems that utilize Structured Query
Language (SQL) to create, access, and modify data, researchers
have developed several tools, such as RAGS [52] and SQLancer [13],
to effectively discover logic bugs. RAGS uses differential testing for
detecting bugs in relational database systems, while SQLancer of-
fers three oracles, i.e., Pivoted Query Synthesis (PQS) [50], Ternary
Logic Partitioning (TLP) [49], and Non-Optimizing Reference En-
gine Construction (NoREC) [48] to find logic bugs. However, no
available tools can be applied on GDBs to detect logic bugs.

Logic bugs in GDBs are difficult to detect automatically due to
the following reasons: (1) Unlike relational database systems, there
is no standardized way to query graph data. These widely-used
GDBs usually utilize their own query languages. For example, Neo4j
develops Cypher [36], and TigerGraph uses GSQL [32]. Fortunately,
most GDBs, e.g., 66% (23/35) GDBs in the DB-Engine Ranking of
Graph DBMSs [22], support a common query language, Gremlin
[51], which is developed by Apache TinkerPop [17] and provides
a group of Gremlin APIs to query graph data. (2) GDBs adopt
totally different syntax and query patterns from SQL. For example,
Gremlin is a functional language and traverses graphs through
a sequence of traversal steps that can be composed to express
complex queries. Thus, we cannot directly apply existing testing
approaches for relational database systems on GDBs. (3) GDBs have
different storage and query result formats. For example, different
ID generation strategies in GDBs can lead to different query results
for vertices and edges. Thus, a key challenge is to automatically
construct valid graph queries and their corresponding oracles for
different GDBs.

In this paper, we proposeGrand, a randomized differential testing
approach for automatically finding logic bugs in GDBs that adopt
Gremlin to retrieve graph data (also called Gremlin-based GDBs).

Specially, by generating random Gremlin queries, our approach
seeks for discrepancies among the return results from different
Gremlin-based GDBs, and then identifies discrepancies as potential
logic bugs. To effectively find logic bugs in Gremlin-based GDBs,
we address two specific challenges. First, to generate syntactically
correct and valid Gremlin queries that can return non-empty query
results with a high possibility, we adopt a model-based query gener-
ation approach. Specifically, we summarize Gremlin traversal APIs
to different traversal types. Then, we propose a Gremlin traversal
model that expresses the transformation between different traver-
sal APIs to generate correct and valid Gremlin queries. Second, to
obtain the uniform query results from different GDBs, we utilize a
data mapping approach to obtain uniform query results in different
GDBs. Thus, our approach can compare query results with different
formats returned by different GDBs.

To the best of our knowledge, Grand is the first approach to
detect logic bugs in GDBs. To evaluate the effectiveness of Grand,
we apply it on six widely-used GDBs, i.e., Neo4j [7], OrientDB [11],
JanusGraph [6], HugeGraph [3], TinkerGraph [16], and ArcadeDB
[9]. The experimental results show that Grand is effective in detect-
ing logic bugs in GDBs. At the time of writing this paper, Grand
has detected 21 previously-unknown logic bugs in these GDBs.
Among these bugs, 18 bugs have already been confirmed, and 7
bugs have been fixed. We have made Grand publicly available at
https://github.com/tcse-iscas/Grand.

In summary, this paper makes the following contributions.
• We propose Grand, an automated differential testing ap-
proach to find logic bugs in Gremlin-based graph database
systems. We introduce a model-based query generation ap-
proach to effectively generate syntactically correct and valid
Gremlin queries.
• We implement Grand and evaluate it on six widely-used
GDBs and discover 21 previously-unknown bugs.

The remainder of this paper is organized as follows. Section 2
briefly introduces graph models and graph query languages in
graph database systems. Section 3 presents the techniques of our
approach including the graph database generation, the model-based
query generation and differential testing for Gremlin-based GDBs.
Section 4 introduces our implementation. The evaluation of Grand
is shown in Section 5, followed by the threats and limitations of our
approach in Section 6. Section 7 presents related work and Section 8
concludes this paper.

2 PRELIMINARIES
In this section, we introduce graph models and query languages
used in graph database systems.

2.1 Graph Models in Graph Database Systems
Graph database systems (GDBs) adopt graph data structure to store
and query data [55]. To explicitly lay out the associated relation-
ships between vertices of data, GDBs use several graph models,
which mainly include labeled property graph model and Resource
Description Framework (RDF) graph model.

Labeled property graph model. The labeled property graph
describes the relationship between entities, and consists of a set
of vertices, a set of edges (i.e., the relationships of these vertices),

https://github.com/tcse-iscas/Grand

Finding Bugs in Gremlin-Based Graph Database Systems via Randomized Differential Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

1 3
book

2write read

name: Jane Austen

gender: female

name: Nancy

gender: female

title: Pride and Prejudice

wordCount: 234000

since: 2020 publish: 1983

person person

Figure 2: A labeled property graph.

labels (i.e., the groups of vertices or edges), and properties (i.e.,
attributes). Specially, each vertex or edge has a set of properties
associated with it, and can be divided into different groups by its
label. For example, as shown in Figure 2, two vertices with label
𝑝𝑒𝑟𝑠𝑜𝑛 (i.e., 𝑣𝑒𝑟𝑡𝑒𝑥1 and 𝑣𝑒𝑟𝑡𝑒𝑥3) have 𝑛𝑎𝑚𝑒 and 𝑔𝑒𝑛𝑑𝑒𝑟 properties,
while a vertex with label 𝑏𝑜𝑜𝑘 has 𝑡𝑖𝑡𝑙𝑒 and𝑤𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡 properties.
Two edges labeled by 𝑤𝑟𝑖𝑡𝑒 and 𝑟𝑒𝑎𝑑 , associate 𝑝𝑒𝑟𝑠𝑜𝑛 and 𝑏𝑜𝑜𝑘
vertices, and have 𝑝𝑢𝑏𝑙𝑖𝑠ℎ and 𝑠𝑖𝑛𝑐𝑒 properties, respectively. Edges
in a labeled property graph are directed. For example, the edge
labeled by 𝑤𝑟𝑖𝑡𝑒 points from 𝑣𝑒𝑟𝑡𝑒𝑥1 to 𝑣𝑒𝑟𝑡𝑒𝑥2, while the edge
labeled by 𝑟𝑒𝑎𝑑 points from 𝑣𝑒𝑟𝑡𝑒𝑥3 to 𝑣𝑒𝑟𝑡𝑒𝑥2.

RDF graph model. The RDF graph model is a W3C standard
for data exchange and uses triples (i.e., subject, object and pred-
icate) to represent resources in the Web. Different from labeled
property graph model, vertices and edges play absolutely the same
role in RDF [12]. In RDF triple structure, 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 can be a vertex
or an edge, 𝑜𝑏 𝑗𝑒𝑐𝑡 is another vertex, edge or a literal value, and
𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 describes the relationship between them. For example, a
triple (𝑁𝑎𝑛𝑐𝑦 𝑝𝑒𝑟𝑠𝑜𝑛 𝑛𝑎𝑚𝑒) means that Nancy is a person name.

These two graph models provide different ways to describe con-
nected data, and can be used in different applications with their
own strength. For example, in knowledge graph, RDF is widely used
for its highly structured information. However, in graph database
systems, the labeled property graph model is more popular [22].
Specifically, almost all GDBs support the labeled property graph
model, e.g., Neo4j [7], JanusGraph [6], and TigerGraph [1], while
less than half of GDBs, e.g., Virtuoso [34], support the RDF graph
model. Thus, we focus on the labeled property graph model in our
research.

2.2 Graph Query Languages
Different from relational database systems, which use SQL as a uni-
versal way to create, access, and modify data, there is no standard-
ized way in GDBs to query a labeled property graph. To efficiently
and conveniently access the data stored in the labeled property
graph, some graph query languages are developed [40]. According
to their design principles, we can divide these query languages into
two categories.

Category 1: SQL-like graph query language. Different SQL-
like graph query languages are developed for different GDBs, which
focus on individual GDBs’ requirements. (1) The Cypher graph
query language [36] is designed for Neo4j [2] and has been extracted
as an open source project openCypher [21]. It uses MATCH (a
pattern matching clause),WHERE (a filter clause) and RETURN (a
transformation clause) as its query syntax. For example, we can use
the query in Figure 3 to access the writer whose book is read by
Nancy in Figure 2. (2) Nebula [10] uses nGQL which uses FETCH

1 MATCH (Person {name:'Nancy '}) -[read]->(book)<-[write]-(p:

Person)

2 RETURN p.name

Figure 3: An example of Cypher graph query language.

1 g.V().where(values('name').is(eq('Nancy ')))

2 .outE('read').inV()

3 .inE('write ').outV().values('name')

Figure 4: An example of Gremlin query language.

to query the labeled property graph. (3) TigerGraph [15] proposes
GSQL [32], which uses SELECT, FROM and WHERE to obtain data.
A GSQL query usually contains one or more SELECT statements.
Most SQL-like declarative query languages are implemented for
specific GDBs, and cannot be supported by other GDBs.

Category 2: Functional graph query language. Gremlin [51]
is a functional, data-flow query language for traversing labeled
property graphs and enables users to express complex traversals
by composing a sequence of Gremlin steps (i.e., Gremlin API calls).
Gremlin is introduced by Apache TinkerPop framework [54], and
has been widely used in most popular GDBs, e.g., Neo4j [7], Janus-
Graph [6], TinkerGraph [16], and HugeGraph [3].

We can use the query in Figure 4 to get the same result as
the Cypher query in Figure 3. Specifically, we can first get all
vertices using g.V(). Then we filter the person whose name is
Nancy using where() API. The book that Nancy has read can be
accessed by outE(’read’).inV(). Finally, the writer can be obtained by
inE(’write’).outV().values(’name’). In this case, a nested query exists
in where() API, in which is() is used to judge whether a property
value matches the predicate, i.e., eq(’Nancy’).

Besides query APIs, Gremlin provides a set of update APIs to
build a graph database. For example, an empty TinkerGraph can be
built using the query tinkergraph = TinkerGraph.open(), and then,
the Gremlin traversal source g can be obtained with the query g =
traversal().withEmbedded(tinkergraph). After that, we can use some
Gremlin APIs to update the created tinkergraph, e.g., addV() (adding
a vertex to the graph), addE() (adding an edge to the graph), and
drop() (removing elements or properties from the graph).

Note that, SQL-like declarative graph query languages are usu-
ally designed for specific GDBs, while the Gremlin query language
is widely used in most popular GDBs. In the DB-Engine Ranking
of Graph DBMSs [22], 66% (23/35) GDBs support Gremlin APIs.
Specially, for the top ten GDBs, eight GDBs support Gremlin APIs.
Therefore, we mainly focus on the Gremlin query language and the
GDBs using Gremlin to retrieve graph data (also called Gremlin-
based GDBs) in this paper. We will discuss how to extend Grand to
other graph query languages in Section 6.1.

3 APPROACH
In this paper, we propose Grand, a randomized differential testing
approach for automatically finding logic bugs in Gremlin-based
GDBs. Figure 5 shows the overview of Grand. Grand includes three

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

GDBs

Mapping

Traversal

Model

5

6

7JanusGraph

Neo4j

HugeGraph

2

Graph Data

Generation

3Graph Schema

Generation

Write to GDBs 8

Validation

RS1

RS2

RS3

RS1’

RS2’

RS3’

Execute on GDBsQuery

Generation

4

1

Figure 5: Overview of Grand.

phases, namely graph database generation (Section 3.1), query gen-
eration (Section 3.2) and differential testing for GDBs (Section 3.3).

In the phase of graph database generation, Grand first randomly
generates the graph schema to define the types of vertices and
edges, including labels and properties of vertexes and edges in the
graph database (1○). Then, the detailed vertices and edges can be
randomly generated according to the generated graph schema (2○).
The generated database will be written into target GDBs (3○).

In the phase of Gremlin query generation, we use a model-based
query generation approach to generate syntactically correct and
valid Gremlin queries. Specifically, we first construct a traversal
model for Gremlin APIs (4○), and then generate Gremlin queries
based on the constructed traversal model and the generated graph
database (5○).

Finally, Grand executes the generated Gremlin queries (6○) and
validates the query results by differential testing. In details, for
each target GDB, the result for each query will be recorded and
then transformed as a unified query result with the help of the
mapping information (7○). Then, Grand checks these unified results
to identify whether there exist discrepancies (8○). If some GDBs
exhibit different outputs, then a potential bug is found.

3.1 Graph Database Generation
Grand generates random database states for target GDBs, i.e., graph
schema and graph data, which are used to construct Gremlin queries.

Graph schema generation. A graph schema defines the vertex
types and edge types in a labeled property graph. A vertex contains
a label and a set of properties. Let 𝑣𝑒𝑟𝑇𝑦𝑝𝑒 =< 𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦∗ >
denote a vertex type, in which 𝑙𝑎𝑏𝑒𝑙 and 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦∗ denote its la-
bel name and property types, respectively. An edge contains an
input vertex, an output vertex, a label and a set of properties. Let
𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 =< 𝑖𝑛𝑇𝑦𝑝𝑒, 𝑜𝑢𝑡𝑇𝑦𝑝𝑒, 𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦∗ > denote an edge
type, in which 𝑖𝑛𝑇𝑦𝑝𝑒 and 𝑜𝑢𝑡𝑇𝑦𝑝𝑒 denote the types of incoming
and outgoing vertices, and 𝑙𝑎𝑏𝑒𝑙 and 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦∗ denote the label
name and property types, respectively. Each property contains a
property name and its value type. Let 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 =< 𝑛𝑎𝑚𝑒, 𝑡𝑦𝑝𝑒 >

denote a property type, in which𝑛𝑎𝑚𝑒 and 𝑡𝑦𝑝𝑒 denote the property
name and its data type, respectively.

Take the graph in Figure 2 as an example. The type of 𝑣𝑒𝑟𝑡𝑒𝑥 1
is presented as <person, <name, String>, <gender, String> >. Its
label name is person. It has two property types with name and
gender, and their data types are both String. The type of 𝑣𝑒𝑟𝑡𝑒𝑥 2

is presented as <book, <title, String>, <wordCount, Integer>
>. Its label name is book. It has two property types with title
and wordCount, and their data types are String and Integer re-
spectively. The type for the first edge (from 𝑣𝑒𝑟𝑡𝑒𝑥 1 to 𝑣𝑒𝑟𝑡𝑒𝑥 2)
is presented as <person, book, write, <publish, Integer> >. Its
incoming vertex type is person, and outgoing vertex type is book.
Its label name is write, which has a property type publish with
data type Integer.

We generate a set of vertex types 𝑉𝑇𝑆𝑒𝑡 by the following algo-
rithm. For each vertex type, we first randomly generate its label
name, and then generate a set of property types. For each prop-
erty type, we assign a random data type from Integer, String,
Double, Boolean, Float and Long. Note that, we require that all
vertex types have different label names, and all property types in
a vertex type have different property names, but different vertex
types may contain same property types.

We then generate a set of edge types 𝐸𝑇𝑆𝑒𝑡 by the following
algorithm. To generate an edge type, we first randomly select two
vertex types from 𝑉𝑇𝑆𝑒𝑡 as its incoming vertex and outgoing ver-
tex, respectively. Then we use the same way to generate its label
name and property types as the vertex type generation. Note that,
we require that all edge types have different label names, and all
property types in an edge type have different property names, but
different edge types may contain same property types.

Graph data generation. According to the generated graph
schema, Grand further generates the graph data that can be stored
in GDBs. Basically, we randomly generate some vertices and edges
that conform the graph schema. Then, these generated vertices and
edges are written into GDBs. Algorithm 1 illustrates how a vertex
and an edge can be generated.

For the vertex generation (Line 1-8), we first randomly get a
vertex type 𝑣𝑒𝑟𝑇𝑦𝑝𝑒 from vertex types𝑉𝑇𝑆𝑒𝑡 generated above. We
generate a vertex 𝑣𝑒𝑟𝑡𝑒𝑥 according to the vertex type 𝑣𝑒𝑟𝑇𝑦𝑝𝑒 . Note
that, we randomly select a subset of 𝑣𝑒𝑟𝑇𝑦𝑝𝑒’s property types, and
generate 𝑣𝑒𝑟𝑡𝑒𝑥 ’s properties (Line 5-6). In this way, we can create
vertices that lack some properties. For each selected property, we
randomly generate its value according to its data type (Line 23).

For the edge generation (Line 9-18), we first randomly get an
edge type 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 from edge types 𝐸𝑇𝑆𝑒𝑡 generated above. We
generate an edge 𝑒𝑑𝑔𝑒 according to the edge type 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 . The
properties for edge generation is the same as that in vertex genera-
tion. For the incoming/outgoing vertex of edge 𝑒𝑑𝑔𝑒 , we randomly

Finding Bugs in Gremlin-Based Graph Database Systems via Randomized Differential Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Algorithm 1: Graph Data Generation
Input: 𝑉𝑇𝑆𝑒𝑡 (Vertex types), 𝐸𝑇𝑆𝑒𝑡 (Edge types)

1 Function VertexGeneration() do
2 𝑣𝑒𝑟𝑡𝑒𝑥 ← 𝑛𝑒𝑤 𝑉𝑒𝑟𝑡𝑒𝑥 ();
3 𝑣𝑒𝑟𝑇𝑦𝑝𝑒 ← 𝑉𝑇𝑆𝑒𝑡 .𝑟𝑎𝑛𝑑𝑜𝑚();
4 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑙𝑎𝑏𝑒𝑙 ← 𝑣𝑒𝑟𝑇𝑦𝑝𝑒.𝑙𝑎𝑏𝑒𝑙𝑁𝑎𝑚𝑒 ();
5 𝑃𝑇𝑆𝑒𝑡 ← 𝑣𝑒𝑟𝑇𝑦𝑝𝑒.𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑟𝑜𝑝𝑇𝑦𝑝𝑒 ();
6 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ← PropGeneration (𝑃𝑇𝑆𝑒𝑡);
7 return 𝑣𝑒𝑟𝑡𝑒𝑥 ;
8 end
9 Function EdgeGeneration(𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) do
10 𝑒𝑑𝑔𝑒 ← 𝑛𝑒𝑤 𝐸𝑑𝑔𝑒 ();
11 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒 ← 𝐸𝑇𝑆𝑒𝑡 .𝑟𝑎𝑛𝑑𝑜𝑚();
12 𝑒𝑑𝑔𝑒.𝑙𝑎𝑏𝑒𝑙 ← 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒.𝑙𝑎𝑏𝑒𝑙𝑁𝑎𝑚𝑒 ();
13 𝑃𝑇𝑆𝑒𝑡 ← 𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒.𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑟𝑜𝑝𝑇𝑦𝑝𝑒 ();
14 𝑒𝑑𝑔𝑒.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ← PropGeneration (𝑃𝑇𝑆𝑒𝑡);
15 𝑒𝑑𝑔𝑒.𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑟𝑎𝑛𝑑𝑜𝑚(𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒.𝑖𝑛𝑇𝑦𝑝𝑒);
16 𝑒𝑑𝑔𝑒.𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑟𝑎𝑛𝑑𝑜𝑚(𝑒𝑑𝑔𝑒𝑇𝑦𝑝𝑒.𝑜𝑢𝑡𝑇𝑦𝑝𝑒);
17 return 𝑒𝑑𝑔𝑒;
18 end
19 Function PropGeneration(𝑃𝑇𝑆𝑒𝑡) do
20 𝑝𝑟𝑜𝑝𝑠 ← ∅;
21 foreach 𝑝𝑇𝑦𝑝𝑒 ∈ 𝑃𝑇𝑆𝑒𝑡 do
22 𝑝𝑁𝑎𝑚𝑒 ← 𝑝𝑇𝑦𝑝𝑒.𝑛𝑎𝑚𝑒 ();
23 𝑝𝑉𝑎𝑙𝑢𝑒 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑝𝑇𝑦𝑝𝑒.𝑡𝑦𝑝𝑒 ()));
24 𝑝𝑟𝑜𝑝𝑠.𝑎𝑑𝑑 (𝑝𝑁𝑎𝑚𝑒, 𝑝𝑉𝑎𝑙𝑢𝑒);
25 end
26 return 𝑝𝑟𝑜𝑝𝑠;
27 end

select one vertex that conform 𝑒𝑑𝑔𝑒’s incoming/outgoing vertex
type (Line 15-16). Note that, for any two vertices, we only add one
edge with the same type.

Note that, the maximal numbers of vertex types, edge types,
property types, vertices, edges in a graph database, can be specified
by GDB testers. In our experiment, we generate at most 10 vertex
types, 20 edge types, 20 property types, 100 vertices, and 200 edges
for a graph database.

3.2 Model-Based Query Generation
Random query generation is a commonly-used approach for testing
databases [13, 14, 52]. However, the effectiveness of GDB testing
heavily relies on the quality of query generation. Gremlin has flexi-
ble programming interfaces, which consists of a sequence of (poten-
tially nested) Gremlin API calls acting on a graph traversal source 𝑔.
Although we can extract grammar constraints among Gremlin APIs
with automated tools (e.g., JCrasher [30]), a completely random
Gremlin query generation based on the grammar for Gremlin APIs
can cause two issues. First, we can easily generate grammatically
correct but meaningless queries, e.g., 𝑔.𝑉 ().𝑉 ().𝑉 (). Second, from
the Gremlin grammar, we cannot know the semantics of Gremlin
APIs and their parameters. For example, in 𝑔.𝑉 ().𝑜𝑢𝑡𝐸 (′𝑟𝑒𝑎𝑑′), we

cannot know that the parameter of 𝑜𝑢𝑡𝐸 () should be a label. With-
out these semantics, almost all generated Gremlin queries return
empty results, which cannot be used to compare return results in
differential testing. These two issues can greatly affect the effec-
tiveness of GDB testing.

To address the above two issues, we first construct a traversal
model in Gremlin that can exactly understand Gremlin APIs and
their semantics. Based on this traversal model, Grand can link Grem-
lin APIs correctly and generate syntactically correct andmeaningful
queries. Further, Grand can utilize these semantics and design vari-
ous strategies to generate valid Gremlin queries, which can return
non-empty query results with a high probability. Note that, we
only focus on Gremlin query APIs for query generation, and ignore
update APIs that are used to build and update graph databases.

3.2.1 Traversal Model in Gremlin. In this section, we explain the
traversal model in general, and then explain Gremlin APIs.

A Gremlin query consists of a sequence of Gremlin API calls,
which are correctly linked together. However, there exist constraints
about how to link Gremlin APIs. Generally, the input type of a
Gremlin API in a query should match the output type of its previous
Gremlin API. Otherwise, the Gremlin query will be illegal. For
example, for Gremlin API 𝑜𝑢𝑡𝐸 () (moving to the outgoing edges),
its input should be a vertex set, and its output is an edge set. As
such, we can construct a query 𝑔.𝑉 ().𝑜𝑢𝑡𝐸 (), but cannot construct
𝑔.𝐸 ().𝑜𝑢𝑡𝐸 (), because the output of API 𝑔.𝐸 () is an edge set not a
vertex set.

To construct a syntactically correct and meaningful Gremlin
query, we need to build a precise traversal model for Gremlin APIs.
By carefully studying Gremlin APIs [18, 19, 51], we build a traver-
sal model to represent the legal transformations among Gremlin
query APIs, as shown in Figure 6. Our traversal model contains
three types of entities (i.e., 𝑉𝑒𝑟𝑡𝑒𝑥 , 𝐸𝑑𝑔𝑒 , and 𝑉𝑎𝑙𝑢𝑒), three types
of operations (i.e., 𝐹𝑖𝑙𝑡𝑒𝑟 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 , and𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒), and𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 .
Figure 6 formally expresses the transformation of entities and the
detailed Gremlin APIs. Based on this traversal model, the legal trans-
formation between adjacent Gremlin APIs can be easily followed.
For example, 𝑔.𝑉 () is used to retrieve all 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 in a graph. We can
get 𝐸𝑑𝑔𝑒𝑠 with the expression 𝑉𝑒𝑟𝑡𝑒𝑥 .[𝑜𝑢𝑡𝐸 () | 𝑖𝑛𝐸 () | 𝑏𝑜𝑡ℎ𝐸 ()],
in which, 𝑜𝑢𝑡𝐸 (), 𝑖𝑛𝐸 (), and 𝑏𝑜𝑡ℎ𝐸 () can be linked after 𝑉𝑒𝑟𝑡𝑒𝑥 to
obtain an edge set. In addition, our traversal model can present
recursion relations among Gremlin APIs in a concise way. For ex-
ample,𝑉𝑒𝑟𝑡𝑒𝑥 can be followed by 𝐹𝑖𝑙𝑡𝑒𝑟 , and 𝐹𝑖𝑙𝑡𝑒𝑟 can use𝑉𝑒𝑟𝑡𝑒𝑥
as parameter.

Three entities in the traversal model are used to retrieve detailed
graph data in a graph. In detail, 𝑉𝑒𝑟𝑡𝑒𝑥 represents how to obtain
vertices using Gremlin APIs. To retrieve vertices, we can use a
start Gremlin API (i.e., 𝑔.𝑉 ()), append 𝐹𝑖𝑙𝑡𝑒𝑟 operations on 𝑉𝑒𝑟𝑡𝑒𝑥 ,
append obtaining vertices operations on 𝑉𝑒𝑟𝑡𝑒𝑥 (e.g., 𝑜𝑢𝑡 ()), and
append obtaining vertices operations on 𝐸𝑑𝑔𝑒 (e.g., 𝑜𝑢𝑡𝑉 ()). Simi-
larly, 𝐸𝑑𝑔𝑒 represents how to obtain edges using Gremlin APIs. We
can use a start Gremlin API (i.e., 𝑔.𝐸 ()), append 𝐹𝑖𝑙𝑡𝑒𝑟 operations to
𝐸𝑑𝑔𝑒 , or append obtaining edge operations on 𝑉𝑒𝑟𝑡𝑒𝑥 (e.g., 𝑖𝑛𝐸 ()).
The𝑉𝑎𝑙𝑢𝑒 expresses property values in the labeled property graphs.
We can get all property values belonging to 𝑉𝑒𝑟𝑡𝑒𝑥 or 𝐸𝑑𝑔𝑒 using
Gremlin API 𝑣𝑎𝑙𝑢𝑒𝑠 (), or get a specific property value by adding
property name in 𝑣𝑎𝑙𝑢𝑒𝑠 () (e.g., 𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑛𝑎𝑚𝑒′)). Besides, we can

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

𝑉𝑒𝑟𝑡𝑒𝑥 ::= 𝑔.𝑉 () ∥ 𝑉𝑒𝑟𝑡𝑒𝑥 .𝐹𝑖𝑙𝑡𝑒𝑟 ∥ 𝑉𝑒𝑟𝑡𝑒𝑥 .[𝑜𝑢𝑡 () | 𝑖𝑛() | 𝑏𝑜𝑡ℎ()] ∥ 𝐸𝑑𝑔𝑒.[𝑜𝑢𝑡𝑉 () | 𝑖𝑛𝑉 () | 𝑏𝑜𝑡ℎ𝑉 ()]
𝐸𝑑𝑔𝑒 ::= 𝑔.𝐸 () ∥ 𝐸𝑑𝑔𝑒.𝐹𝑖𝑙𝑡𝑒𝑟 ∥ 𝑉𝑒𝑟𝑡𝑒𝑥 .[𝑜𝑢𝑡𝐸 () | 𝑖𝑛𝐸 () | 𝑏𝑜𝑡ℎ𝐸 ()]

𝑉𝑎𝑙𝑢𝑒 ::= [𝑉𝑒𝑟𝑡𝑒𝑥 | 𝐸𝑑𝑔𝑒] .𝑣𝑎𝑙𝑢𝑒𝑠 () ∥ [𝑉𝑒𝑟𝑡𝑒𝑥 | 𝐸𝑑𝑔𝑒] .𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ().𝑣𝑎𝑙𝑢𝑒𝑠 ()
𝐹𝑖𝑙𝑡𝑒𝑟 ::= ℎ𝑎𝑠 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) ∥ [𝑎𝑛𝑑 |𝑜𝑟 |𝑛𝑜𝑡] ([𝐹𝑖𝑙𝑡𝑒𝑟 |𝑉𝑒𝑟𝑡𝑒𝑥 |𝐸𝑑𝑔𝑒]) ∥ 𝑤ℎ𝑒𝑟𝑒 ([𝑉𝑎𝑙𝑢𝑒 |𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒] .𝑖𝑠 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒)) ∥ ℎ𝑎𝑠𝑁𝑜𝑡 () ∥ ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 ()

𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 ::= [𝑒𝑞 | 𝑛𝑒𝑞 | 𝑙𝑡 | 𝑙𝑡𝑒 | 𝑔𝑡 | 𝑔𝑡𝑒] (𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ∥ [𝑖𝑛𝑠𝑖𝑑𝑒 | 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 | 𝑏𝑒𝑡𝑤𝑒𝑒𝑛] (𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡,𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡) ∥ [𝑛𝑜𝑡 | 𝑎𝑛𝑑 | 𝑜𝑟] (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒)
𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 ::= [𝑉𝑒𝑟𝑡𝑒𝑥 | 𝐸𝑑𝑔𝑒] .𝑐𝑜𝑢𝑛𝑡 () ∥ 𝑉𝑎𝑙𝑢𝑒.[𝑠𝑢𝑚() |𝑚𝑒𝑎𝑛() |𝑚𝑖𝑛() |𝑚𝑎𝑥 ()]
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ::= 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 ∥ 𝑆𝑡𝑟𝑖𝑛𝑔 ∥ 𝐷𝑜𝑢𝑏𝑙𝑒 ∥ 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 ∥ 𝐹𝑙𝑜𝑎𝑡 ∥ 𝐿𝑜𝑛𝑔

Figure 6: Traversal model in Gremlin.

get the property value of a specified vertex or edge through the
combined Gremlin APIs 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠 ().𝑣𝑎𝑙𝑢𝑒𝑠 ().

Three operations are used to operate graph data in our traver-
sal model. Specially, 𝐹𝑖𝑙𝑡𝑒𝑟 operation can be used to map entities
that satisfy certain filter conditions. We can use ℎ𝑎𝑠 (), 𝑤ℎ𝑒𝑟𝑒 ()
or ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () API to filter vertices or edges that we require. Spe-
cially, we can add some parameters to these APIs. For example,
ℎ𝑎𝑠 (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) can be used to select those vertices or edges whose
value of property 𝑘𝑒𝑦 is equal to 𝑣𝑎𝑙𝑢𝑒 . Another example, we can
use𝑤ℎ𝑒𝑟𝑒 (𝑉𝑎𝑙𝑢𝑒.𝑖𝑠 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒)) to construct a nested sub-query, in
which a sequence of Gremlin API calls act as a parameter in𝑤ℎ𝑒𝑟𝑒 ().
The 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 is used to express predicates, e.g., 𝑒𝑞(𝑛𝑢𝑚𝑏𝑒𝑟) is used
to judgewhether the incoming object is equal to𝑛𝑢𝑚𝑏𝑒𝑟 . Besides ba-
sic APIs like 𝑒𝑞() and 𝑖𝑛𝑠𝑖𝑑𝑒 (), we can also use 𝑛𝑜𝑡 (), 𝑎𝑛𝑑 (), or 𝑜𝑟 ()
APIs to connect one or more 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 operations. The 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒
represents a series of operations aggregating vertices, edges, or
properties. For instance, 𝑐𝑜𝑢𝑛𝑡 () can be used to count the number
of vertices or edges, and 𝑠𝑢𝑚() is usually used to compute a sum of
property values (e.g., 𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑎𝑔𝑒′) .𝑠𝑢𝑚()). Finally, 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 acts
as API arguments and is used for type definition.

Note that some special cases are not described in the above
traversal model for clear presentation. First, the parameters in some
Gremlin APIs have been ignored in the traversal model. For example,
in ℎ𝑎𝑠𝑁𝑜𝑡 () API, a property name should be used as a parameter,
and in ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () API, a label name is required. Second, some extra
constraints are required for 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 . For example, although we
use 𝑉𝑎𝑙𝑢𝑒.[𝑠𝑢𝑚() | 𝑚𝑖𝑛()] to present that 𝑠𝑢𝑚() and𝑚𝑖𝑛() APIs
can follow a 𝑉𝑎𝑙𝑢𝑒 , we need to make sure that 𝑠𝑢𝑚() can only be
used when 𝑉𝑎𝑙𝑢𝑒 has the Number type.

3.2.2 Query Generation. Based on the above traversal model, we
first generate syntactically correct Gremlin queries, and then gen-
erate the parameter values in the generated Gremlin queries.

Query statement construction. Guided by the traversal model
in Section 3.2.1, we iteratively generate syntactically correct Grem-
lin queries step by step. Algorithm 2 outlines this generation pro-
cess. Initially, 𝑞𝑢𝑒𝑟𝑦 is set to a Gremlin graph traversal source 𝑔
(Line 1) and the previous traversal step 𝑝𝑟𝑒𝑆𝑡𝑒𝑝 is initialized as
Start, i.e., the traversal source 𝑔 (Line 2). Grand randomly selects
a next Gremlin step, until the maximum query length 𝑀𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ

is reached or 𝐸𝑥𝑖𝑡 condition (e.g., the step type is a Constant value)
is satisfied (Line 4-21). Note that, the selected next step must be
compatible with 𝑝𝑟𝑒𝑆𝑡𝑒𝑝 according to our traversal model. The
newly generated step is appended into the end of current 𝑞𝑢𝑒𝑟𝑦.

Algorithm 2: Gremlin Query Generation
1 𝑞𝑢𝑒𝑟𝑦 ← ‘𝑔′ ;
2 𝑝𝑟𝑒𝑆𝑡𝑒𝑝 ← 𝑆𝑡𝑎𝑟𝑡 ;
3 𝑙𝑒𝑛𝑔𝑡ℎ ← 0 ;
4 while 𝑙𝑒𝑛𝑔𝑡ℎ + + < 𝑀𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ do
5 switch getRandomStep(𝑝𝑟𝑒𝑆𝑡𝑒𝑝) do
6 case𝑀𝑎𝑝 do
7 𝑠𝑡𝑒𝑝 ← CreateMap(𝑝𝑟𝑒𝑆𝑡𝑒𝑝.𝑡𝑦𝑝𝑒);
8 case 𝐹𝑖𝑙𝑡𝑒𝑟 do
9 𝑠𝑡𝑒𝑝 ← CreateFilter(𝑝𝑟𝑒𝑆𝑡𝑒𝑝.𝑡𝑦𝑝𝑒);

10 case 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 do
11 𝑠𝑡𝑒𝑝 ← CreateProperty(𝑝𝑟𝑒𝑆𝑡𝑒𝑝.𝑡𝑦𝑝𝑒);
12 case 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 do
13 𝑠𝑡𝑒𝑝 ← CreateAggregate(𝑝𝑟𝑒𝑆𝑡𝑒𝑝.𝑡𝑦𝑝𝑒);
14 end
15 case 𝐸𝑥𝑖𝑡 do
16 break;
17 end
18 end
19 𝑞𝑢𝑒𝑟𝑦 ← 𝑞𝑢𝑒𝑟𝑦 + ‘.’ + 𝑠𝑡𝑒𝑝.𝑡𝑜𝑆𝑡𝑟𝑖𝑛𝑔() ;
20 𝑝𝑟𝑒𝑆𝑡𝑒𝑝 ← 𝑠𝑡𝑒𝑝 ;
21 end
22 return 𝑞𝑢𝑒𝑟𝑦;

Specifically, Grand randomly chooses the next step type based
on our traversal model and passes the previous step 𝑝𝑟𝑒𝑆𝑡𝑒𝑝 as an
argument (Line 5). The Map step mainly contains the APIs that are
followed by 𝑉𝑒𝑟𝑡𝑒𝑥 and 𝐸𝑑𝑔𝑒 in Figure 6, e.g., 𝑜𝑢𝑡 (), 𝑜𝑢𝑡𝑉 () and
𝑜𝑢𝑡𝐸 (). In Filter step, function 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑖𝑙𝑡𝑒𝑟 () can create the detailed
operations depicted in Figure 6, including the ℎ𝑎𝑠 (𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) API,
ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () API, etc. The Property step constructs the𝑉𝑎𝑙𝑢𝑒 entity,
e.g., 𝑣𝑎𝑙𝑢𝑒𝑠 (). The Aggregate step constructs𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 operations,
e.g., 𝑐𝑜𝑢𝑛𝑡 () and 𝑠𝑢𝑚().

We further use Algorithm 3 to introduce the generation of a
Filter step. Grand can create various 𝐹𝑖𝑙𝑡𝑒𝑟 operations in Figure 6.
We first randomly select one 𝐹𝑖𝑙𝑡𝑒𝑟 operation in our traversal model
(Line 2). In this algorithm, we only use HasPredicate to explain
how we generate a HasPredicate Filter step (Line 3-11). Other
Filter steps can be generated similarly. If the input 𝑡𝑦𝑝𝑒 is𝑉𝑒𝑟𝑡𝑒𝑥 ,
then a vertex property is randomly selected from the generated

Finding Bugs in Gremlin-Based Graph Database Systems via Randomized Differential Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Algorithm 3: Create Filter Operation
1 Function CreateFilter(𝑡𝑦𝑝𝑒) do
2 switch getRandomFilter() do
3 case 𝐻𝑎𝑠𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 do
4 if 𝑡𝑦𝑝𝑒 = 𝑉𝑒𝑟𝑡𝑒𝑥 then
5 𝑝 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑟𝑡𝑒𝑥𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ();
6 else
7 𝑝 ← 𝑔𝑒𝑡𝑅𝑎𝑛𝑑𝑜𝑚𝐸𝑑𝑔𝑒𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ();
8 end
9 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 = CreatePredicate(𝑝.𝑡𝑦𝑝𝑒);

10 𝑓 𝑖𝑙𝑡𝑒𝑟 ←< 𝑝.𝑛𝑎𝑚𝑒, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 >;
11 𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑡𝑦𝑝𝑒 ← 𝑡𝑦𝑝𝑒;
12 case ... do
13 ...

14 end
15 return 𝑓 𝑖𝑙𝑡𝑒𝑟 ;
16 end

vertex properties (Line 4-5). Otherwise, an edge property is ran-
domly selected (Line 6-7). According to the data type of the selected
property, we create a Predicate operation (Line 9) 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 . Now,
we can create a HasPredicate step based on the property name
𝑝.𝑛𝑎𝑚𝑒 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 (Line 10). Finally, we set the filter’s type as
its previous step’ type (Line 11). Thus, Algorithm 2 can further
generate the following step according to this filter’s type.

Generating parameter values for GremlinAPIs. Some Grem-
lin APIs need certain parameters, e.g., a property name 𝑡𝑖𝑡𝑙𝑒 used
in 𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑡𝑖𝑡𝑙𝑒′), and a constant value 234000 used in 𝑒𝑞(234000).
Without any guidance, these parameters can be generated randomly,
resulting in returning empty query results for almost all generated
Gremlin queries. To address this issue, we adopt two strategies
for generating these parameter values. First, we randomly choose
values based on graph database content, i.e., the graph schema and
graph data generated in Section 3.1, to increase the probability of
returning a non-empty result. For example, for the parameter that
needs a property name, we randomly select a property name (e.g.,
𝑡𝑖𝑡𝑖𝑙𝑒) from the graph schema. Second, we use a random function
to generate parameter values according to the constant type. For
example, for 𝑒𝑞(𝐿𝑜𝑛𝑔) API, we randomly generate a long value
234000 for its parameter. We randomly use these two strategies to
increase the probability of returning a non-empty result and avoid
overlooking some bugs.

An example for Gremlin query generation. Take the query
𝑔.𝑉 ().𝑤ℎ𝑒𝑟𝑒 (𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑛𝑎𝑚𝑒′).𝑖𝑠 (𝑒𝑞(′𝑁𝑎𝑛𝑐𝑦′))) .𝑣𝑎𝑙𝑢𝑒𝑠 (′𝑔𝑒𝑛𝑑𝑒𝑟 ′) for
Figure 2 as an example. As shown in Figure 7, three traversal steps
are randomly generated by Algorithm 2, e.g., a Map step (𝑉 () in 1○),
a Filter step (𝑤ℎ𝑒𝑟𝑒 () in 2○), and a Property step (𝑣𝑎𝑙𝑢𝑒𝑠 () in
6○). Specially, the Filter step includes a nested sub-query, which
consists of a Property API (𝑣𝑎𝑙𝑢𝑒𝑠 () in 3○) and a Filter API (𝑖𝑠 ()
in 4○). Since the output of the Map step (1○) is Vertex, the prop-
erty name (i.e., name) in the nested sub-query of the Filter step
(2○) is randomly selected from the generated vertex properties or
randomly created with our random function. Besides, the property
value of the Predicate API (𝑒𝑞() in 5○) and the property name of

entry Map Filter

1 2

g

V() where()

Vertex

FilterProperty

3 values() 4 is()

Vertex

Property
Vertex

Value

Predicate
Value

5 eq ()

6 values()

‘name’

‘gender’

‘Nancy’

Figure 7: An example for Gremlin query generation.

the Property API (𝑣𝑎𝑙𝑢𝑒𝑠 () in 6○) can be generated following the
same way.

3.3 Differential Testing for GDBs
We use differential testing [45] to detect logic bugs in GDBs. In
detail, we first write the same graph data to a group of target GDBs,
and then execute the same Gremlin queries on them. By comparing
the return results from different GDBs, we identify a discrepancy
as a potential bug in these GDBs.

The returned result of a Gremlin query could be a value or a list
of vertices, edges or properties. If the returned result is a value or a
list of properties, it is straightforward to compare them for different
GDBs.When the query result is a list of vertices or edges, the format
of the returned results from different GDBs may be different. That
is because different ID generation strategies are used in different
GDBs. For example, JanusGraph creates an edge e[7eo-2kg-iz9-268]
to describe an edge, while Neo4j creates an edge e[2] to present the
same edge. Thus, we need to convert them to a unified format to
make the comparison feasible.

To achieve this, we first generate a unique ID𝑢𝐼𝐷 for each vertex
and edge generated in Section 3.1. After wewrite a vertex or an edge
into a target GDB, we retrieve its actual ID 𝑎𝑐𝑡𝑢𝑎𝑙𝐼𝐷 stored in the
target GDB.We use a mapping table to record the mapping relations
between 𝑢𝐼𝐷 and 𝑎𝑐𝑡𝑢𝑎𝑙𝐼𝐷 in all GDBs for each vertex and edge.
For example, as shown in Figure 8, the vertex with ID 1, has different
actual IDs 4152, 1605 and 495992707018129408 in JanusGraph, Neo4j
and HugeGraph, respectively. By using the mapping table, we can
conveniently convert the list of returned vertices or edges from
different GDBs into a unified format.

Specifically, for the returned vertices and edges, five steps are
needed in our differential testing as shown in Figure 8. For a gener-
ated Gremlin query 𝑄 , Grand first executes it in the target GDBs
(1○), and obtains the query results. Then for each GDB, Grand ex-
tracts the ID of each vertex or edge in the query results to obtain a
list of actual vertex IDs or edge IDs to represent the query result
(2○). For example, as shown in Figure 8, Grand obtains a vertex ID
list [4152, 4136, 4216] for JanusGraph. Next, according to the map-
ping table (3○), Grand converts the real query results to the unified
query results (4○). Finally, Grand checks whether the unified query
results of the target GDBs are the same (5○). A 𝑇𝑟𝑢𝑒 value will be
returned showing that all results for 𝑄 are the same, otherwise, a
𝐹𝑎𝑙𝑠𝑒 value will be returned to indicate a potential bug.

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

JanusGraph

Query

Mapping

ID Janus Neo4j Huge

1 4152 1605 4959927070

18129408

2 4136 1606 4959927070

30712320

3 4216 1610 4959927070

72655360

Q:

g.V().where(values('name')

.is(eq('Nancy')));

v: 495992707018129408,

495992707030712320,

495992707072655360

v: 1605, 1606, 1610

v: 4152, 4136, 4216

Neo4j

HugeGraph

Extract IDExecution1 2 3 Unified Result4

v: 1,2,3

v: 1,2,3

v: 1,2,3

Validation5

Q: True

Figure 8: Differential testing in Grand.

4 IMPLEMENTATION
Grand establishes connections to target GDBs before writing the
graph into them. For Neo4j, OrientDB, JanusGraph, TinkerGraph
and ArcadeDB, Grand uses GraphTraversalSource to connect GDB
servers remotely, invokes APIs provided byGraphTraversalSource to
directly write each vertex and edge into GDBs (e.g., 𝑔.𝑎𝑑𝑑𝑉 ()) and
appends properties (e.g., 𝑔.𝑉 (𝑣𝑒𝑟𝑡𝑒𝑥).𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 (𝑘, 𝑣)). After that,
Grand uses the Gremlin client to submit the generated queries and
obtain query results (e.g., 𝑔𝑟𝑒𝑚𝑙𝑖𝑛𝑐𝑙𝑖𝑒𝑛𝑡 .𝑠𝑢𝑏𝑚𝑖𝑡 (′𝑔.𝑉 ()′)).

Additional efforts need to be made to write graph data in Huge-
Graph, as GraphTraversalSource is not available in HugeGraph’s
Java Client. Instead, 𝐻𝑢𝑔𝑒𝐶𝑙𝑖𝑒𝑛𝑡 [4] is used to connect 𝐻𝑢𝑔𝑒𝐺𝑟𝑎𝑝ℎ
𝑆𝑒𝑟𝑣𝑒𝑟 by sending HTTP requests. The major difference and effort
lie on graph schema creation. Instead of writing the graph directly
into GDBs, HugeGraph requires setting up graph schema first. Some
extra constraints are explicitly introduced in HugeGraph to stan-
dardize graph schema. For instance, the frequency of EdgeLabel
should be set to multiple, otherwise only a single edge of each label
is allowed between two vertices, whichmay lead to data overwritten.
Beyond that, Grand needs to invoke the specific APIs provided by
𝐻𝑢𝑔𝑒𝐶𝑙𝑖𝑒𝑛𝑡 to write data (e.g., ℎ𝑢𝑔𝑒𝑐𝑙𝑖𝑒𝑛𝑡 .𝑔𝑟𝑎𝑝ℎ().𝑎𝑑𝑑𝑉𝑒𝑟𝑡𝑒𝑥 ()),
submit queries (e.g., ℎ𝑢𝑔𝑒𝑐𝑙𝑖𝑒𝑛𝑡 .𝑔𝑟𝑒𝑚𝑙𝑖𝑛().𝑔𝑟𝑒𝑚𝑙𝑖𝑛(′𝑔.𝑉 ()′)), and
obtain query results.

For every test round, Grand stores all the graph information in
the log files, including graph schema, graph data and ID mapping
tables. The executed queries and the results obtained from target
GDBs will be stored as well if exceptions or diverse results are
detected. Grand provides themethod to restore the graph into target
GDBs based on these log files, allowing developers re-execute and
reproduce the problematic query constantly within its origin graph,
in order to confirm the bug and find out the most simplified query
statements that can cause the bug.

5 EVALUATION
To demonstrate the effectiveness of Grand, we evaluate Grand on
six widely-used GDBs, and detect real-world logic bugs in them.

5.1 Methodology
Target GDBs. We evaluate Grand on six GDBs, i.e., Neo4j [7], Ori-
entDB [11], JanusGraph [6], HugeGraph [3], TinkerGraph [16], and
ArcadeDB [9]. Table 1 shows their DB-Engine Ranking of Graph
DBMS [22], GitHub starts, and initial release date. We can see that

Table 1: The GDBs we tested are popular and widely-used

GDB Rank GitHub Stars Initial Release

Neo4j 1 9.2k 2007
OrientDB 5 4.4k 2010
JanusGraph 8 4.1k 2017
HugeGraph 26 1.7k 2018
TinkerGraph 29 1.4k 2009
ArcadeDB 31 119 2021

they are among the most popular and widely-used GDBs. Specifi-
cally, TinkerGraph was developed by TinkerPop and natively uses
Gremlin as its query language. JanusGraph, HugeGraph and Arcad-
eDB encapsulate Gremlin Server in their own servers, apply some
special optimizations, and also natively use Gremlin to query graph
data. OrientDB implements its own TinkerPop3 interfaces, and of-
fers OrientDB-TinkerPop3 distribution. We access Neo4j through
the Neo4j-Gremlin plugin [8], which is provided by TinkerPop. For
all GDBs, we test their latest release versions when we start this
work, i.e., Neo4j 3.2.3 (with Neo4j-Gremlin 3.4.10, not the latest
version), OrientDB 3.2.4, JanusGraph 0.5.3, HugeGraph 0.11.2, Tin-
kerGraph 3.4.10, and ArcadeDB 21.12.1. Note that, we use the latest
version of Neo4j-Gremlin, but it does not support the latest Neo4j
at that time.

Testing methodology. We use a script to configure testing re-
lated parameters, e.g., the number of generated queries (1,000 in our
experiment), and the graph database generating related parameters,
i.e., the max length of each query (10 in our experiment), the max
number of vertex types, edge types, vertices and edges (10, 20, 100,
200 in our experiment, respectively).

We configure Grand to run 15 rounds and generate 1,000 random
Gremlin queries in each round. At the beginning of each round,
Grand first randomly constructs a testing graph database to the tar-
get GDBs (Section 3.1), and then applies 1,000 randomly generated
Gremlin queries (Section 3.2.2) on the target GDBs to perform a dif-
ferential testing (Section 3.3). Each reported discrepancy is logged
as a potential logic bug. For each bug reported by Grand, we manu-
ally reproduce and analyze it, to verify whether it is a real logic bug.
Specifically, three steps are needed as follows. First, Grand may
generate a complex query to reveal a discrepancy, which makes
it challenging to identify its root cause. So, we manually simplify
the query to a simple one, which can trigger the same discrepancy.

Finding Bugs in Gremlin-Based Graph Database Systems via Randomized Differential Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Table 2: Logic bugs that we found in the tested GDBs

GDB Detected Confirmed Fixed

Neo4j 3 2 1
OrientDB 1 0 0
JanusGraph 3 3 2
HugeGraph 9 9 3
TinkerGraph 3 3 1
ArcadeDB 2 1 0

Total 21 18 7

Second, a discrepancy in Grand cannot tell which GDBs are buggy.
So, we manually investigate the expected result of the query in
the discrepancy, and then identify which GDBs are buggy. Third,
Grand may report different discrepancies for the same bug. We
need to understand the root causes of observed discrepancies, and
identify whether some discrepancies are caused by the same bug.
After filtering out duplicated bugs, we submit an issue for each
logic bug to the corresponding community on GitHub.

All experiments were conducted on a cluster with 7 high perfor-
mance servers, each equipped with a 64-bit CentOS Linux release
8.0.1905 system, a 125GB RAM, and one 20-core 2.50GHz Intel Xeon
Gold 5215 CPU. Specifically, each target GDB was installed in one
server.

5.2 Overall Bug Detection Results
Grand takes around 160 seconds on average to perform each testing
round. For total 15,000 randomly generated Gremlin queries, 6,046
Gremlin queries (40.3%) return non-empty results. We obtain 709
(47 per round) discrepancies, which may be potential bugs. We
carefully reproduce and analyze these 709 discrepancies, and find
that all of them are true discrepancies. However, after deep analysis,
we find that some discrepancies are caused by the same bug.

After carefully analyzing 709 discrepancies, we obtain 21 logic
bugs in the six tested Gremlin-based GDBs. Table 2 shows the
statistics of logic bugs that we find. We have submitted these bugs
to the corresponding community on GitHub. At the time of writing
this paper, 18 bugs have been confirmed by developers, and all of
them are previously-unknown bugs. Seven bugs have already been
fixed by developers.

The 21 bugs have caused severe consequences for these GDBs.
Among them, 18 bugs return an unexpected exception for a valid
query, whereas they should not. In this case, users cannot get
their expected results correctly. Note that, all these bugs return
commonly-used exceptions, e.g., IllegalArgumentException, Num-
berFormatException, NoIndexException and IllegalStateException
which can also be returned by invalid queries. The remaining 3 bugs
can lead to incorrect query results. In the following, we explain
these bugs found in each GDB.

HugeGraph. We found nine logic bugs in HugeGraph. Among
them, all nine bugs have been confirmed, and three bugs have been
fixed. Specifically, seven bugs were caused due to that HugeGraph
cannot support some Gremlin APIs correctly, including 𝑏𝑒𝑡𝑤𝑒𝑒𝑛(),
𝑜𝑢𝑡𝑠𝑖𝑑𝑒 (), 𝑛𝑜𝑡 (), 𝑜𝑟 (), ℎ𝑎𝑠 (), ℎ𝑎𝑠𝐿𝑎𝑏𝑒𝑙 () and 𝑜𝑟𝑑𝑒𝑟 (). One bug was
caused due to that HugeGraph omits boundary values, including

1 schema.properties("vp0").asDouble ().ifNotExist ().create ();

2 schema.vertexLabel("vl0").properties("vp0").ifNotExist ().

create ();

3
4 Vertex v0 = new Vertex("vl0").property("vp0", Double.

POSITIVE_INFINITY); // Create vertex v[0]

5 AddVertices(Arrays.asList(v0)) ; // Add vertex v[0]

6
7 g.V().has('vl0', 'vp0', Double.POSITIVE_INFINITY);

8 -- {java.lang.IllegalArgumentException} ✘ {v[0]} ✔

Figure 9: HugeGraph cannot process infinity value forDouble
type.

infinity value and NaN value. Another one bug was caused by the
search constraint of Gremlin APIs that needs to scan the whole
table. Even though developers thought users can use alternative
queries to avoid the constraint, they still confirmed that they will
enhance the usage experience for users after we reported the bug.

JanusGraph.We found three logic bugs in JanusGraph. Among
them, all three bugs have been confirmed, two bugs have been
fixed by developers, and one of the fixed bugs has been added
into their milestone version. In detail, two bugs are related to type
coercion. For example, JanusGraph cannot correctly handle numeric
comparisons when it comes to the infinity value and NaN value.
Unless the data type has been explicitly set in the query, JanusGraph
will throw a number format exception. Another bug is related to
the unique Query Normal Form (QNF) check, in which JanusGraph
cannot necessarily generate a QNF in some cases.

TinkerGraph.We found three logic bugs in TinkerGraph and
all of them were confirmed by developers. In one bug, TinkerGraph
cannot perform any type coercion with the property values, which
means you cannot query the float or double value stored before.
This bug has already been fixed. The second bug was caused due to
that TinkerGraph cannot compare BigDecimal with Double/Float
infinite value, which means you cannot query a property 𝑝𝑟𝑜𝑝

using ℎ𝑎𝑠 () API if an infinity value has been inserted as a 𝑝𝑟𝑜𝑝

value. Lack of specific function implementation causes the third
bug. We found that TinkerPop cannot sort vertices or edges without
specifying a property, and developers said they would implement
those semantics in subsequent release.

Neo4j. We found three bugs in Neo4j, and all of them were
similar to the bugs previously mentioned in TinkerGraph. Actually,
this result is not surprising, because the Neo4j-Gremlin we used to
query Neo4j is also implemented by TinkerGraph developers. This
explains why two different databases meet similar issues.

ArcadeDB. We found two bugs in ArcadeDB, which are similar
to the second and third bugs in TinkerGraph.

OrientDB.We found one bug in OrientDB, which is similar to
the second bug in TinkerGraph.

5.3 Bug Analysis
We summarize the 21 logic bugs found by Grand into four categories
according to their root causes.

Non-robust handling on special values. Five logic bugs are
caused by non-robust handling with special values, e.g., Infinity
and NaN. For example, HugeGraph cannot process Infinity or NaN
value for Double and Float type. In Figure 9, we assign the value

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

1 g.addV('vl0').property('vp0' ,0.65); // Add vertex v[1011]

2 g.V().has('vp0' ,0.65); -- {} ✘ {v[1011]} ✔

Figure 10: TinkerGraph returns incorrect results due to lack
of type coercion.

1 g.addV('vl0').property('vp0', 4); // Add vertex v[0]

2 g.addV('vl0').property('vp0', 5); // Add vertex v[1]

3
4 g.V().order().by(asc);

5 -- {org.apache.tinkerpop.gremlin.driver.exception.

ResponseException} ✘ {v[0], v[1]} ✔

Figure 11: TinkerGraph cannot sort vertices when no prop-
erties are specified.

35%

18%

42%

34%

24%

16%

38%
32%

61%
56%

37%
43%

0%

10%

20%

30%

40%

50%

60%

70%

Neo4j OrientDB Janusgraph Hugegraph Tinkegraph ArcadeDB

C
o
v
e
r
a
g
e

GDB

Query engine

Figure 12: Instruction coverage achieved by Grand.

Double.POSITIVE_INFINITY to the property ‘vp0’ to create a new
vertex v[0] (Line 4), and write the vertex v[0] to the HugeGraph
database (Line 5). We then retrieve the vertex v[0] according to
its property value Double.POSITIVE_INFINITY (Line 7). The ex-
pected result is that we can create a new vertex (i.e., v[0]) in which
the property ‘vp0’ is Double.POSITIVE_INFINITY. However, an ex-
ception IllegalArgumentException was thrown. The developers
of HugeGraph explained that they ignored Infinity and NaN values
previously. Thus, these special numbers were regarded as String
values. This bug has already been fixed by HugeGraph developers.

Lack of type coercion. Four logic bugs are caused by lack of
type coercion for property values. For example, in TinkerGraph, if
users do not explicitly declare double type for property values, they
will fail to query expected double values. Figure 10 shows such an
example. We first insert a vertex whose property 𝑣𝑝0 is set as 0.65,
and its vertex id is automatically generated as 1011 (Line 1). We
then query this vertex by filtering 𝑣𝑝0 = 0.65 (Line 2). But, this
query wrongly returns an empty set, which is different from the
results of other GDBs (e.g., HugeGraph). TinkerGraph developers
illustrate that TinkerGraph does not perform any type coercion
with the property values. This forces users to take care of specific
types.

Lack of logic implementation. Eight logic bugs are caused
by lack of logic implementation. It is interesting that, except Janus-
Graph and OrientDB, all the other four tested GDBs cannot sort
vertices or edges without specifying a property. Figure 11 shows
such an example. TinkerGraph developers stated that they were
surprised that it does not work, and thought that they would have
had some natural ordering on the element ID.

Incorrect logical implementation. Four logic bugs are caused
by incorrect logical implementation in tested GDBs. For instance,
HugeGraph does not remove duplicate elements when perform-
ing range queries using Gremlin APIs like 𝑛𝑜𝑡 () and 𝑜𝑟 (). Figure 1
shows such an example. HugeGraph developers stated that Huge-
Graph has not implemented deduplication for overlapping OR op-
eration for now, and they have added this issue into their TODO
list to optimize for OR operation.

5.4 Coverage
All the GDBs we tested are implemented in Java. Thus, we utilize
JaCoCo [5] to collect instruction coverage for these GDBs, and ran
Grand for 24 hours. The detailed instruction coverage is shown in
Figure 12. We can see that Grand can achieve instruction coverage
from 16% to 42% for these GDBs, and from 32% to 61% for their query
engines, which appears to be low. However, this is expected because
we mainly focused on testing Gremlin-specific graph queries. We
summarize the main reasons as follows. (1) Some GDBs, e.g., Arcad-
eDB and OrientDB, are multi-model DBMS, and they also support
other data models, e.g., document, key/value, time-series, and full-
text. We currently did not test these data models. (2) Some GDBs
also support various query languages, e.g., ArcadeDB supports SQL,
Cypher, and GraphQL. We cannot test the implementation related
to these query languages yet. (3) Some GDBs provide features such
as user management, replication, transaction and graph analysis,
which we did not test.

6 DISCUSSION
In this section, we first discuss how to generalize Grand, the threats
to validity, and the limitations of our approach.

6.1 Generalizing Grand to more GDBs
As the first approach to detecting logic bugs in GDBs, Grand can
only been applicable to GDBs that support Gremlin APIs. The core
philosophy in Gremlin queries is to construct a subgraph through
a traversal model, which is used to query GDBs. Grand’s design
mainly depends on this philosophy. Fortunately, many other query
languages also adopt this philosophy to query GDBs. Figure 3 shows
such an example for Cypher in Neo4j. Therefore, although some
GDBs adopt totally different query languages, we believe, the idea
of Grand, e.g., traversal model, model-based query generation and
differential testing, can be generalizable to these GDBs.

GDBs that utilize the RDF graph model usually adopt SparQL
as their query language. SparQL also needs to construct a sub-
graph similar to Gremlin. As such, Grand’s design philosophy can
potentially be adapted to the RDF graph model and SparQL, too.

6.2 Threats to Validity
The main threats to our evaluation are related to the representative-
ness of our selected GDBs. These six subjects are the most popular
open source GDBs that support the Gremlin query language. Neo4j,
OrientDB, and TinkerGraph have been developed for more than 10
years, while JanusGraph and HugeGraph are developed actively in
the last four years. All of them are well maintained for now. Thus,
we think our studied GDBs are representative.

Finding Bugs in Gremlin-Based Graph Database Systems via Randomized Differential Testing ISSTA ’22, July 18–22, 2022, Virtual, South Korea

Another threat lies in the manual validation process of logic bugs
found in GDBs. We manually reproduce, analyze and deduplicate
discrepancies reported by Grand, which may introduce errors due
to human error. Tomake the validation as accurate as possible, three
authors analyze all reported discrepancies, and reach consensus for
all discrepancies.

6.3 Limitations
Grand has some limitations on finding bugs in Gremlin-based GDBs.

First, Grand mainly focuses on commonly-used Gremlin query
APIs. For update APIs (e.g., insert, update and delete graph data), we
mainly use them to create databases, and Grand cannot test them
systematically. Therefore, logic bugs related to these APIs cannot
be found through Grand by now. Actually, we believe Grand can
find more bugs when we add more Gremlin APIs in our traversal
model.

Second, Grand may miss some bugs due to characteristics of
differential testing. Grand cannot detect bugs when the tested GDBs
all suffer from the same bugs and return the same wrong results.

Finally, although we can automatically find bugs by repeatedly
generating and executing Gremlin queries as well as validating
the returned results, we still have to manually find and remove
duplicated bugs. In the future, we will investigate how to efficiently
filter duplicated bugs reported by Grand.

7 RELATEDWORK
In this section, we discuss related works that are close to ours.

7.1 Testing of DBMS
Differential testing of DBMS. Differential testing [45] is com-
monly used in different domains [29, 31, 38, 52] to find bugs. Its key
idea relies on passing the same input to the different testing objects
and comparing the output. A difference indicates a potential bug.
Slutz first presents RAGS [52] to find bugs in DBMS by differential
testing. APOLLO [37] uses differential testing to find performance
regression bugs in DBMS. CYNTHIA [53] uses differential testing
for testing Object-Relational Mapping systems. Since GDBs adopt
different storage structures and query languages, these approaches
cannot be easily adopted into GDB testing.

Metamorphic testing ofDBMS.Metamorphic testing [44] tests
software systems by mutating test cases via metamorphic relations.
Rigger et al. provide two metamorphic testing approaches [48, 49],
namely Ternary Logic Partitioning (TLP) and Non-optimizing Ref-
erence Engine Construction (NoREC), to test DBMS. TLP [49] parti-
tions a query into three sub-queries, and detects bugs by comparing
the combination of results of three sub-queries with the result of
the original query. NoREC [48] compares the execution results of a
given optimized query with its non-optimized version, to detect op-
timization bugs in DBMS. All the above approaches target relational
database systems, and can potentially be applicable on GDBs.

Other testing of DBMS. SQLSmith [14] is a fuzzing tool for
testing DBMS. It can randomly generate SQL queries as inputs.
SQLancer offers Pivoted Query Synthesis (PQS) [50] approach to
find logic bugs by randomly selecting a pivot row as oracle and gen-
erating random queries containing the selected row to test DBMS.
ADUSA [39] translates SQL query to Alloy specification, generates

Alloy instance satisfying query conditions in Alloy specification,
and further obtains the expected result from Alloy instance. All
the above tools target relational database systems, and cannot be
applied on GDBs.

7.2 Performance Testing of GDB
Performance benchmarks for GDB. Angles et al. launch the
Linked Data Benchmark Council (LDBC) [26] project to develop
benchmarks for graph and RDF data management systems. In the
project, LDBC social network benchmark (LDBC SNB) [33] consists
of a synthetic social network dataset and three workloads with
complex graph dependencies. Pacaci et al. [46] further integrates
Kafka into LDBC SNB to simulate real-time graph data. Besides,
some benchmarks with simple atomic queries are developed. Angles
et al. [27] develop a benchmark consisting of social graphs and
atomic queries for social network applications. Lissandrini et al.
[42] develop a larger set of queries and operators, and evaluate the
performance of GDBs on both synthetic and real graphs. Kovács
et al. [41] develop a benchmark to evaluate different GDBs with
Wikidata. All these benchmarks are used to measure performance
of GDBs, and cannot be used to detect logic bugs in GDBs.

Performance evaluations for GDB. Fernandes et al. [35] ana-
lyze five popular GDBs and evaluate flexible graph schemas, query
languages, and scalability of GDBs. Abdelaziz et al. [24] perform an
evaluation for representative distributed SPARQL graph databases.
Wang et al. [55] evaluate the performance of different queries on
LDBC SNB benchmark. Besides, TigerGraph also evaluates its own
performance using the LDBC SNB benchmark [1]. These works
focus on evaluating the performance of GDBs, and do not consider
logic bugs in GDBs.

8 CONCLUSION
In this paper, we propose Grand, an automated differential testing
approach, for detecting logic bugs in Gremlin-based graph data-
base systems. Specifically, we design a model-based Gremlin query
generation approach to generate syntactically correct and valid
test cases, and utilize a data mapping approach to obtain uniform
query results in different graph database systems. Our experimental
results on real-world graph database systems show that Grand is
effective in finding logic bugs. Grand finds 21 previously-unknown
logic bugs on six widely-used graph database systems. In partic-
ular, 18 bugs have been confirmed and 7 bugs have been fixed by
developers.

9 DATA AVAILABILITY
The source code of Grand is available at Zenodo [23].

ACKNOWLEDGMENTS
This work was partially supported by National Natural Science
Foundation of China (62072444, 61732019), Frontier Science Project
of Chinese Academy of Sciences (QYZDJ-SSW-JSC036), and Youth
Innovation Promotion Association at Chinese Academy of Sciences
(2018142, 201924).

ISSTA ’22, July 18–22, 2022, Virtual, South Korea Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao, Dong Wang, Wei Wang, and Jun Wei

REFERENCES
[1] 2021. Benchmarking TigerGraph Using the Liked Data Benchmark Council Social

Network Benchmark. Retrieved June 23, 2021 from https://www.tigergraph.com/
benchmark/

[2] 2021. Cypher Query Language. Retrieved June 23, 2021 from https://neo4j.com/
developer/cypher/

[3] 2021. HugeGraph. Retrieved August 17, 2021 from https://hugegraph.github.io/
hugegraph-doc/

[4] 2021. HugeGraph-Client Quick Start. Retrieved August 5, 2021 from https:
//hugegraph.github.io/hugegraph-doc/quickstart/hugegraph-client.html

[5] 2021. JaCoCo is a free code coverage library for Java. Retrieved June 23, 2022
from https://www.jacoco.org/jacoco/

[6] 2021. JanusGraph. Retrieved June 23, 2021 from https://janusgraph.org
[7] 2021. Neo4j. Retrieved August 5, 2021 from https://neo4j.com/
[8] 2021. Neo4j-Gremlin. Retrieved August 5, 2021 from https://github.com/

thinkaurelius/neo4j-gremlin-plugin
[9] 2021. The Next Generation Multi-Model Database Supporting Graphs Key/Value,

Documents and Time-Series. Retrieved June 23, 2022 from https://arcadedb.com/
[10] 2021. Open Source, Distributed, Scalable, Lightning Fast. Retrieved June 23, 2021

from https://nebula-graph.io/
[11] 2021. OrientDB. Retrieved August 18, 2021 from https://orientdb.org
[12] 2021. RDF Triple Stores vs. Labeled Property Graphs: What’s the Difference? Re-

trieved August 5, 2021 from https://neo4j.com/blog/rdf-triple-store-vs-labeled-
property-graph-difference/

[13] 2021. SQLancer. Retrieved August 5, 2021 from https://github.com/sqlancer/
sqlancer

[14] 2021. SQLsmith. RetrievedAugust 5, 2021 fromhttps://github.com/anse1/sqlsmith
[15] 2021. TigerGraph. Retrieved September 4, 2021 from https://www.tigergraph.

com/
[16] 2021. TinkerGraph. Retrieved August 17, 2021 from https://github.com/tinkerpop/

blueprints/wiki/tinkergraph
[17] 2021. TinkerPop. Retrieved June 23, 2021 from https://tinkerpop.apache.org/
[18] 2021. TinkerPop Documentation. Retrieved August 5, 2021 from https://tinkerpop.

apache.org/docs/3.4.10/reference/
[19] 2021. TinkerPop Github. Retrieved August 5, 2021 from https://github.com/

tinkerpop
[20] 2021. TITAN: Distributed Graph Database. Retrieved June 23, 2021 from http:

//titan.thinkaurelius.com/
[21] 2021. What is openCypher? Retrieved June 23, 2021 from http://www.opencypher.

org/
[22] 2022. DB-Engines Ranking of Graph DBMS. Retrieved January 5, 2022 from

https://db-engines.com/en/ranking/graph+dbms
[23] 2022. ISSTA 22 Artifact for "Finding Bugs in Gremlin-Based Graph Database

Systems via Randomized Differential Testing". Retrieved June 21, 2022 from
https://doi.org/10.5281/zenodo.6534721

[24] Ibrahim Abdelaziz, Razen Harbi, Zuhair Khayyat, and Panos Kalnis. 2017. A
Survey and Experimental Comparison of Distributed SPARQL Engines for Very
Large RDF Data. Proc. VLDB Endow. 10, 13 (2017), 2049–2060.

[25] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and
Panos Kalnis. 2017. Query Optimizations over Decentralized RDF Graphs. In
International Conference on Data Engineering (ICDE). 139–142.

[26] Renzo Angles, Peter A. Boncz, Josep Lluís Larriba-Pey, Irini Fundulaki, Thomas
Neumann, Orri Erling, Peter Neubauer, Norbert Martínez-Bazan, Venelin Kotsev,
and Ioan Toma. 2014. The Linked Data Benchmark Council: A Graph and RDF
Industry Benchmarking Effort. ACM SIGMOD Record 43, 1 (2014), 27–31.

[27] Renzo Angles, Arnau Prat-Pérez, David Dominguez-Sal, and Josep Lluís Larriba-
Pey. 2013. Benchmarking Database Systems for Social Network Applications. In
Proceedings of International Workshop on Graph Data Management Experiences
and Systems (GRADES). 15.

[28] Marcelo Arenas, Claudio Gutiérrez, and Juan F. Sequeda. 2021. Querying in the
Age of Graph Databases and Knowledge Graphs. In Proceedings of International
Conference on Management of Data (SIGMODE). 2821–2828.

[29] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically finding bugs in
a commercial cyber-physical system development tool chain with SLforge. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. 981–992.

[30] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: an automatic ro-
bustness tester for Java. Softw. Pract. Exp. 34, 11 (2004), 1025–1050.

[31] Pascal Cuoq, BenjaminMonate, Anne Pacalet, Virgile Prevosto, John Regehr, Boris
Yakobowski, and Xuejun Yang. 2012. Testing Static Analyzers with Randomly
Generated Programs. In NASA Formal Methods - 4th International Symposium
(NFM). 120–125.

[32] Alin Deutsch. 2018. Querying Graph Databases with the GSQL Query Language.
In Simpósio Brasileiro de Banco de Dados (SBBD). 313.

[33] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In Proceedings of ACM SIG-
MOD International Conference on Management of Data (SIGMOD). 619–630.

[34] Orri Erling and Ivan Mikhailov. 2009. RDF Support in the Virtuoso DBMS. In
Networked Knowledge-Networked Media. 7–24.

[35] Diogo Fernandes and Jorge Bernardino. 2018. Graph Databases Comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and OrientDB. In Proceedings
of International Conference on Data Science, Technology and Applications (DATE).
373–380.

[36] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of International Conference on Management of Data (SIGMOD).
1433–1445.

[37] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proc. VLDB Endow. 13, 1 (2019), 57–70.

[38] Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execu-
tion engines via program generation and differential testing. In International
Conference on Automated Software Engineering (ASE). 590–600.

[39] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.
2008. Query-Aware Test Generation Using a Relational Constraint Solver. In
International Conference on Automated Software Engineering (ASE). 238–247.

[40] Norman Köster. 2020. An Extensible Graph Query Language for Model-Based
Information Retrieval in Intelligent Environments. Ph.D. Dissertation. Bielefeld
University, Germany.

[41] Tibor Kovács, Gábor Simon, and Gergely Mezei. 2019. Benchmarking Graph
Database Backends - What Works Well with Wikidata? Acta Cybern. 24, 1 (2019),
43–60.

[42] Matteo Lissandrini, Martin Brugnara, and Yannis Velegrakis. 2018. Beyond
Macrobenchmarks: Microbenchmark-Based Graph Database Evaluation. Proc.
VLDB Endow. 12, 4 (2018), 390–403.

[43] Baozhu Liu, Xin Wang, Pengkai Liu, Sizhuo Li, Qiang Fu, and Yunpeng Chai.
2021. UniKG: A Unified Interoperable Knowledge Graph Database System. In
Proceedings of IEEE International Conference on Data Engineering (ICDE). 2681–
2684.

[44] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.
Metamorphic testing of Datalog engines. In ESEC/FSE ’21: 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Athens, Greece, August 23-28, 2021. 639–650.

[45] William M. McKeeman. 1998. Differential Testing for Software. Digit. Tech. J. 10,
1 (1998), 100–107.

[46] Anil Pacaci, Alice Zhou, Jimmy Lin, and M. Tamer Özsu. 2017. Do We Need
Specialized Graph Databases? Benchmarking Real-Time Social Networking Ap-
plications. In Proceedings of International Workshop on Graph Data-management
Experiences and Systems (GRADES). 12:1–12:7.

[47] Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. En-
semFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph.
In International Conference on Data Engineering (ICDE). 2039–2044.

[48] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-Optimizing Reference Engine Construction. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 1140–1152.

[49] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems
via Query Partitioning. Proceedings of the ACM on Programming Languages 4,
OOPSLA, Article 211 (2020), 30 pages.

[50] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 667–682.

[51] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Lan-
guage (Invited Talk). In Proceedings of the Symposium on Database Programming
Languages. 1–10.

[52] Donald S. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
International Conference on Very Large Data Bases (VLDB). 618–622.

[53] Thodoris Sotiropoulos, Stefanos Chaliasos, Vaggelis Atlidakis, Dimitris Mitropou-
los, and Diomidis Spinellis. 2021. Data-Oriented Differential Testing of Object-
Relational Mapping Systems. In Proceedings of IEEE/ACM International Conference
on Software Engineering (ICSE). 1535–1547.

[54] Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, and Jens
Lehmann. 2020. Let’s Build Bridges, not Walls: SPARQL Querying of TinkerPop
Graph Databases with SPARQL-Gremlin. In Proceedings of IEEE International
Conference on Semantic Computing (ICSC). 408–415.

[55] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empiri-
cal Study on Recent Graph Database Systems. In Proceedings of International
Conference on Knowledge Science, Engineering and Management (KSEM). 328–340.

https://www.tigergraph.com/benchmark/
https://www.tigergraph.com/benchmark/
https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://hugegraph.github.io/hugegraph-doc/
https://hugegraph.github.io/hugegraph-doc/
https://hugegraph.github.io/hugegraph-doc/quickstart/hugegraph-client.html
https://hugegraph.github.io/hugegraph-doc/quickstart/hugegraph-client.html
https://www.jacoco.org/jacoco/
https://janusgraph.org
https://neo4j.com/
https://github.com/thinkaurelius/neo4j-gremlin-plugin
https://github.com/thinkaurelius/neo4j-gremlin-plugin
https://arcadedb.com/
https://nebula-graph.io/
https://orientdb.org
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
https://github.com/sqlancer/sqlancer
https://github.com/sqlancer/sqlancer
https://github.com/anse1/sqlsmith
https://www.tigergraph.com/
https://www.tigergraph.com/
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/docs/3.4.10/reference/
https://tinkerpop.apache.org/docs/3.4.10/reference/
https://github.com/tinkerpop
https://github.com/tinkerpop
http://titan.thinkaurelius.com/
http://titan.thinkaurelius.com/
http://www.opencypher.org/
http://www.opencypher.org/
https://db-engines.com/en/ranking/graph+dbms
https://doi.org/10.5281/zenodo.6534721

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Models in Graph Database Systems
	2.2 Graph Query Languages

	3 Approach
	3.1 Graph Database Generation
	3.2 Model-Based Query Generation
	3.3 Differential Testing for GDBs

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Overall Bug Detection Results
	5.3 Bug Analysis
	5.4 Coverage

	6 Discussion
	6.1 Generalizing Grand to more GDBs
	6.2 Threats to Validity
	6.3 Limitations

	7 Related Work
	7.1 Testing of DBMS
	7.2 Performance Testing of GDB

	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

