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ABSTRACT
Transactions are used to guarantee data consistency and integrity
in Database Management Systems (DBMSs), and have become an
indispensable component in DBMSs. However, faulty designs and
implementations of DBMSs’ transaction processing mechanisms
can introduce transaction bugs, and lead to severe consequences,
e.g., incorrect database states andDBMS crashes. An in-depth under-
standing of real-world transaction bugs can significantly promote
effective techniques in combating transaction bugs in DBMSs.

In this paper, we conduct the first comprehensive study on
140 transaction bugs collected from six widely-used DBMSs, i.e.,
MySQL, PostgreSQL, SQLite, MariaDB, CockroachDB, and TiDB.
We investigate these bugs from their bug manifestations, root
causes, bug impacts and bug fixing. Our study reveals many in-
teresting findings and provides useful guidance for transaction bug
detection, testing, and verification.

CCS CONCEPTS
• General and reference → Empirical studies; • Information
systems → Database transaction processing.
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1 INTRODUCTION
Database Management Systems (DBMSs), e.g., MySQL [11], Post-
greSQL [14], SQLite [15], MariaDB [9], CockroachDB [5], and TiDB
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[19], have been developed for decades. DBMSs adopt Structured
Query Language (SQL) to retrieve and manipulate database data,
and have become an indispensable component for many applica-
tions in different domains, e.g., government affairs and electronic
shopping.

In DBMSs, multiple users can concurrently retrieve and manipu-
late data in a database. DBMSs leverage transactions to maintain
data consistency and integrity. A transaction usually starts with
a BEGIN statement, accesses the data in a database with a group
of SQL statements, and ends with a COMMIT or ROLLBACK state-
ment. DBMSs ensure that all statements in a transaction should be
executed as a whole, even if DBMSs fail. Ideally, concurrent trans-
actions should be executed in isolation. However, stronger isolation
can degrade DBMSs’ performance more. To balance consistency
and performance, modern DBMSs usually support multiple isola-
tion levels [1, 30, 31, 35–37, 41, 43], e.g., READ UNCOMMITTED, READ
COMMITTED, REPEATABLE READ, and SERIALIZABLE in MySQL and
PostgreSQL [20, 21].

To support the above transaction features, DBMS developers
have designed various complex mechanisms, e.g., multi-version
concurrency control [38, 63, 69], and optimistic concurrency control
[57, 75]. However, faulty designs and implementations of transac-
tion processing mechanisms can introduce a special kind of DBMS
bugs, i.e., transaction bugs, which can cause DBMSs to violate their
transaction semantics, e.g., their claimed ACID (Atomicity, Con-
sistency, Isolation, and Durability) properties [1, 35–37, 40, 41, 43].
We call transaction bugs in DBMSs as TXBugs for short.

TXBugs can cause severe consequences in DBMSs, and easily go
unnoticed by DBMS developers. For example, we find that about
a third of TXBugs can result in incorrect query results, database
states and DBMS states. Considering that DBMSs are usually used
to handle important data assets, it is critically important to better
understand and detect TXBugs.

Some approaches have been proposed to verify and test trans-
action processing mechanisms in DBMSs [8, 39, 44, 45, 52, 56, 71].
Transaction verification approaches [8, 39, 56, 71] verify whether
transactions’ concurrent executions violate the claimed isolation
constraints. These approaches can only utilize simple data struc-
tures, e.g., 𝑘𝑒𝑦−𝑣𝑎𝑙𝑢𝑒 , and cannot support the rich and complex
features in modern DBMSs, e.g., partition configurations for data
sharding. For transaction testing, DT2 [44] utilizes differential test-
ing to detect TXBugs, which cannot handle DBMS-specific features.
Troc [45] detects TXBugs by decoupling a pair of transactions into
independent statements and building test oracles for transactions.
However, it is unclear how effective existing approaches are in
detecting real-world TXBugs, and what TXBugs cannot be detected
by existing approaches. We also lack a TXBug dataset for TXBug
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research. We believe that an in-depth study of TXBugs and a TXBug
dataset can greatly promote the reliability research in DBMSs’ trans-
action processing mechanisms.

In this paper, we conduct the first comprehensive study on
140 TXBugs collected from six widely-used real-world relational
DBMSs, i.e., MySQL [11], PostgreSQL [14], SQLite [15], MariaDB
[9], CockroachDB [5], and TiDB [19]. We thoroughly analyze these
TXBugs and try to answer the following five research questions:
• RQ1 (Bug manifestation): How do TXBugs manifest them-
selves? How are TXBugs triggered?

• RQ2 (Root cause): What are root causes for TXBugs?
• RQ3 (Bug impact): What impacts do TXBugs have? Can they
lead to silent failures?

• RQ4 (Bug fixing): How are TXBugs fixed?
• RQ5 (Detection capability of existing approaches): How
effectively can existing approaches detect TXBugs?
Through our in-depth analysis from the above aspects, we obtain

many interesting findings. We summarize some main findings and
key lessons as follows.
• Almost all (93.6%) TXBugs do not require more than 3 transac-
tions. Most (84.7%) transactions contain no more than 4 state-
ments. Most (89.3%) TXBugs do not require more than 1 initial
table, and most (86.8%) initial tables do not contain more than
5 rows of data. This indicates that TXBugs usually follow the
small scope hypothesis [50], and can be effectively detected with
small transaction test cases.

• Almost all (94.3%) TXBugs can be triggered deterministically by
executing SQL statements in their transaction test cases in a cer-
tain order. This indicates that we can detect TXBugs in relatively
simple test scenarios without considering nondeterminism in
DBMSs.

• Our studied TXBugs violate five kinds of transaction semantics,
i.e., atomicity, consistency, isolation, read-only constraint, and
statement correctness under transactions. However, existing
works mainly focus on isolation violations. This suggests that
we also need to explore other kinds of transaction semantic
violations.

• Only a small fraction (23.6%) of TXBugs cause explicit failures
(e.g., DBMS crashes), while most (76.4%) TXBugs result in silent
failures, e.g., incorrect database states and query results. This
suggests that we need to design new test oracles to effectively
detect silent TXBugs.

• Less than half (45.7%) of TXBugs can be detected by existing
approaches [8, 39, 44, 45, 56, 71]. This can draw our commu-
nity’s attention to urgently develop effective TXBug testing and
detection approaches.
In summary, we make the following contributions in this paper.

• We present the first empirical study on transaction bugs in
real-world DBMSs from five aspects, i.e., bug manifestations,
root causes, bug impacts, bug fixing, and detection capability
of existing approaches. Our findings can open up new research
directions in combating transaction bugs.

• Our 140 documented transaction bugs can serve as a bug bench-
mark for future work on combating transaction bugs in DBMSs.
We have made our collected TXBugs and analysis results avail-
able at https://github.com/tcse-iscas/TXBug.

3. SET TRANSACTION ISOLATION LEVEL 

               READ COMMITTED;

  4. BEGIN;

  5. SELECT * FROM t WHERE v = 10;  -- {(1, 10)}

  8. SELECT * FROM t WHERE v = 10;  -- {(1, 10)}       { }

  9. SELECT * FROM t WHERE id = 1; -- {(1, 11)}

10. COMMIT;

1. /*init*/ CREATE TABLE t (id INT PRIMARY KEY, v INT, INDEX iv(v));

2. /*init*/ INSERT INTO t VALUES (1, 10), (2, 20), (3, 30), (4, 40);

tx1

tx2

6. ALTER TABLE t DROP INDEX iv;

7. UPDATE t SET v = 11 WHERE id = 1;

Figure 1: A transaction test case that triggers TXBug
TiDB#21498 in TiDB.

2 PRELIMINARIES
We use a real-world TXBug to introduce the basic concepts used
in this paper. Figure 1 shows a transaction test case that triggers
TXBug TiDB#21498 at the READ COMMITTED isolation level in TiDB.
In this transaction test case, we first create a table 𝑡 (Line 1) and
then insert 4 rows of data into table 𝑡 (Line 2). Note that we create
an index 𝑖𝑣 on the second column 𝑣 in table 𝑡 .

We start two concurrent transactions, i.e., 𝑡𝑥1 and 𝑡𝑥2. We first
set the isolation level as READ COMMITTED for 𝑡𝑥1 (Line 3), so that
𝑡𝑥1 can read other transactions’ committed data. Then, we start
an explicit transaction (Line 4), and execute a SELECT statement at
Line 5, which correctly returns {(1, 10)} by TiDB. Then, we execute
two statements, i.e., dropping index 𝑖𝑣 (Line 6) and updating row (1,
10) to (1, 11) (Line 7) in an auto transaction 𝑡𝑥2. Note that although
there is no BEGIN statement in 𝑡𝑥2, two statements at Line 6−7 are
executed as two independent transactions, since each statement
in 𝑡𝑥2 is treated as an autocommit transaction by default in TiDB.
So, the modifications made by Line 6−7 have been committed to
table 𝑡 after executing Line 7. Since 𝑡𝑥1 is executed at the READ
COMMITTED isolation level, the SELECT statement at Line 8 should
retrieve the newest data in table 𝑡 , and returns an empty query
result. However, the SELECT statement at Line 8 incorrectly returns
{(1, 10)}, which is the old value of the row with 𝑖𝑑 = 1 in table 𝑡 ,
and has been modified by Line 7. Note that the SELECT statement
at Line 9 correctly returns its query result {(1, 11)}.

For this TXBug, TiDB violates its claimed isolation level, i.e.,
READ COMMITTED, and returns an incorrect query result for the
SELECT statement at Line 8. This TXBug is caused by incorrectly us-
ing the table schema for the SELECT statement at Line 8 in TiDB. In
TiDB, a transaction at READ COMMITTED isolation level always
uses the table schema at its start timestamp. If the table schema is
changed while the transaction is executing, the transaction may
access data using the unmatched table schema.

We can see that a transaction test case that triggers a TXBug
usually consists of two parts, i.e., an initialization stage for creat-
ing an initial database, and a testing stage that creates a group of
transactions and executes SQL statements in them. For example, in
Figure 1, two SQL statements at Line 1−2 create an initial table 𝑡 and
insert 4 rows of data at the initialization stage. Two transactions,
i.e., 𝑡𝑥1 (Line 3−5 and Line 8−10) and 𝑡𝑥2 (Line 6−7), execute their
corresponding statements on table 𝑡 in a certain order.

DBMSs usually adopt different approaches to create and man-
age transactions. For example, MySQL and MariaDB support both
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Table 1: Target DBMSs in Our Study

DBMS Release DB-Engines
Ranking Stars Database

Type
Transaction

Type
Isolation
Level

Concurrency
Control

MySQL 1995 2 9.3K Traditional Explicit, XA, auto RU, RC, RR, SER Pessimistic
PostgreSQL 1996 4 12.8K Traditional Explicit, auto RC, RR, SER Pessimistic, Optimistic
SQLite 2000 10 4.3K Embedded Explicit, auto RU, SER Pessimistic
MariaDB 2009 13 4.9K Traditional Explicit, XA, auto RU, RC, RR, SER Pessimistic
CockroachDB 2015 60 27.5K NewSQL Explicit, auto SER Optimistic
TiDB 2017 107 34.5K NewSQL Explicit, auto RC, RR Pessimistic, Optimistic

explicit transactions and XA transactions [28, 29]. To make our pre-
sentation consistent, we define three kinds of transactions, which
unify transactions used in our target DBMSs in Section 3.1.

Explicit transaction. An explicit transaction explicitly starts
with a BEGIN statement, and ends with a COMMIT or ROLLBACK state-
ment, e.g., 𝑡𝑥1 in Figure 1. Note that SET AUTOCOMMIT = 0 statement
can implicitly start a new transaction (i.e., similar to a BEGIN state-
ment). Thus, we also consider a transaction that starts with SET
AUTOCOMMIT = 0 as an explicit transaction.

XA transaction. A XA transaction starts with XA START state-
ment and ends with XA END statement. XA transactions are used
for processing distributed transactions in MySQL and MariaDB.

Auto transaction. If the autocommit mode is enabled, each
statement that does not belong to an explicit or XA transaction is
implicitly executed as an independent transaction. For easy pre-
sentation, we group all consecutive autocommit statements into
an auto transaction. For example, 𝑡𝑥2 in Figure 1 shows an auto
transaction, which contains two autocommit statements.

3 METHODOLOGY
3.1 Target DBMSs
We collect TXBugs from six popular DBMSs, i.e., MySQL [11],
PostgreSQL [14], SQLite [15], MariaDB [9], CockroachDB [5], and
TiDB [19]. Table 1 shows the statistics about our studied DBMSs.
MySQL, PostgreSQL, SQLite, and MariaDB are mature and well-
developed DBMSs, and rank high in the DB-Engines Ranking [7].
CockroachDB and TiDB are developed in recent years, but are pop-
ular (ranked as the 3rd and 5th DBMSs in GitHub) in the open
source community. MySQL, PostgreSQL and MariaDB are tradi-
tional DBMSs, SQLite is an embedded DBMS, and CockroachDB
and TiDB are NewSQL distributed DBMSs.

All these DBMSs support explicit transactions and auto trans-
actions, while MySQL and MariaDB further support XA transac-
tions. These DBMSs support different transaction isolation levels,
e.g., Read Uncommitted (RU), Read Committed (RC), Repeatable
Read (RR) and Serializable (SER) [1, 30, 31, 35–37, 41, 43], and
use different concurrency control mechanisms, i.e., pessimistic and
optimistic transaction modes [57, 75].

3.2 Collecting TXBugs
Our studied DBMSs are all well maintained and have publicly avail-
able issue repositories. MySQL and SQLite maintain their own is-
sue repository websites [12, 16]. PostgreSQL manages its issues by
mailing lists [13]. MariaDB manages its issues on JIRA [10], while
CockroachDB and TiDB manage their issues on GitHub [6, 18].

We collect TXBugs from these DBMSs’ issue repositories. These
DBMSs have been developed for a long period (e.g., 27 years for
MySQL), and usually contain a large amount of issues, e.g., 109,580
issues in MySQL, and 13,716 issues in TiDB. It is time-consuming
and daunting to manually inspect all these issues and identify
TXBugs from them. Therefore, we apply some filtering rules to iden-
tify relevant issues. First, to keep our study results up-to-date, we fo-
cus on the issues confirmed by DBMS developers in the last 5 years,
i.e., from January 2018 to December 2022. Second, DBMS developers
usually do not label whether an issue is related to TXBugs. There-
fore, we use the following keywords, i.e., “transaction”, “abort”,
“commit”, “isolation level”, and their variations, to retrieve poten-
tially relevant issues in these DBMSs. This search returns us with
7,775 issues. Third, we manually inspect the bug description and
developer comments for each retrieved issue, and check whether it
is related to transaction processing mechanisms in DBMSs. Note
that our search keywords are commonly used in DBMSs. We think
that TXBugs should contain at least one of these keywords. We also
observe that, although many issues contain our search keywords,
they are unrelated to transaction processing mechanisms. In our
study, 7,220 (92.9%) issues do not involve transaction processing
mechanisms. We exclude these issues from our study.

For each remaining issue, we carefully investigate its description,
embedded test cases, developer discussions and available fixing
patches, and further rebuild its bug test case step by step. We keep
an issue as a TXBug if it needs at least one explicit transaction or
XA transaction to trigger, or it needs at least two transactions to
trigger. If a bug can be triggered by only one auto transaction, we do
not consider it as a TXBug, since it usually belongs to transaction-
unrelated bugs, e.g., logic bugs in single SELECT statements [64–66].
To maintain the accuracy of our study results, we only keep TXBugs
that we can completely understand.

We finally collect 140 TXBugs from our studied DBMSs. Table 2
shows the detailed statistics from their isolation levels and concur-
rency control mechanisms. We can see that these TXBugs cover
various isolation levels and concurrency control mechanisms.

3.3 Analyzing TXBugs
To answer our five research questions, we perform an in-depth anal-
ysis on these 140 TXBugs based on their issue descriptions, embed-
ded test cases, developer discussions, and available fixing patches,
and further assign them into different categories according to bug
manifestations (Section 4), root causes (Section 5), bug impacts (Sec-
tion 6) and bug fixing (Section 7). Besides, we check whether each
TXBug can be detected by existing approaches [8, 39, 44, 45, 56, 71],
and analyze their detection capability (Section 8).
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Table 2: Collected TXBugs

DBMS Total Isolation Levels Concurrency Control
RU RC RR SER Unspecified Pessimistic Optimistic Unspecified

MySQL 33 1 5 6 1 21 33 - 0
PostgreSQL 6 - 0 0 3 3 0 3 3
SQLite 6 0 - - 1 5 6 - 0
MariaDB 24 1 3 5 2 17 24 - 0
CockroachDB 9 - - - 9 0 - 9 0
TiDB 62 - 9 10 - 49 60 3 0
Total 140 2 17 21 16 95 123 15 3
-: The feature is not supported by the corresponding DBMS.

We adopt the open card sorting approach to build the categories
for TXBugs from different dimensions. For each TXBug, we ex-
tract necessary information from its issue report, e.g., test cases,
expected execution results, developer discussions, and available fix-
ing patches, and then write down its test case step by step. We also
reproduce 63 TXBugs for deeply understanding them. For TXBugs
that contain fixing patches, we look through their patches to re-
trieve fixing related information. For other TXBugs that are marked
as “Fixed” but do not have patches, we compare their code in the
buggy version and fixed version to obtain their patches if possible.
To figure out whether a TXBug can be detected by existing ap-
proaches [8, 39, 44, 45, 56, 71], we carefully study these approaches,
and check whether these approaches can support a TXBug’s trig-
gering conditions and design a proper oracle to identify the TXBug,
theoretically.

For each TXBug, we try to assign it into an existing category
in a dimension (e.g., root cause and bug impact) according to the
extracted information. If we cannot find a category for assigning
a TXBug, we create a new category. We also refine categories if
necessary. All TXBugs are reviewed multiple rounds to ensure
correctness and consistency.

3.4 Threats to Validity
First, we collect TXBugs from sixwidely-usedDBMSs. TheseDBMSs
cover representative and important DBMSs, and adopt various trans-
action processing mechanisms. Our studied TXBugs are collected
from six DBMSs without bias. We have not intentionally ignored
any TXBugs in these DBMSs. We believe that our studied TXBugs
provide a representative sample of TXBugs in these DBMSs.

Second, as an empirical and qualitative bug study, our study
results are dependent on the involved researchers’ understanding.
This may introduce implicit bias towards the expertise of individual
researchers. We take several measures to mitigate this threat. (1)
We adopt widely-used empirical bug analysis protocols in existing
studies [32, 33, 46, 48, 53, 58, 62, 70], e.g., how to collect and an-
alyze bugs. (2) All our studied TXBugs have been independently
investigated and discussed by at least three authors. (3) If we have
disagreements about a TXBug, e.g., conflicting categories for trig-
gering conditions, we reinvestigate it until we reach a consensus.
(4) If we cannot fully understand a TXBug or reach a consensus for
a TXBug, we do not take it into consideration. This is a sacrifice
that we have to make to maintain the accuracy of our study results.

Third, the replicability and reproducibility of empirical bug stud-
ies are common and recognized limitations. To mitigate this threat,

we will make our studied TXBugs and detailed study results pub-
licly available. Thus, other researchers should be able to validate
our study results easily.

Fourth, TXBugs in other DBMSs, e.g., graph database systems
[23, 25, 26] and key-value database systems [24, 27] are not included
in our study. Our study may not generalize to those systems not
covered in our dataset, because each database system has a unique
purpose, design, and implementation. Readers need to be cautious
when extending our findings to other database systems.

3.5 TXBug Dataset
Our TXBug dataset contains in total 150 classification labels and
around 1400 lines of clear and concise bug descriptions including
transaction test cases, bug manifestations, root causes, bug impacts
and fixes. The transaction test cases include initial database building
statements, transaction statements, and the statement execution
order for triggering TXBugs.

We believe that our TXBug dataset can be used as a rich ‘bug
benchmark’ for researchers to combat TXBugs in DBMSs. They will
have sample TXBugs to start with and advance their work without
having to repeat our multiple-person-month effort.

4 BUG MANIFESTATION
We study TXBugs’ triggering conditions at the initialization stage in
their transaction test cases (Section 4.1), involved transactions (Sec-
tion 4.2) and statements (Section 4.3). Finally, we discuss whether
TXBugs can be triggered deterministically (Section 4.4).

4.1 Initialization
To trigger a TXBug, transactions in its transaction test case need to
run on a specific database. Therefore, we need to build a database at
the initialization stage through creating tables, inserting data, etc.
We measure the complexity of the initialization stage in TXBugs’
transaction test cases from three aspects, i.e., initial tables, initial
data, and database properties.

Initial tables. Initial tables are created by CREATE TABLE state-
ments at the initialization stage in a TXBug’s transaction test case.
For tables created by transactions in the transaction test case, we
do not count them as initial tables. Note that if the transaction
test case does not contain CREATE TABLE statements, i.e., the ta-
bles used by the transaction test case are not explicitly created at
the initialization stage, but directly used in their transactions (e.g.,
MySQL#92558), we also consider them as initial tables.

https://bugs.mysql.com/bug.php?id=92558
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Figure 2: Distributions of TXBugs’ triggering conditions.

In total, 140 TXBugs create 151 initial tables. Figure 2a shows the
distribution of initial tables for these TXBugs. 120 (85.7%) TXBugs
require one initial table, 14 (10.0%) TXBugs require two initial tables,
and one TXBug requires three initial tables. Note that 5 TXBugs do
not need any table at the initialization stage, e.g., 2 TXBugs execute
transactions on built-in tables in the corresponding DBMSs (e.g.,
built-in table ‘information_schema.innodb_trx’ in MySQL), and the
remaining 3 TXBugs (e.g., PostgreSQL#16771) use tables that are
created by transactions in their transaction test cases.

Finding 1: Most (89.3%) TXBugs require no more than one initial
table, and all TXBugs require at most three initial tables.

Initial data. Initial data is inserted into the initial tables by
INSERT statements at the initialization stage in a TXBug’s trans-
action test case. Similar to initial tables, we count the data that is
not explicitly inserted at the initialization stage but returned by
query statements in transactions, but do not count the data inserted
by transactions. Specifically, the concrete data size depends on the
number of rows returned by query statements. For those query
statements that only return partial data filtering by a WHERE clause,
we only count the returned parts as initial data. Take MySQL#92558
as an example. In its initialization stage, no statements insert any
data. But, a SELECT count(*) statement in its transaction returns
3 rows of data from its initial table. Thus, we consider that there
are 3 rows of initial data.

Figure 2b shows the distribution of initial data in initial tables
created by TXBugs’ transaction test cases. In Figure 2b, 𝑦 (𝑥%) de-
notes that 𝑥% of initial tables contain 𝑦 rows of data. Among the
151 initial tables created by 140 TXBugs, 44 (29.2%) initial tables
do not contain any data, 87 (57.6%) initial tables contain no more
than 5 rows of data, 13 (8.6%) initial tables contain 6 to 50 rows of
data, and 7 (4.6%) initial tables contain more than 50 rows of data.
It is worth mentioning that MySQL#90980 requires 3 initial tables,
among which 2 tables do not have any data, but the remaining one
is inserted with more than 4 millions rows of data.

Finding 2: Most (86.8%) initial tables in TXBugs contain a small
amount of data, i.e., no more than 5 rows of data.

Database properties. To trigger a TXBug, its transaction test
case usually requires specific database properties on its initial tables.
We discuss database properties from three aspects, i.e., schema
properties, table configurations and specific table types. In total,
100 (71.4%) TXBugs require at least one of these database properties.
We describe these database properties as follows.

Schema properties in initial tables include three aspects. 86
(61.4%) TXBugs require key constraints (e.g., primary key, unique
key, and foreign key), 26 (18.6%) TXBugs require index settings,
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Figure 3: The types of transactions in TXBugs.

and 46 (32.9%) TXBugs require column constraints. Figure 1 shows
an example of creating an initial table with a primary key on col-
umn 𝑖𝑑 and an index 𝑖𝑣 on column 𝑣 (Line 1). Column constraints
can be added by keywords, e.g., NOT NULL, DEFAULT NULL and
AUTO_INCREMENT. Note that a TXBug may require more than one
aspect of the above schema properties.

Table configurations include two aspects. 15 (10.7%) TXBugs
require encoding, and 9 (6.4%) TXBugs require partition. Encoding
configurations specify the character set and collation way used
by initial tables, which usually differ in different DBMSs. For ex-
ample, MySQL uses CHARSET keyword [4] while PostgreSQL uses
ENCODING keyword [3]. Partition configurations affect how initial
tables are stored in DBMSs, e.g., range and list partitioning.

Specific table types contain temporary tables, virtual tables and
system tables. Among them, temporary tables and virtual tables
can be created by CREATE TEMPORARY TABLE and CREATE VIRTUAL
TABLE statements, respectively, while system tables are built-in
tables in DBMSs and used to store metadata for DBMSs. Among
all collected TXBugs, 7 (5.0%) TXBugs require temporary tables
or virtual tables (e.g., SQLite#167b2aac34), and 2 (1.4%) TXBugs
execute transactions on system tables (e.g., TiDB#23380).

Finding 3: Most (71.4%) TXBugs have specific requirements for
database properties, e.g., key constraints, column constraints, par-
tition configurations, and virtual tables.

4.2 Transactions
The distribution of transactions. Transactions are used to trigger
TXBugs in their transaction test cases. Figure 2c shows the distribu-
tion of transactions for our studied TXBugs. Among these TXBugs,
31 (22.1%) TXBugs only require one transaction, 74 (52.9%) and 26
(18.6%) TXBugs require two and three transactions, respectively.
7 (5.0%) and 2 (1.4%) TXBugs require four and five transactions,
respectively. We observe that all our studied TXBugs need no more
than five transactions. This indicates that we can trigger TXBugs
through a small number of transactions.

The types of transactions. In total, 140 TXBugs create 295
transactions, including 188 (63.7%) explicit transactions, 12 (4.1%)
XA transactions, and 95 (32.2%) auto transactions. Figure 3 shows
the distribution of the types of transactions for TXBugs in each
DBMS. Among them, 61 (43.6%) TXBugs are triggered by all explicit
transactions (42.9%) or all XA transactions (0.7%). The remaining
79 (56.4%) TXBugs require the combination of more than one type
of transactions. Specifically, 50.7% of TXBugs require the combina-
tion of auto transactions and explicit transactions, 4.3% of TXBugs

https://www.postgresql.org/message-id/16771-cbef7d97ba93f4b9@postgresql.org
https://bugs.mysql.com/bug.php?id=92558
https://bugs.mysql.com/bug.php?id=90980
https://www.sqlite.org/src/tktview?name=167b2aac34
https://github.com/pingcap/tidb/issues/23380
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require the combination of auto transactions and XA transactions,
and 1.4% of TXBugs require all the three types of transactions.

Finding 4: Almost all (93.6%) TXBugs require no more than three
transactions, and no more than five transactions can trigger all
our studied TXBugs. More than half (56.4%) of TXBugs require
multiple types of transactions.

4.3 SQL Statements
The distribution of statements. All the studied TXBugs involve
295 transactions in total. Figure 2d shows the distribution of state-
ments in these transactions. As shown in Figure 2d, 250 (84.7%)
transactions contain no more than 4 statements, and 41 (13.9%)
transactions contain 5 to 10 statements. Only 4 (1.4%) transactions
contain more than 10 statements. For example, an explicit transac-
tion in MySQL#89272 contains 10002 statements, including a BEGIN
statement, a COMMIT statement, and 10000 INSERT statements.

Statement types. Except for transaction start and end state-
ments (e.g., BEGIN and COMMIT), various statements are involved
in TXBugs. SELECT statements (48.6%) are involved most often,
followed by INSERT statements (45.7%) and UPDATE statements
(40.0%), and DELETE statements (12.9%). In addition, many TXBugs
also involve other types of statements, e.g., ALTER (17.1%, e.g.,
SQLite#596d059af7), SHOW (13.6%, e.g., MySQL#104245), SET (9.3%,
e.g., MariaDB#16024), ADMIN (2.9%, e.g., TiDB#20910), and RESET
(0.7%, e.g., PostgreSQL#17385).

Finding 5: Most (84.7%) transactions in TXBugs contain no more
than 4 statements. TXBugs usually involve varied types of state-
ments, e.g., SELECT, INSERT, ALTER, SET, ADMIN, and RESET.

4.4 Bug Determinism
We use the following criteria to determine whether a TXBug can be
triggered deterministically. If the issue report of a TXBug explicitly
states that the bug is triggered by chance, we consider that this bug
cannot be triggered deterministically. If the issue report describes
the transaction test case that triggers a TXBug clearly, and DBMS
developers do not complain that the bug cannot be reproduced, we
consider that this bug can be triggered deterministically.

Surprisingly, we find that 132 (94.3%) TXBugs can be triggered
deterministically. That said, we can trigger these 132 TXBugs by
executing the statements in their transaction test cases on the target
DBMS in a certain order, regardless of DBMS’s nondeterminism.
Figure 1 shows such a deterministic TXBug.

The remaining 8 (5.7%) TXBugs cannot be triggered determin-
istically. Listing 1 shows nondeterministic TXBug MySQL#101667
triggered by repeatably executing the two transactions in paral-
lel. In this transaction test case, we first set InnoDB adaptive hash
index to be ON (Line 1), create a table 𝑡 with a column 𝑖𝑑 (Line
2), and insert one row of data (Line 3). Then, we start two explicit
transactions 𝑡𝑥1 and 𝑡𝑥2 in parallel. Transaction 𝑡𝑥1 retrieves the
row whose column 𝑖𝑑 is ‘foo’ (Line 4−6). Transaction 𝑡𝑥2 deletes
the row whose column 𝑖𝑑 is ‘foo’ and then aborts itself (Line 7−9).
Since 𝑡𝑥2 never commits (Line 9), Line 5−6 in 𝑡𝑥1 should always
return a query result {(‘foo’)}. However, when repeatably running

𝑡𝑥1 and 𝑡𝑥2 in parallel, the SELECT statement at Line 6 in 𝑡𝑥1 can
incorrectly return an empty query result accidentally.

1. /*init*/ SET innodb_adaptive_hash_index = ON;
2. /*init*/ CREATE TABLE t (id VARCHAR (16) NOT NULL

PRIMARY KEY);
3. /*init*/ INSERT INTO t VALUES('foo');
4. /*tx1*/ SET AUTOCOMMIT = 0;
5. /*tx1*/ SELECT * FROM t WHERE id = 'foo';
6. /*tx1*/ SELECT * FROM t WHERE id = 'foo';

-- Accidentally return an empty result ✘

-- {(`foo ')} ✔

7. /*tx2*/ SET AUTOCOMMIT = 0;
8. /*tx2*/ DELETE FROM t WHERE id = 'foo';
9. /*tx2*/ ROLLBACK;

Listing 1: Nondeterministic TXBug MySQL#101667

For the 8 nondeterministic TXBugs, 5 TXBugs can be triggered by
repeatably executing their statements or transactions, e.g., Listing 1.
The remaining 3 TXBugs can be triggered by manually controlling
the target DBMS to reach a specific DBMS state. For example, in
TiDB#23363, we need to use TiDB’s built-in transaction mechanism
async-commit to control the transaction commit [2].

Finding 6: Almost all (94.3%) TXBugs can be triggered determin-
istically. For nondeterministic TXBugs, we need to adopt some new
triggering strategies, e.g., repeatably executing transactions, and
manually controlling DBMS states.

5 ROOT CAUSE
In TXBugs, faulty designs and implementations violate DBMSs’
transaction semantics. In this section, we analyze TXBugs’ root
causes from the perspective of the violated transaction semantics.
Table 3 shows the categories for the violated transaction semantics.
Specifically, we obtain these categories by considering transactions’
ACID properties, the semantics of read-only transactions and the
correctness of statements under transactions.

1. /*init*/ CREATE TABLE t (c1 INT);
2. /*init*/ INSERT INTO t VALUES (0);
3. /*tx1*/ SET AUTOCOMMIT = ON;
4. /*tx1*/ BEGIN;
5. /*tx1*/ UPDATE t SET c1 = c1 + 1;
6. /*tx1*/ SET AUTOCOMMIT = ON;
7. /*tx1*/ ROLLBACK; -- fails to revert database state
8. /*tx2*/ SELECT * FROM t; -- {(1)} ✘ {(0)} ✔

Listing 2: TiDB#36581 violates atomicity

Atomicity violations (2 TXBugs). In DBMSs, statements in
a transaction should be executed as a whole, i.e., either a trans-
action succeeds completely or fails completely. For a TXBug, if
not all statements in a committed transaction succeed, or if the
modifications of a rollback transaction are not reverted, we cate-
gorize the TXBug into atomicity violation. Listing 2 shows TXBug
TiDB#36581 caused by atomicity violation. In this transaction test
case, an explicit transaction 𝑡𝑥1 updates the record 0 in table 𝑡 to
1 (Line 5), executes SET AUTOCOMMIT = ON (Line 6) and rolls back
(Line 7). The database state is expected to be reverted to the state
before executing 𝑡𝑥1, i.e., table 𝑡 should contain {(0)}. However, table
𝑡 contains {(1)} (Line 8), thus violating transaction atomicity.

https://bugs.mysql.com/bug.php?id=89272
https://www.sqlite.org/src/tktview?name=596d059af7
https://bugs.mysql.com/bug.php?id=104245
https://jira.mariadb.org/browse/MDEV-16024
https://github.com/pingcap/tidb/issues/20910
https://www.postgresql.org/message-id/17385-9ee529fb091f0ce5@postgresql.org
https://bugs.mysql.com/bug.php?id=101667
https://bugs.mysql.com/bug.php?id=101667
https://github.com/pingcap/tidb/issues/23363
https://github.com/pingcap/tidb/issues/36581
https://github.com/pingcap/tidb/issues/36581
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Table 3: Transaction Semantic Violations

Violation # TXBugs
Atomicity 2 (1.4%)

Consistency
DBMS state 31 (22.1%)
Application state 11 (7.9%)
Database constraint 3 (2.1%)

Isolation Insufficient isolation 27 (19.3%)
Excessive isolation 17 (12.2%)

Read-only constraint 4 (2.9%)
Statement correctness 45 (32.1%)

Consistency violations (45 TXBugs). Consistency ensures
that transactions only make changes in the predefined and pre-
dictable ways, and do not create unintended consequences for the
integrity of the data in DBMSs. Otherwise, a consistency viola-
tion occurs. We summarize consistency violations into three sub-
categories according to the types of data that are corrupted.
• Consistency violations of DBMS states (31 TXBugs). DBMSs
usually maintain some execution information in built-in ta-
bles, e.g., transaction and locking information. These informa-
tion can be wrongly recorded or corrupted during transaction
executions. For example, in TiDB#23380, a transaction’s start
time should have been saved in TiDB’s built-in table ‘informa-
tion_schema.processlist’, but it was not.

• Consistency violations of application states (11 TXBugs). In
these violations, the statements in transactions are not executed
in a predefined way, and break the data integrity expected by
applications. Listing 3 shows TXBug TiDB#19585 that breaks the
integrity of application states. In this transaction test case, table
𝑡 is required to be stored in partition. An explicit transaction 𝑡𝑥1
first inserts a value 10 (Line 4), then tries to update the value 1 to
11 (Line 5). After 𝑡𝑥1 completes, the database state is expected to
be {(10), (11)} (Line 7). However, incorrectly updating the value
1 twice at Line 5 creates a corrupted application state {(10), (21)}.

• Consistency violations of database constraints (3 TXBugs). In
these violations, a transaction execution can break the con-
straints defined in databases, e.g., primary key and unique key
constraints. For example, in MySQL#101706, the execution of
two concurrent transactions inserts two same records into a
table that has a unique key constraint.

1. /*init*/ CREATE TABLE t (c1 INT PRIMARY KEY)
PARTITION BY RANGE (c1) (PARTITION p0 VALUES LESS
THAN (10),PARTITION p1 VALUES LESS THAN MAXVALUE);

2. /*init*/ INSERT INTO t VALUES (1);
3. /*tx1*/ BEGIN;
4. /*tx1*/ INSERT INTO t VALUES (10);
5. /*tx1*/ UPDATE t SET c1=c1+10 WHERE c1 IN (1, 11);
6. /*tx1*/ COMMIT;
7. /*tx2*/ SELECT * FROM t ORDER BY c1;

-- {(10) , (21)} ✘ {(10) , (11)} ✔

Listing 3: TiDB#19585 violates the application’s consistency

Isolation violations (44 TXBugs). The isolation of concurrent
transactions ensures that they do not interfere with or affect one
another. As shown in Table 1, our studied DBMSs usually support
multiple isolation levels [1, 30, 31, 37]. Transaction execution should
follow the claimed isolation level. Otherwise, an isolation violation

occurs. We divide isolation violations into two sub-categories, i.e.,
insufficient isolation and excessive isolation.
• Insufficient isolation (27 TXBugs). Concurrent transactions are
not sufficiently isolated, and causeweaker isolation than claimed.
In Listing 4, the INSERT statement in 𝑡𝑥2 (Line 6) should be
blocked by 𝑡𝑥1, since there is a write-write conflict. However,
the INSERT statement is not blocked due to insufficient isolation.

• Excessive isolation (17 TXBugs). If a statement 𝑠𝑡𝑚𝑡 in a trans-
action 𝑡𝑥1 should not been blocked by another transaction 𝑡𝑥2,
but 𝑠𝑡𝑚𝑡 is blocked by 𝑡𝑥2 to avoid conflict, we consider that
the isolation is excessive, e.g., MariaDB#24224.

1. /*init*/ CREATE TABLE t (c1 INT , c2 INT , c3 INT ,
PRIMARY KEY(c1, c2));

2. /*init*/ INSERT INTO t VALUES(1, 1, 1);
3. /*tx1*/ BEGIN;
4. /*tx2*/ BEGIN;
5. /*tx1*/ DELETE FROM t WHERE c1 = 1;
6. /*tx2*/ INSERT INTO t VALUES(1, 1, 2);

-- ERROR: duplicate constraint name: "t2_c2_fkey" ✘

-- Blocked ✔

Listing 4: TiDB#20535 is caused by insufficient isolation

Read-only constraint violations (4 TXBugs).Read-only trans-
actions cannot performmodification operations. If a read-only trans-
action successfully executes a modification operation that is not
allowed to be executed, we consider that the read-only constraint
is violated. For example, in TiDB#22658, the read-only transaction
should fail to insert values into a table, but successfully executes
the INSERT statement.
1. /*init*/ CREATE TABLE t1 (c1 INT PRIMARY KEY);
2. /*init*/ CREATE TABLE t2 (c1 INT PRIMARY KEY , c2 INT

NOT NULL REFERENCES t1);
3. /*tx1*/ BEGIN;
4. /*tx1*/ ALTER TABLE t2 DROP CONSTRAINT t2_c2_fkey;
5. /*tx1*/ ALTER TABLE t2 ADD CONSTRAINT t2_c2_fkey

FOREIGN KEY (c2) REFERENCES t1 (c1) ON DELETE
CASCADE;

-- ERROR: duplicate constraint name: "t2_c2_fkey" ✘

-- Successfully execute ✔

6. /*tx1*/ COMMIT;

Listing 5: CockroachDB#55184 violates statement correctness

Statement correctness violations (45TXBugs).These TXBugs
do not violate the previous four kinds of transaction semantics.
However, a statement in the involved transactions cannot be cor-
rectly executed under the specific transaction context. Listing 5
shows TXBug CockroachDB#55184 caused by statement correct-
ness violation. In this transaction test case, we create table 𝑡1 with
a primary key on column 𝑐1, and table 𝑡2 with a primary key on
column 𝑐1 and a foreign key on column 𝑐2 (Line 1−2). In trans-
action 𝑡𝑥1, we can successfully drop the foreign key constraint
(Line 4). But, when we add back the same foreign key constraint,
CockroachDB reports an error “duplicate constraint name” (Line 5).
However, this error should not be reported, since we have deleted
the constraint at Line 4.

Finding 7: TXBugs violate five kinds of transaction semantics,
i.e., atomicity, consistency, isolation, read-only constraint, and
statement correctness under transactions.

https://github.com/pingcap/tidb/issues/23380
https://github.com/pingcap/tidb/issues/19585
https://bugs.mysql.com/bug.php?id=101706
https://github.com/pingcap/tidb/issues/19585
https://jira.mariadb.org/browse/MDEV-24224
https://github.com/pingcap/tidb/issues/20535
https://github.com/pingcap/tidb/issues/22658
https://github.com/cockroachdb/cockroach/issues/55184
https://github.com/cockroachdb/cockroach/issues/55184
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Table 4: Failure Symptoms of TXBugs

Bug Observability Failure Symptom # TXBugs

Explicit (23.6%) DBMS error 28 (20.0%)
DBMS unavailability 5 (3.6%)

Silent (76.4%)

Incorrect DBMS state 16 (11.4%)
Incorrect database state 10 (7.2%)
Incorrect query result 21 (15.0%)
Performance degradation 15 (10.7%)
Missing blocking 9 (6.4%)
Incorrect error reporting 36 (25.7%)

6 BUG IMPACT
To better understand how severe TXBugs are, we investigate TXBugs’
failure symptoms (Section 6.1) and the observability of TXBugs (Sec-
tion 6.2). Finally, we discuss the priority of TXBugs (Section 6.3).

6.1 Failure Symptoms
TXBugs can cause DBMSs to violate their transaction semantics,
and lead to various severe consequences. Table 4 shows their fail-
ure symptoms, including DBMS errors (20.0%), DBMS unavail-
ability (3.6%), incorrect DBMS states (11.4%), incorrect database
states (7.2%), incorrect query results (15.0%), performance degrada-
tion (10.7%), missing blocking (6.4%), and incorrect error reporting
(25.7%).

A DBMS error happens when an assertion failure (e.g., null
pointer dereference in TiDB#23179) or an operation error (e.g.,
malformed database disk image in SQLite#745f1abcdc) is thrown.
A DBMS unavailability happens when the DBMS crashes or hangs
forever.

An incorrect DBMS state happens when a DBMS’s internal state
(not user data) is broken. For example, in TiDB#23380, a trans-
action’s start time information in TiDB’s built-in table ‘informa-
tion_schema.processlist’ is missing. An incorrect database state hap-
pens when wrong user data is stored in the tested database after
executing a TXBug’s transaction test case, e.g., Listing 2 and List-
ing 3. An incorrect query result happens when a SELECT statement
in a TXBug’s transaction test case returns a wrong result. Note that
TXBugs that cause incorrect database states can also lead to incor-
rect query results. We do not count such TXBugs into incorrect
query results to avoid double counting.

TXBugs can cause performance degradation when unnecessary
(or long) locks are acquired by concurrent transactions, e.g., Mari-
aDB#24224.

The transaction test cases in 45 TXBugs do not clearly provide
their failure symptoms as above. We classify them into two cate-
gories.Missing blocking happens when a statement in a transaction
should be blocked, but it is successfully executed without being
blocked (e.g., TiDB#17851). Incorrect error reporting happens when
an unexpected error is reported, an expected error is not reported,
or an incorrect error message is reported. Note that we do not count
TXBugs that cause DBMS errors into incorrect error reporting.

Finding 8: All TXBugs can cause severe consequences, e.g., DBMS
errors, DBMS unavailability, incorrect DBMS states, incorrect data-
base states, and incorrect query results.

6.2 Silent Failures
Among all studied TXBugs, 33 (23.6%) TXBugs can cause explicit
failures, i.e., DBMS errors and DBMS unavailability, which can be
used as test oracles to detect TXBugs. However, 107 (76.4%) TXBugs
only lead to silent failures, i.e., incorrect DBMS states, incorrect
database states, incorrect query results, performance degradation,
missing blocking, and incorrect error reporting. For a transaction
test case that causes a silent failure, without understanding its
execution semantics, we cannot judge whether its execution is
correct by inspecting its failure symptom.

Figure 1 shows a silent TXBug, in which the SELECT statement
at Line 8 returns an incorrect query result. We can easily overlook
this bug since it will not trigger explicit failures, and we cannot
know whether its query result is correct without understanding
the concrete semantics of the transaction test case.

Finding 9:Most (76.4%) TXBugs lead to silent failures, which can-
not be detected through simply validating their failure symptoms,
e.g., incorrect database states and query results.

6.3 Priority
Developers usually use bug priorities to express the importance
of TXBugs. Different DBMSs adopt their own bug priority levels.
To facilitate our analysis, we unify their priority levels into three
levels, i.e., critical, major and minor.
• In MySQL, we classify S1 (Critical) into critical, S2(Serious) into
major, and S3 (Non-critical), S5 (Performance) and S6 (Debug
Builds) into minor. We exclude S4 (feature request) and S7 (test
cases), since we do not consider them as bugs.

• In MariaDB, we classify Critical into critical, Blocker and Major
into major, and Minor and Trivial into minor.

• TiDB contains four priority levels, i.e., Critical, Major, Moderate
and Minor. We classify Moderate into minor.

• In SQLite, we classify Severe and Critical into critical, Important
into major, and Minor and Cosmetic into minor.

• CockroachDB and PostgreSQL developers do not prioritize their
bugs, so we do not assign priority levels for TXBugs in them.
We assign the unified priorities for 124 (88.6%) TXBugs. Among

them, 33 (23.6%) TXBugs are classified as critical, 55 (39.3%) TXBugs
are classified as major, and 36 (25.7%) TXBugs are classified as minor.

Finding 10: TXBugs are considered severe by developers, and two
thirds (62.9%) of TXBugs have critical or major priorities.

7 BUG FIXING
For the 140 TXBugs, 83 (59.3%) TXBugs have been fixed byDBMS de-
velopers, and 57 (40.7%) have not been fixed yet. Out of the 83 fixed
TXBugs, 5 TXBugs are fixed by modifying the corresponding DBMS
documents only, e.g., MySQL#103672. The remaining 78 TXBugs
are fixed by code patches. We do not investigate TXBugs’ detailed
code fixing strategies, because TXBugs usually involve complex
transaction processing mechanisms, and their fixing patches are
usually too complex for us (not DBMS developers) to understand.

We extract the fixing patches of these 78 fixed TXBugs by fol-
lowing the methodology in Section 3.3. Finally, we obtain the fixing

https://github.com/pingcap/tidb/issues/23179
https://www.sqlite.org/src/tktview?name=745f1abcdc
https://github.com/pingcap/tidb/issues/23380
https://jira.mariadb.org/browse/MDEV-24224
https://jira.mariadb.org/browse/MDEV-24224
https://github.com/pingcap/tidb/issues/17851
https://bugs.mysql.com/bug.php?id=103672
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patches for 70 TXBugs. We cannot find their patches for the re-
maining 8 TXBugs. For the 70 TXBugs, we further measure their
fixing complexity from four aspects, i.e., the number of patches, the
number of affected files, lines of code, and the number of days to
fix. On average, fixing a TXBug involves 5 patches, 5 files and 150
lines of code change, and takes 102 days.

7.1 Unfixed TXBugs
For the 57 (40.7%) unfixed TXBugs, we investigate why they are
not fixed, and how difficult to fix them. Note that these unfixed
TXBugs are also important. Among them, 3 TXBugs are classified as
critical, 22 TXBugs are classified as major, 21 TXBugs are classified
as minor, and the remaining 11 TXBugs do not have priority labels.

Duration.We measure the duration of these unfixed TXBugs
from the date when they were reported to January 1, 2023. The aver-
age durations for unfixed TXBugs in MySQL, PostgreSQL, MariaDB,
CockroachDB, and TiDB are 964 days, 1,046 days, 709 days, 365
days, and 360 days, respectively. Note that all TXBugs in SQLite
have been fixed. This indicates that it is challenging to diagnose
and fix TXBugs, e.g., MySQL#90987 remains unfixed for 1,691 days.

Unfixed reasons. Developers usually do not provide detailed
reasons why they have not fixed some TXBugs. Thus, we carefully
read developers’ discussions, and extract the reasons for 16 un-
fixed TXBugs. In 3 unfixed TXBugs, developers encounter difficulty
when diagnosing their root causes. For example, in MySQL#104833,
developers commented that the root cause is difficult to diagnose:
“The exact cause of the bug is not found yet, but we are working on
it very intensively”. In 5 unfixed TXBugs, developers cannot figure
out their correct transaction semantics. For example, in TiDB#21506,
developers explained that the bug is unfixed since the expected
behavior of the INSERT SELECT statement is undefined: “We need
to discuss the expected behavior for the insert select statement
first”. In the remaining 8 unfixed TXBugs, developers cannot figure
out their fixing solutions. For example, in CockroachDB#55184,
developers directly commented that the bug is hard to fix: “This is
currently an inherent limitation of schema changes. We’re making
improvements in this area, but they’re several releases out”.

Finding 11: Fixing TXBugs is challenging. On average, fixing a
TXBug requires 150 lines of code and takes 102 days. About a half
(40.7%) of TXBugs have not been fixed due to various reasons, e.g.,
difficult to diagnose and fix, and unclear transaction semantics.

8 DETECTION CAPABILITY OF EXISTING
APPROACHES

We investigate how effectively existing transaction verification and
testing approaches [8, 39, 44, 45, 56, 71] can detect TXBugs. Existing
approaches adopt random strategies to generate transaction test
cases to expose TXBugs. Therefore, if we run an existing approach
for a long time, we may still miss a TXBug since the approach may
not generate a proper test case to trigger it. This does not indicate
that the approach lacks the capability to detect this TXBug. Thus,
we theoretically analyze existing approaches’ maximum detection
capability for our studied TXBugs. Specially, we study these ap-
proaches, and check whether they can support TXBugs’ triggering
conditions and contain proper test oracles to detect these TXBugs.

In total, we find that existing approaches can only detect 64 out of
140 (45.7%) TXBugs.

8.1 Transaction Verification
Existing transaction verification approaches [8, 39, 56, 71] detect
TXBugs through analyzing transaction execution history and check-
ing whether DBMSs violate their claimed isolation levels. To build
a precise dependency graph among transactions [30, 31], these ap-
proaches can only support 𝑘𝑒𝑦−𝑣𝑎𝑙𝑢𝑒 data structures and limited
operations, e.g., 𝑟𝑒𝑎𝑑 (𝑘𝑒𝑦) and𝑤𝑟𝑖𝑡𝑒 (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒). They further an-
alyze the dependency graph, and treat dependency cycles as bugs
that violate DBMSs’ claimed isolation levels. They can only detect
insufficient isolation violations in Section 5.

For a TXBug, if its transaction test case satisfies one of the fol-
lowing conditions, we can safely conclude that it cannot be detected
by existing transaction verification approaches. (1) The test case re-
quires different database structures from 𝑘𝑒𝑦−𝑣𝑎𝑙𝑢𝑒 data structures.
(2) The test case involves complex operations other than 𝑟𝑒𝑎𝑑 (𝑘𝑒𝑦)
and𝑤𝑟𝑖𝑡𝑒 (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒). For example, in Figure 1, the SELECT state-
ments at Line 5 and 8 cannot be treated as 𝑟𝑒𝑎𝑑 (𝑘𝑒𝑦) operations. (3)
Its failure symptom cannot be reflected in the transaction execution
history (e.g., unnecessary locks and incorrect error reporting), and
we cannot identify dependency cycles among its transactions. For
example, in Listing 5, there is only one transaction, thus we cannot
identify a dependency cycle.

We investigate all 140 TXBugs, and check whether they satisfy
the above three conditions. We find that, only 4 TXBugs satisfy
transaction verification approaches’ preconditions, and can be de-
tected by these approaches.

8.2 Transaction Testing
In contrast to transaction verification approaches, transaction test-
ing approaches [44, 45] are able to support complex database struc-
tures and statements.

DT2 [44] adopts differential testing to detect TXBugs. DT2 ran-
domly generates concurrent transactions based on transaction fea-
tures that are commonly supported by multiple DBMSs, submits
them to target DBMSs, and compares transaction execution re-
sults on multiple DBMSs to identify discrepancies. If a TXBug
satisfies one of the following conditions, DT2 cannot detect it. (1)
The TXBug’s test case involves DBMS-specific features, e.g., Cock-
roachDB#46276’s test case involves CockroachDB-specific state-
ment UPSERT, which is a combination of the UPDATE and INSERT
statements. (2) The TXBug’s test case has the same incorrect ex-
ecution behavior on multiple DBMSs, e.g., a transaction test case
triggers the same buggy behavior in MariaDB (MariaDB#26642)
and TiDB (TiDB#28212).

Troc [45] detects TXBugs by constructing a test oracle for con-
current transactions. Troc decouples a pair of transactions into inde-
pendent statements, and executes these statements on their specific
database views to obtain the expected execution results. Troc com-
pares transactions’ actual execution results and expected execution
results, and treats any discrepancy as a TXBug. If a TXBug’s test
case involves features that Troc cannot apply (e.g., more than two
transactions, unsupported statements like ALTER (e.g., Figure 1), and
optimistic transaction mode), or TXBug’s failure symptoms cannot

https://bugs.mysql.com/bug.php?id=90987
https://bugs.mysql.com/bug.php?id=104833
https://github.com/pingcap/tidb/issues/21506
https://github.com/cockroachdb/cockroach/issues/55184
https://github.com/cockroachdb/cockroach/issues/46276
https://github.com/cockroachdb/cockroach/issues/46276
https://jira.mariadb.org/browse/MDEV-26642
https://github.com/pingcap/tidb/issues/28212
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be detected by Troc (e.g., unnecessary blocking and performance
degradation), Troc cannot detect it.

We investigate all 140 TXBugs, and check whether they satisfy
the above two testing approaches’ preconditions. We find that only
52 TXBugs satisfy DT2’s preconditions, and can be detected by DT2.
Only 25 TXBugs satisfy Troc’ preconditions, and can be detected
by Troc. Note that among these 52 TXBugs, 2 TXBugs can also be
detected by transaction verification approaches. Among these 25
TXBugs, one TXBug can also be detected by transaction verification
approaches, and 15 TXBugs can also be detected by DT2.

Finding 12: Less than half (45.7%) of TXBugs can be detected by
existing transaction verification and testing approaches.

9 LESSONS LEARNED
Finding 12 shows that existing transaction verification and testing
approaches cannot effectively detect TXBugs. Our community ur-
gently needs to develop more effective approaches for combating
TXBugs. As the first empirical study on TXBugs in DBMSs, we be-
lieve that our findings can help DBMS developers and researchers
to improve DBMSs’ reliability. In this section, we discuss lessons
learned, implications to existing works, and opportunities for new
researches in combating TXBugs.

9.1 Detecting More Types of TXBugs
Finding 7 shows that TXBugs can violate various transaction se-
mantics, e.g., atomicity, consistency, isolation, read-only constraint
and statement correctness under transactions. Existing verification
approaches [8, 39, 56, 71] mainly focus on detecting insufficient
isolation violations, while DT2 [44] and Troc [45] can further detect
some other violations except insufficient isolation violations, e.g.,
consistency violations. However, these approaches cannot detect
some types of our studied TXBugs, e.g., atomicity and read-only
constraint violations. Our community urgently needs to invest more
effort to combat more types of TXBugs.

9.2 Transaction Testing
Software testing plays an important role in exposing bugs. Although
many approaches have been proposed for DBMS testing [17, 34, 49,
51, 54, 55, 59–61, 64–68, 73, 74, 77, 78], there are only few works for
transaction testing in DBMSs [44, 45]. Our study provides guidance
that can be exploited by transaction testing from several aspects.

Transaction test case generation.Awell-designed transaction
test case generation approach can greatly improve the effectiveness
of exposing TXBugs. We find that transaction test cases that trig-
ger TXBugs are extremely diverse. Transaction test cases should
consider specific database properties (Finding 3), multiple types
of transactions (Finding 4), and various types of SQL statements
(Finding 5). However, existing approaches, e.g., Cobra [71] and Elle
[56], can only generate transactions that use simple read(𝑘𝑒𝑦) and
write(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) operations on simple 𝑘𝑒𝑦−𝑣𝑎𝑙𝑢𝑒 data structures.
DT2 [44] can only generate the common SQL features that are com-
monly supported by multiple DBMSs. Therefore, we urgently need
effective transaction test case generation approaches, which can
cover various SQL features revealed by our study.

Our study shows that TXBugs usually follow the small scope hy-
pothesis [50], and only require limited amounts of database tables
(Finding 1), data (Finding 2), transactions (Finding 4), SQL state-
ments (Finding 5), etc. These findings indicate that we can generate
(or enumerate possible) small test cases to significantly reduce the
space of transaction testing, and can still effectively detect TXBugs
within limited time and resources. Generating large numbers of
transactions and data for transaction verification like Cobra [71]
and Elle [56] should be inefficient.

Oracle design. Test oracles are the key to effectively reveal
TXBugs. For explicit failures caused by TXBugs (e.g., DBMS crashes
and errors), researchers can design a unified test oracle to detect
TXBugs based on our identified explicit failures in Finding 9. How-
ever, Finding 9 also shows that most TXBugs can only cause silent
failures. This indicates that researchers need to develop new test
oracles to reveal silent TXBugs.

To make silent TXBugs detectable, DT2 [44] adopts differen-
tial testing and compares transaction execution results on multiple
DBMSs. Troc [45] focuses on isolation violations and constructs test
oracles according to the claimed isolation level. But, these existing
approaches’ test oracles cannot detect TXBugs that cause perfor-
mance degradation, DBMS errors, statement correctness violations,
etc. Finding 7 shows that in TXBugs, concurrent transactions usu-
ally violate certain transaction semantics. Thus, we can build a
precise transaction semantics to expose TXBugs.

Concurrent transaction testing. Intuitively, TXBugs can usu-
ally be revealed by highly concurrent transaction execution. Thus,
existing approaches, e.g., Cobra [71] and Elle [56], try to expose
TXBugs through a lot of concurrent transactions. However, Find-
ing 6 shows that almost all TXBugs can be triggered determin-
istically, and manifest themselves by executing their transaction
test cases in certain order. Based on this finding, researchers can
design effective concurrent transaction testing approaches, which
can more efficiently expose TXBugs.

For nondeterministic TXBugs, we find that we can adopt simple
triggering strategies to trigger them in Finding 6. Researches can
use these strategies to further expose nondeterministic TXBugs.

9.3 Transaction Verification
Some transaction verification techniques have been proposed to
verify whether DBMSs violate their claimed transaction isolation
guarantees by analyzing transaction execution history on simple
𝑘𝑒𝑦−𝑣𝑎𝑙𝑢𝑒 data structures in DBMSs, e.g., Elle [56] and Cobra [71].
However, Finding 12 shows that only few TXBugs can be detected
by these approaches because they cannot support complex transac-
tions in modern DBMSs. Therefore, we urgently need to develop
new transaction verification techniques to record and analyze com-
plex transactions’ execution history, e.g., complex database struc-
tures (Finding 3), and more types of statements (Finding 5).

9.4 Transaction Semantics
We observe that TXBugs usually violate some transaction seman-
tics, e.g., atomicity, consistency, isolation, and read-only constraint
(Finding 7). We find that some TXBugs have not been fixed because
their involved transaction semantics are still unclear for DBMS
developers (Finding 11). During our study, we also find that the
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transaction semantics among different DBMSs may be inconsistent.
For example, TiDB and MySQL take snapshots for transactions at
different timing [22], which can cause different results for the same
transactions. These unclear and inconsistent transaction seman-
tics can also cause ambiguity when database application develop-
ers migrate their applications among DBMSs. We urgently need a
clear and unified specification for transaction semantics, which can
greatly benefit the DBMS community.

9.5 TXBug Diagnosis
Our findings (Finding 1, 2, 4, and 5) show that TXBugs usually follow
the small scope hypothesis. While existing approaches [8, 39, 56, 71]
usually generate large transaction test cases, which may trouble
DBMS developers during bug diagnoses. Therefore, new approaches
on transaction test case reduction can help DBMS developers to
understand TXBugs.

During our study, we find that many different transaction test
cases can trigger the same TXBug, and cause duplicate bug reports.
For example, MySQL#105030, MySQL#105670, MySQL#107887 and
MySQL#104986 trigger the same TXBug. New approaches on au-
tomatically detecting duplicate TXBug reports can help DBMS
developers to reduce efforts and save time during bug diagnoses.

10 RELATEDWORK
We introduce related works that we have not discussed yet.

Empirical bug studies. Empirical bug studies play an impor-
tant role in improving the reliability of software systems. Many
bug studies have been conducted for different kinds of bugs, e.g.,
concurrency bugs [58, 62, 72], crash / network partition recovery
bugs in distributed systems [32, 33, 46], compiler bugs in GCC and
LLVM [70], bugs in deep learning systems [42, 47] and bugs in cloud
systems [48]. These empirical studies have motivated researchers
to develop various techniques to combating related bugs. In our
study, we adopt similar study methodologies to existing studies in
the process of bug selection, bug analysis, and bug categorization.
To the best of our knowledge, our work is the first comprehensive
study on TXBugs in DBMSs.

Bug detection in DBMSs. Some techniques have been proposed
to combat logic and crash bugs in DBMSs [17, 34, 49, 51, 54, 55, 59–
61, 64–68, 73, 74, 76–78]. SQLsmith [17] detects DBMS bugs by
generating random SQL statements. RAGS [67] utilizes differential
testing to find bugs in DBMSs. SQLancer [64–66] detects logic
bugs in single SELECT statements. Squirrel [78] presents a fuzzing
framework to find bugs in DBMSs. Grand [77] and DOT [76] present
differential testing approaches to find logic bugs in graph database
systems (GDBs). These approaches mainly focus on detecting bugs
in single SELECT statements, and cannot detect TXBugs in DBMSs.

11 CONCLUSION
Incorrect designs and implementations in DBMSs’ transaction pro-
cessing mechanisms can introduce transaction bugs, which lead
to severe consequences. We conduct the first in-depth study on
140 transaction bugs from six popular DBMSs. From our study, we
obtain many interesting findings and lessons. We believe that our
study can be beneficial for DBMS and SE researchers from many
aspects, e.g., transaction testing, verification and semantics.
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A DETAILED STUDY METHODOLOGY
Due to the space limit, we cannot present the detailed process
about our study methodology in Section 3. In this appendix, we
provide some supplementary details about the TXBug collection
and categorization process.
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A.1 Collecting TXBugs
In our empirical study, we adopt the following process to identify
relevant DBMSs and TXBugs.
1) To make our studied TXBugs representative, we select six well-

developed and popular DBMSs as our target systems, i.e., MySQL
[11], PostgreSQL [14], SQLite [15], MariaDB [9], CockroachDB
[5], and TiDB [19]. These systems cover various types of DBMSs
(i.e., traditional, embedded and distributed DBMSs), and a di-
verse set of transaction features (e.g., transaction types, isola-
tion levels and concurrency control mechanisms). Among them,
MySQL, PostgreSQL, SQLite and MariaDB are well-developed
DBMSs and rank high in the DB-Engines Ranking (2nd, 4th, 10th
and 13th, respectively). CockroachDB and TiDB are two popular
distributed DBMSs in the open source community (ranked as
3rd and 5th among DBMSs in GitHub).

2) Wemanually collect issues that are potentially related to TXBugs
from the above six DBMSs’ issue repositories.
a) Our studied DBMSs usually evolve quickly. To keep our study

results up-to-date, we only consider issues confirmed by
DBMS developers in the last 5 years, i.e., from January 2018
to December 2022.

b) Our target DBMSs contain a huge amount of issues, e.g.,
MySQL contains about 20,000 issues in the last 5 years. In
these DBMSs, they usually do not label whether an issue
is related to transaction bugs. It is also challenging and
time-consuming to manually check all the reported issues.
Therefore, we use the following keywords, i.e., “transaction”,
“abort”, “commit”, “isolation level”, and their variations, to
effectively collect potentially relevant issues in these DBMSs.
This search returns us with 7,775 issues.

3) Note that the above search keywords are general and widely
used in DBMSs. Although some issues contain our search key-
words, they are unrelated to transaction processing mechanisms
in fact. To exclude these issues that are not related to trans-
action processing mechanisms from our study, we manually
inspect the bug description and developer comments for each
retrieved issue, and check whether the issue is related to transac-
tion processing mechanisms in DBMSs. We only keep the issues
that are related to transaction processing mechanisms. In this
step, we filter out 7,220 issues, and keep 555 issues for further
investigation.

4) For each remaining issue, we carefully investigate its bug de-
scription, test cases, developer discussions and available fixing
patches, and further rebuild its bug test case step by step, and
use the following criteria to select TXBugs.
a) We keep an issue as a TXBug if it needs at least one explicit

transaction or XA transaction to trigger, or it needs at least
two transactions to trigger.

b) If a bug can be triggered by only one auto transaction, we
do not consider it as a TXBug, since it usually belongs to
transaction-unrelated bugs, e.g., logic bugs in single SELECT
statements.

c) To maintain the accuracy of our study results, we only keep
TXBugs that we can completely understand.

To maintain the accuracy of our study, each issue has been in-
vestigated by at least three authors. For each issue, its investigators

carefully discuss it and reach a consensus. If we cannot reach a
consensus about an issue after discussion, we also exclude it from
our study. Finally, we obtain 140 TXBugs in our study.

A.2 Categorizing TXBugs
We adopt the open card sorting approach to build the categories
for TXBugs’ triggering conditions, root causes, impacts and fixing.
The basic categorization process is described as follows.
1) For each TXBug, we extract necessary information from its issue

report, e.g., test cases, expected execution results, developer
discussions, and available fixing patches, and then write down
its test case step by step. All the information is cross-checked
by at least three authors.

2) Each TXBug is labeled by at least three investigators (i.e., au-
thors) independently. Each investigator tries to classify a TXBug
into an existing category in a dimension (e.g., root cause and
bug impact) according to the extracted information. If a bug
cannot be classified into any existing category, the investigator
creates a new category for it.

3) For each TXBug, its investigators discuss their categorization
results and try to reach a consensus. If some investigators have
disagreements about a TXBug’s categorization result, they rein-
vestigate it further until they reach a consensus. They also refine
categories in this step if necessary.

4) To ensure correctness and consistency, step 3 and 4 are per-
formedmultiple rounds, until all investigators reach a consensus
for all transaction bugs’ categorization results.
Specifically, we apply the following process to categorize the

studied transaction bugs.
• Triggering conditions. Triggering conditions are usually hid-
den in a TXBug’s test case, e.g., the number of transactions
and the types of the involved transactions. Each investigator
extracts these triggering information from a bug’s test case, and
classifies TXBugs according to these triggering information.

• Root causes. For root causes, we try to answer the question
“what transaction semantics does a transaction bug violate?”.
We investigate root causes from a bug’s transaction test case,
expected execution results and developers’ discussions. Initially,
we create four categories related to ACID properties (i.e., atom-
icity violations, consistency violations, isolation violations and
durability violations). During our investigation, we further re-
veal more categories, e.g., read-only constraint violations and
statement correctness violations. These are surprising categories
to us. We do not find any TXBugs for durability violations, so
we delete this category in our study.

• Impacts. For bug impacts, we try to answer the question “what
consequences does a transaction bug cause?”. We investigate
bug impacts from a bug’s transaction test case and developers’
discussions about the unexpected execution results of the test
case. We also reproduce some TXBugs if possible, and observe
their consequences.

• Fixing. We extract necessary information from issue reports,
and available fixing patches. Then, we classify TXBugs according
to these information.
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