
Testing Gremlin-Based Graph Database Systems via �ery
Disassembling

Yingying Zheng∗

Wensheng Dou∗†‡

Institute of Software at CAS, China

Lei Tang∗

Ziyu Cui∗

Institute of Software at CAS, China

Yu Gao∗

Jiansen Song∗

Institute of Software at CAS, China

Liang Xu
Jinling Institute of Technology, China

Jiaxin Zhu∗†

Institute of Software at CAS, China

Wei Wang∗†

Institute of Software at CAS, China

Jun Wei∗†

Institute of Software at CAS, China

Hua Zhong∗

Institute of Software at CAS, China

Tao Huang∗

Institute of Software at CAS, China

Abstract

Graph Database Systems (GDBs) support e�ciently storing and

retrieving graph data, and have become a critical component in

many important applications. Many widely-used GDBs utilize the

Gremlin query language to create, modify, and retrieve data in

graph databases, in which developers can assemble a sequence

of Gremlin APIs to perform a complex query. However, incorrect

implementations and optimizations of GDBs can introduce logic

bugs, which can cause Gremlin queries to return incorrect query

results, e.g., omitting vertices in a graph database.

In this paper, we propose Query Disassembling (QuDi), an e�ec-

tive testing technique to automatically detect logic bugs in Gremlin-

based GDBs. Given a Gremlin query & , QuDi disassembles & into a

sequence of atomic graph traversals)!8BC , which shares the equiv-

alent execution semantics with & . If the execution results of & and

)!8BC are di�erent, a logic bug is revealed in the target GDB. We

evaluate QuDi on six popular GDBs, and have found 25 logic bugs

in these GDBs, 10 of which have been con�rmed as previously-

unknown bugs by GDB developers.

CCS Concepts

• Information systems→ Database query processing; • Software

and its engineering→ Software testing and debugging.

Keywords

Graph database systems, graph traversal, logic bug, bug detection

ACM Reference Format:

Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Yu Gao, Jiansen Song,

Liang Xu, Jiaxin Zhu, Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024.

∗A�liated with Key Lab of System Software at CAS, State Key Lab of Computer Science
at Institute of Software at CAS, and University of CAS, Beijing. CAS is the abbreviation
of Chinese Academy of Sciences.
†A�liated with Nanjing Institute of Software Technology, University of CAS, Nanjing.
‡Wensheng Dou (wsdou@otcaix.iscas.ac.cn) is the corresponding author.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680392

Testing Gremlin-Based Graph Database Systems via Query Disassembling.

In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing andAnalysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3650212.3680392

1 Introduction

Graph Database Systems (GDBs) [58] support e�cient storage and

queries for graph data, which consists of vertices and edges. The

popularity of GDBs has increased dramatically recently, and GDBs

have played a signi�cant role in many important applications, e.g.,

social networks [35], knowledge graphs [26, 45], and fraud detection

[50]. According to the latest DB-Engines Ranking of GDBs [3], there

have already been 41 widely-used GDBs, e.g., Neo4j [12], OrientDB

[16], NebulaGraph [15], JanusGraph [8], and TigerGraph [33].

Unlike relational database systems that utilize declarative Struc-

tured Query Language (SQL) to access relational data, e.g., MySQL

[10], MariaDB [9], TiDB [21], and PostgreSQL [17], GDBs do not

have a standardized way to access graph data, and usually utilize

their own query languages, e.g., nGQL [11] in NebulaGraph and

GSQL [32] in TigerGraph. However, about half of the GDBs in the

DB-Engines Ranking [3], e.g., Neo4j [12], OrientDB [16], Janus-

Graph [8], HugeGraph [6], TinkerGraph [22], and ArcadeDB [14],

support the procedural Gremlin query language [4, 54], which is

developed by Apache TinkerPop [22]. We refer to these GDBs that

support the Gremlin query language as Gremlin-based GDBs.

The Gremlin query language used in Gremlin-based GDBs has

totally di�erent syntaxes and query patterns with SQL in relational

database systems. Speci�cally, the Gremlin query language provides

a group of Gremlin APIs to create, modify, and retrieve graph data.

Developers can further assemble a sequence of Gremlin APIs and

generate complex queries to achieve complex graph analyses.

To improve the performance of Gremlin queries, GDBs usually

adopt complex execution and optimization strategies [5, 7], e.g.,

reordering �ltering operations to execute cheaper operations �rst

and merging �ltering conditions for e�cient graph queries. Unsur-

prisingly, the above complexity poses a major correctness challenge

for GDBs. Incorrect implementations and optimizations of GDBs

can introduce logic bugs, which can silently cause the GDBs to

return an incorrect query result for a given Gremlin query without

crashing the GDBs, e.g., omitting vertices in a graph database.

Figure 1 shows a real-world logic bug ArcadeDB#500 that we de-

tected in ArcadeDB [14]. In this logic bug, the Gremlin query (Line 1)

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1695

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3650212.3680392
https://doi.org/10.1145/3650212.3680392
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680392&domain=pdf&date_stamp=2024-09-11

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 g.V().has('person ','age',lt(30)).hasLabel('person ','book');

2 -- v:{1,2,3,4} ✘

3 -- v:{1 ,4} ✔

Figure 1: A logic bug ArcadeDB#500 detected by our approach

in ArcadeDB [14]. This Gremlin query wrongly retrieves all

vertices, rather than persons who are less than 30 years old

in Figure 2.

in Figure 1 �rst retrieves all vertices of the graph shown in Figure 2

(6.+ ()), and then keeps ?4AB>= vertices in which the 064 property is

less than 30 (ℎ0B (′?4AB>=′,′ 064′, ;C (30))), and then keeps vertices

that have a label ?4AB>= or 1>>: (ℎ0B!014; (′?4AB>=′,′ 1>>:′)). For

this query, its correct result should be E :{1, 4}. However, Arcad-

eDB returns an incorrect result E :{1, 2, 3, 4}. ArcadeDB developers

explained that this logic bug was caused by the incorrect implemen-

tation for the assembly of multiple �ltering conditions, and �xed it

quickly after we submitted it.

Logic bugs in GDBs are likely to go unnoticed by GDB develop-

ers, because we lack an e�ective test oracle for automatic testing to

verify whether a GDB behaves correctly for a given Gremlin query,

thus detecting logic bugs. Some approaches [39, 62, 64] adopt dif-

ferential testing [49] to reveal discrepancies among multiple GDBs

for the same graph database and graph queries. The clear drawback

of this technique is that it cannot detect the same bugs that exist

in all target GDBs and can only be used to test common features

in target GDBs. GDBMeter [42] adopts Ternary Logic Partitioning

(TLP) [52] to derive a graph query into three disjoint sub-queries

based on a randomly generated predicate, and only focuses on

detecting predicate-related bugs. Furthermore, some testing ap-

proaches [27, 30, 37, 51–53, 56, 57] have proposed new test oracles

to e�ectively �nd logic bugs in an individual relational database

system. However, these approaches cannot be applied on Gremlin-

based GDBs because the procedural Gremlin query language adopts

di�erent syntaxes and query patterns from declarative SQL.

We observe that a complex Gremlin query can be disassembled

into a sequence of atomic graph traversals (an atomic graph tra-

versal can achieve one-step traversal in the graph database), which

shares the equivalent execution semantics as the original query. In-

spired by this observation, we propose Query Disassembling (QuDi),

an e�ective test oracle to reveal logic bugs in individual Gremlin-

based GDBs. Speci�cally, given a Gremlin query & , we disassemble

it into a sequence of atomic graph traversals)!8BC =<)1,)2, ...,)= >,

in which)8 denotes the 8-th atomic graph traversal in & . Then, for

an atomic graph traversal)8 in)!8BC , we construct a query, which

takes the result '()8−1 of its previous traversal)8−1 as input, and

computes its result '()8 . In such case, query & and its disassem-

bled graph traversal sequence)!8BC share the equivalent execution

semantics, and should obtain the same result. That said, query & ’s

result '(& must be equal to the result '()= of the last traversal)=
in)!8BC . Otherwise, a potential logic bug is detected in the target

GDB. We further propose three execution strategies to implement

this test oracle, aiming at �nding more logic bugs. By disassem-

bling a complex Gremlin query into a sequence of atomic graph

traversals, QuDi can prevent some GDB optimizations from kicking

in, and thus can detect logic bugs caused by the assembly of atomic

graph traversals and related optimizations.

book
v:2write

read

name: Alice
age: 26

name: Nancy
age: 30

title: Hello World
language: English

v:1
person

v:3
person

v:4
person

name: Bob
age: 21

read

e:1
e:2

e:3

time: 2

since: 2020
time

: 5

Figure 2: A labeled property graph.

We implement the above technique as QuDi, and evaluate QuDi

on six popular Gremlin-based GDBs, i.e., Neo4j [12], OrientDB [16],

JanusGraph [8], HugeGraph [6], TinkerGraph [22], and ArcadeDB

[14]. At the time of writing this paper, we have found 25 logic bugs

in these GDBs. Among them, 17 logic bugs have been con�rmed

by GDB developers, in which, 10 bugs are classi�ed as previously-

unknown bugs, and 7 bugs are classi�ed as duplicate to existing

bugs. 8 bugs have been �xed by GDB developers. For the 17 con-

�rmed bugs, 11 bugs are caused by incorrect implementations and

optimizations about the assembly of atomic graph traversals, and

the remaining 6 bugs are caused by incorrect implementations of

atomic graph traversals.

The idea of query disassembling is inspired by the following

key observation: A complex query & for a database system can

be disassembled into multiple atomic queries �C><82&s, and the

assembly of �C><82&s can compute the same query result as & .

In this paper, we only apply the idea of query disassembling on

Gremlin-based GDBs. However, query disassembling is a general

idea, and can be potentially applicable on other database systems.

First, some other graph query languages e.g., Cypher [24] and

SPARQL [18], also support the above key observation, and we can

extend query disassembling on those GDBs that support these query

languages. Second, SQL queries in relational database systems can

support sub-queries and joins (e.g., SELECT * FROM (SELECT *

FROM t1 JOIN t2)), which can also be disassembled into atomic

queries. More discussions can be found in Section 5.

In summary, we make the following contributions in this paper.

• We propose a general and e�ective test oracle, query disassem-

bling, for �nding logic bugs in individual GDBs. By disassem-

bling a complex query into an equivalent atomic graph traversal

sequence, we can reveal logic bugs related to incorrect imple-

mentations and optimizations of Gremlin queries in GDBs.

• We evaluate QuDi on six widely-used GDBs. In total, we have

detected 25 logic bugs in them, 10 of which have been con�rmed

as previously-unknown bugs by GDB developers.

2 Preliminaries

We �rst explain the labeled property graph model adopted by many

GDBs (Section 2.1), and then introduce the Gremlin query language

(Section 2.2) and its traversal model (Section 2.3). Finally, we brie�y

explain the Gremlin queries’ execution (Section 2.4).

2.1 Labeled Property Graph Model

Most GDBs are built on the labeled property graph model [58] to

e�ciently store and retrieve graph data. A labeled property graph

model consists of a set of vertices and edges associated with these

vertices. Each vertex (edge) has a label to divide it into di�erent

1696

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Vertex ::= 6.+ () ∥ Vertex.[Filter | >DC () | 8= () | 1>Cℎ () | >A34A () .1~ ()] ∥ Edge.[>DC+ () | 8=+ () | 1>Cℎ+ ()]

Edge ::= 6.� () ∥ Edge.[Filter | >A34A () .1~ ()] ∥ Vertex.[>DC� () | 8=� () | 1>Cℎ� ()]

Filter ::= ℎ0B (Predicate) ∥ ℎ0B#>C () ∥ ℎ0B!014; () ∥ Fℎ4A4 (Predicate) ∥ B0<?;4 () ∥ [=>C | 0=3 | >A] ([Filter |Vertex |Edge])

Predicate ::= 4@ () ∥ =4@ () ∥ ;C () ∥ ;C4 () ∥ 6C () ∥ 6C4 () ∥ 8=B834 () ∥ >DCB834 () ∥ 14CF44= () ∥ [=>C | 0=3 | >A] (Predicate)

Value ::= [Vertex | Edge] .2>D=C () ∥ [Vertex | Edge] .E0;D4B () .[BD< () |<40= () |<8= () |<0G () | 2>D=C ()]

Figure 3: The abstract traversal model in the Gremlin query language [64].

vertex (edge) groups, and has a set of properties to describe its

attributes. Figure 2 shows a labeled property graph that consists of

four vertices and three edges. Speci�cally, three vertices with label

?4AB>= (i.e., E :1, E :3 and E :4) have two properties, i.e., =0<4 and 064 ,

while a vertex with label 1>>: (i.e., E :2) has C8C;4 and ;0=6D064 prop-

erties whose values are ‘Hello World’ and ‘English’, respectively.

One edge labeled byFA8C4 (i.e., 4 :1) has a B8=24 property with value

‘2020’, while two edges with label A403 (i.e., 4 :2 and 4 :3) have a C8<4

property with value 5 and 2, respectively. All three edges associate

?4AB>= vertices to 1>>: vertices, and they are directed. For example,

edge 4:1 means that ?4AB>= E :1 writes 1>>: E :2.

2.2 Gremlin Query Language

GDBs utilize graph query languages to create, modify and retrieve

graph data in graph databases. Many graph query languages have

been proposed for GDBs [25]. For example, Apache TinkerPop

[23] develops Gremlin [4, 54], Neo4j [38] develops Cypher [36],

NebulaGraph [15, 59] develops nGQL [11], and TigerGraph [33]

develops GSQL [32], to retrieve graph data from graph databases.

According to the DB-Engines Ranking of GDBs [3], Gremlin is one

of the most popular and widely-used graph query language, which

has been supported by about half of the 41 GDBs. Specially, 6 out

of the top 10 GDBs support Gremlin APIs.

Gremlin is a functional and procedural query language, and al-

lows developers to assemble a sequence of Gremlin APIs to form

complex queries. Speci�cally, a Gremlin query, startingwith a Grem-

lin traversal source 6, can traverse a labeled property graph by

assembling a sequence of Gremlin APIs after 6. For example, the

Gremlin query in Figure 1 consists of four Gremlin APIs, i.e., + (),

ℎ0B (), ;C () and ℎ0B!014; (), in which + () retrieves all vertices from

the graph data in Figure 2, ℎ0B () and ℎ0B!014; () keep vertices that

satisfy the given �ltering conditions, and ;C () is a parameter in

ℎ0B (). Besides these Gremlin query APIs, Gremlin also provides a

series of update APIs. For example, we can add vertices (edges) by

033+ () (033� ()) in a graph database, and delete vertices or edges

by 3A>? (). In this paper, we mainly focus on Gremlin query APIs.

2.3 Gremlin Traversal Model

A Gremlin query consists of a sequence of Gremlin APIs, which

are linked together. Zheng et al. [64] propose an abstract Gremlin

traversal model to explain how to construct valid Gremlin queries,

as shown in Figure 3. A key insight behind this traversal model is

that the input type of a Gremlin API in a query should match the

output type of its previous Gremlin API.

In this traversal model, Vertex describes the operations that

return a vertex list, e.g., Gremlin API + () that retrieves all vertices

from a graph database can return a vertex list. Edge represents the

operations that return a list of edges, e.g., we can use 6.+ () .>DC� (),

to retrieve the outgoing edges of all vertices in a graph database.

Filter is a group of �ltering operations, e.g., ℎ0B () and ℎ0B!014; (),

which map entities that satisfy the given �ltering conditions. The

operations belonging to Filter can be assembled after Vertex and

Edge, and return a list of vertices and edges, respectively. For exam-

ple, if we assemble 6.+ () and ℎ0B () together, the assembling query

6.+ ().ℎ0B () also returns a vertex list. Predicate contains a group of

predicate operations, e.g., ;C () that is used as a parameter of Filter.

Value describes the operations that return a value or a value list,

e.g., we can retrieve properties of vertices by 6.+ () .E0;D4B ().

Note that in this abstract traversal model, we ignore concrete

parameters for each Gremlin API, e.g., ?4AB>= in the Gremlin API

ℎ0B!014; (′?4AB>=′), and ignore some extra constraints, e.g., BD<()

can only be used with a Number type.

2.4 Gremlin Query Execution

Gremlin queries are processed by Gremlin Traversal Machine (GTM)

[54]. GTM adopts �ve categories of strategies [54] at Gremlin query

compiling and execution, i.e., decoration, optimization, vendor opti-

mization, �nalization and veri�cation. In these strategies, optimiza-

tion strategies [4] aim to determine the most optimal execution

plan according to the costs of accessing graph data. For example,

optimization strategies can reorder �ltering operations to execute

cheaper �lters �rst (i.e., FilterRankingStrategy) or merge oper-

ations for e�cient searches (i.e., IncidentToAdjacentStrategy).

Besides, Gremlin allows GDB developers to develop their own opti-

mization strategies for e�ciently executing Gremlin queries [5]. For

example, TinkerGraphCountStrategy developed by TinkerGraph

developers can optimize operations related to Gremlin API 2>D=C ().

The complexity of Gremlin query’s execution poses a major

correctness challenge for GDBs, because the combination space of

Gremlin traversals is huge. For a complex Gremlin query, incorrect

implementations and optimizations of GDBs can introduce logic

bugs. Our approach can prevent some optimization strategies from

kicking in by disassembling a Gremlin query into a sequence of

atomic graph traversals, thus detecting logic bugs in GDBs.

3 Approach

We propose Query Disassembling (QuDi), an e�ective approach for

automatically �nding logic bugs in Gremlin-based GDBs. QuDi

solves the test oracle problem by disassembling a complex Gremlin

query (i.e., an original query) into an equivalent atomic graph tra-

versal sequence. We compare the query result of the original query

with the query result of its corresponding disassembled atomic

graph traversal sequence, and then identify the discrepancy be-

tween their query results as a logic bug.

1697

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

① Randomly generate
a graph database

g.V()

g.V().has(‘person’, ‘age’, lt(30))

g.V().hasLabel(‘person’, ‘book’)

1
3

4
2

② Randomly generate
a Gremlin query g.V().has(‘person’, ‘age’, lt(30))

 .hasLabel(‘person’, ‘book’)

③ Disassemble query Q

≠
T1

A Gremlin query Q

1 3 42

1 4

1 4

1 3 42

1 4

1 3 42

T2

T3

����

���
④ Compare

����
����

Figure 4: Approach overview.

Figure 4 illustrates the overview of our approach. We �rst ran-

domly generate a graph database (1©). The generated graph data-

base consists of a set of vertices and a set of edges (e.g., the graph

data shown in Figure 2). We then randomly generate Gremlin

queries based on the traversal model proposed in Figure 3 and

the graph database generated in the previous step (2©). For each

randomly generated Gremlin query & (e.g., the query in Figure 1),

we �rst execute it on the target GDB to compute a result set '(&
(e.g., E :{1, 2, 3, 4}). After that, we disassemble & into a sequence of

atomic graph traversals)!8BC (e.g., <)1,)2,)3 >), which has the

equivalent execution semantics with the original query & (3©). For

each atomic graph traversal)8 in)!8BC , we construct an indepen-

dent Gremlin query for it, which takes the result set '()8−1 of its

previous traversal)8−1 as input. We then execute)8 ’s query and

compute its result set '()8 . After executing the last atomic graph

traversal in)!8BC (e.g.,)3), we get a �nal result set (e.g., E :{1, 4}).

Finally, we compare the result set '(& of the original query& with

the result set of)!8BC (e.g., '()3) (4©). A logic bug is reported for

the target GDB if these two query results are di�erent.

By disassembling a Gremlin query & into an equivalent atomic

graph traversal sequence)!8BC , we can achieve the following two

targets, and e�ectively test individual Gremlin-based GDBs.

• For a target GDB, the combination space of atomic graph traver-

sals is huge. However, we cannot know whether an assembly of

atomic graph traversals is correct or not. QuDi can utilize atomic

graph traversals to construct a test oracle for complex Gremlin

queries, and intensely test them without human intervention.

• During sequentially executing atomic graph traversals in)!8BC ,

we disable some complex query optimization mechanisms in a

target GDB for complex Gremlin queries and prevent optimiza-

tions from kicking in. Thus, we can construct a test oracle for

query optimization in a target GDB.

3.1 Graph Database and Query Generation

In this work, we generate random graph databases and random

Gremlin queries based on Grand [64], a di�erential testing frame-

work for �nding bugs in Gremlin-based GDBs. Here, we explain

the graph database and query generation only for completeness.

Graph database generation. To generate a graph database, we

�rst randomly generate a graph schema that de�nes the vertex and

edge types. We denote a vertex type as < ;014;, ?A>?4AC~)~?4∗ >,

in which ;014; and ?A>?4AC~)~?4∗ represent its label name and

property types, respectively. An edge type can be represented as

< ;014;, ?A>?4AC~)~?4∗, 8=+)~?4, >DC+)~?4 >, in which ;014; rep-

resents its label name, ?A>?4AC~)~?4∗ is a set of property types,

and 8=+)~?4 and >DC+)~?4 denote its incoming and outgoing ver-

tex types, respectively. A property type ?A>?4AC~)~?4 contains a

property name and a data type. Then, we can generate a vertex type

by generating a random label name and a set of properties, each of

which contains a random property name and a random data type.

We can randomly generate a label name and a set of property types

for an edge type, and randomly select a vertex type as its incoming

(outgoing) vertex type.

Based on the generated graph schema, we can generate a set of

vertex and edge instances, which are composed as a graph database.

To generate a vertex, we �rst randomly choose a vertex type, and

then randomly generate its property values. To generate an edge,

we �rst randomly choose an edge type, and randomly choose two

vertices whose vertex type satisfy its incoming and outgoing vertex

types, respectively. The generation of its label name and properties

is similar to the vertex generation.

We also create graph indexes for vertex (edge) properties, which

can improve the query e�ciency of those indexed vertices (edges).

Speci�cally, we �rst randomly select some properties of vertices

(edges) in the generated graph schema, and then we create graph

indexes for these randomly chosen properties by using the speci�c

syntaxes and index mechanisms of target GDBs.

Gremlin query generation.We randomly generate Gremlin

queries based on the abstract traversal model in Figure 3. Given

a graph traversal length !, we iteratively select traversal types,

until ! is reached or a Value type is selected. Speci�cally, in each

iteration, we randomly select a traversal type (e.g., Filter), and

then randomly choose a Gremlin API (e.g., ℎ0B ()) in the traversal

model. Its output type can be transmitted to the next iteration,

which guarantees the syntax correctness of a generated Gremlin

query. Some Gremlin APIs require parameters, e.g., property names

and property values. We can select a property name or a property

value from the graph database to reduce the probability of an empty

result set, or generate it with a Random function.

3.2 Query Disassembling

Given a generated Gremlin query, we disassemble it into a sequence

of atomic graph traversals. An atomic graph traversal can achieve

one-step traversal in the graph database and may contain one or

1698

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Algorithm 1: Query Disassembling

Input:& (A Gremlin query)
Output:)!8BC (A sequence of atomic graph traversals)

1)!8BC ← {}

2 0C><82) ← {}

3 �%�(4@D4=24 ← getGremlinAPICalls(&)

4 for 8 ← 1; 8 ≤ �%�(4@D4=24.;4=6Cℎ; 8 + + do
5 0?8 ← �%�(4@D4=24 [8]

6 0C><82) .033 (0?8)

7 if 0?8.>DC) ~?4 = VERTEX | EDGE then
8)!8BC .033 (0C><82))

9 0C><82) ← {}

10 end

11 if 0C><82) ≠ #*!! then
12)!8BC .033 (0C><82))

13 return)!8BC

more Gremlin APIs. For example, 6.+ (), ℎ0B (;C ()), and ℎ0B!014; ()

in Figure 4 can be treated as atomic graph traversals. Some Gremlin

APIs cannot be treated as atomic graph traversals because they

cannot be executed independently and cannot return any graph

data. For example, in Figure 4, we cannot treat ;C () as an atomic

graph traversal because ;C () is only used for �ltering conditions

and acts as a parameter in ℎ0B ().

In our approach, we refer to an atomic graph traversal as a group

of Gremlin API calls, which return a result set with an output type of

Vertex or Edge (e.g.,6.+ () and6.� () in Figure 3).We further require

that, if an atomic graph traversal returns a result set with an output

type of Vertex or Edge, any of its sub-sequence of Gremlin API calls

cannot return a result set with an output type of Vertex or Edge.

Take 6.+ () .ℎ0B (′?4AB>=′,′ 064′, ;C (30)) as an example. We cannot

treat this query as an atomic graph traversal, since both 6.+ ()

and ℎ0B (′?4AB>=′,′ 064′, ;C (30)) can return a result set of Vertex.

Thus, we will disassemble this into two atomic graph traversals, i.e.,

6.+ () and ℎ0B (′?4AB>=′,′ 064′, ;C (30)). Note that we also consider

all the Gremlin API calls at the end of a Gremlin query to compute

Value for Vertex or Edge as the last graph traversal. For example,

we treat E0;D4B (′064′).BD<() as the last graph traversal for query

6.+ ().E0;D4B (′064′).BD<().

Algorithm 1 illustrates howwe disassemble a Gremlin query into

a sequence of atomic graph traversals. Initially, we set an atomic

graph traversal 0C><82) to an empty list (Line 2). We then extract

Gremlin API calls of the given Gremlin query & from its traversal

steps in turn (Line 3). For each Gremlin API call 0?8 , we add it

to 0C><82) (Line 6), and then check whether we can disassemble

after it (Line 7-9). Speci�cally, we check whether the output type

>DC)~?4 of 0?8 is Vertex or Edge. If yes, we get an atomic graph

traversal, and add 0C><82) to the traversal list)!8BC , and then

continue to �nd a new atomic graph traversal. After processing all

the Gremlin API calls in& , we will add 0C><82) to)!8BC if 0C><82)

is not empty (Line 11-12). Finally, we obtain the disassembled atomic

graph traversal sequence)!8BC and return it (Line 13).

According to Algorithm 1, Gremlin APIs in Vertex in Figure 3

can return a vertex list, and thus can be treated as atomic graph

traversals. For example, Gremlin API >DC+ () returns a list of outgo-

ing vertices, and thus can be treated as an atomic graph traversal.

Similarly, Gremlin APIs in Edge in Figure 3 can also be treated as

atomic graph traversals. Gremlin APIs in Filter can also be treated

1 g.V(); -- v:{1,2,3,4}

2 g.V(1,2,3,4).has('person ','age',lt(30)); -- v:{1 ,4}

3 g.V(1,4).hasLabel('person ','book'); -- v:{1 ,4}

Figure 5: The execution of the disassembled atomic graph

traversals in Figure 4 using the parameter passing strategy.

as atomic graph traversals, because they can maintain the vertex

or edge type of its previous graph traversal. For example, we can

treat ℎ0B!014; () as an atomic graph traversal.

Note that it is unnecessary to disassemble Gremlin APIs in Value.

For example, for a query E0;D4B ().2>D=C (), we could not disassemble

it into E0;D4B () and 2>D=C (). Further, we do not disassemble Gremlin

APIs in Predicate because they cannot return any vertices or edges,

and always act as parameters for �ltering operations.

3.3 Atomic Traversal Execution

For each atomic graph traversal)8 in the disassembled graph tra-

versal sequence)!8BC , we construct a Gremlin query &8 for it to

compute its intermediate result '()8 . Here, we refer to the con-

structed query as a disassembled query. To construct and execute

the disassembled query &8 for)8 , we need to �rstly retrieve the

intermediate result set '()8−1 of its previous traversal)8−1 as input.

The intermediate result '()8−1 can be a list of vertices or edges.

Note that for the start traversals 6.+ () and 6.� (), we do not need to

construct additional queries for them. To correctly and e�ectively

store and use these intermediate results, we come up with three

execution strategies, i.e., parameter passing strategy, temporary ID

table strategy, and barrier strategy. These three strategies execute

the disassembled query using di�erent Gremlin features, and can

potentially �nd more logic bugs. Our experiment in Section 4.2.3

shows that these three strategies can complement each other.

3.3.1 Parameter Passing Strategy. In this strategy, we store the

intermediate query result of an atomic graph traversal)8−1 into

an ID list 83!8BC , which is a list of vertex IDs or edge IDs. When

we compute the graph traversal)8 , we retrieve the intermediate

result from 83!8BC , and pass it as a parameter of the Gremlin API

+ (83!8BC) (obtaining vertices with a vertex ID list) or � (83!8BC)

(obtaining edges with an edge ID list) according to the output type

of)8−1. For example, as shown in Figure 5, we store the intermediate

result of the second atomic graph traversal to a vertex list {1, 4}

(Line 2). When we execute the third atomic graph traversal, we

�rst retrieve the vertex list {1, 4} and then take it as the parameter

of + (), i.e., 6.+ (1, 4). Finally, we construct a query by attaching

the third atomic graph traversal ℎ0B!014; (′?4AB>=′,′ 1>>:′) behind

6.+ (1, 4) to compute the �nal result (Line 3).

Note that when a graph traversal returns an empty list, we cannot

pass an ID list to API + () or � (). In this case, we construct a query

that returns an empty list for + () or � (). For example, we can

generate a speci�c ID that does not exist in the graph database so

that the constructed query cannot retrieve any vertex (or edge).

The parameter passing strategy can e�ectively disable complex

query assembly and optimizations, so that we can detect logic bugs

e�ciently. But this strategy is limited by the size of the parameters

in API+ () and � (), so that a large graph database is not suitable for

this strategy. For example, since JanusGraph limits the size of ID list

in + () or � () to 255, an exception will be thrown if more than 255

1699

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 // put the result v:{1 ,4} into a temporary table

2 g.addV('IDs').property('id' ,1)

3 g.addV('IDs').property('id' ,4)

4
5 // execute the third atomic graph traversal

6 g.V().hasLabel('IDs').values('id').as('vList ')

7 .V().as('V')

8 .id().as('V_ID')

9 .where('vList ',P.eq('V_ID')).select('V')

10 .hasLabel('person ','book') -- v:{1 ,4}

11
12 // drop the temporary ID table

13 g.V().hasLabel('IDs').drop()

Figure 6: The execution of the atomic graph traversal)3 in

Figure 4 using the temporary ID table strategy.

vertices or edges are returned for an atomic graph traversal. Fortu-

nately, we �nd that all the 25 detected logic bugs in our experiment

can also be triggered with a small number of graph data, i.e., at most

three vertices and two edges in a graph database. This indicates

that the limitation about the size of parameters (255) should not

a�ect the e�ectiveness of the parameter passing strategy.

3.3.2 Temporary ID Table Strategy. In this strategy, we store the

intermediate result to a temporary table. Speci�cally, we �rst extract

an ID list 83!8BC from the intermediate result '()8−1 of)8−1, and

then store each ID in 83!8BC to a newly created vertex in the graph

database. Thus, we can get a list of newly created vertices E!8BC to

store the ID list 83!8BC of '()8−1 . Speci�cally, each vertex in E!8BC

has a label ‘IDs’ with a property 83 to store an ID in 83!8BC . When

we execute the graph traversal)8 , we construct a query to retrieve

the result set of)8−1 with the help of E!8BC and then execute)8 .

After we consume these vertices, we will delete them.

As shown in Figure 6, we take the execution of the third atomic

graph traversal ℎ0B!014; (′?4AB>=′,′ 1>>:′) ()3 in Figure 4) as an

example. After we obtain the result set E :{1, 4} of the second atomic

graph traversal)2, we store their vertex IDs into a table with label

‘IDs’ (Line 2-3). Note that label ‘IDs’ can only be used in this part,

and cannot be used in graph database generation and Gremlin query

generation (Section 3.1). Next, we �rst query the vertex list E!8BC

(Line 6), and then retrieve vertices whose IDs are in the vertex list

E!8BC from all vertices in the graph database (Line 7-9). After that,

we execute)3 to compute its result set E :{1, 4} (Line 10). Finally, we

remove the created vertices (Line 13).

Since the graph database generator does not generate vertices

or edges whose label is ‘IDs’ to a randomly generated database, the

newly created vertices do not a�ect the correctness of our approach.

Although we construct a complex Gremlin query to retrieve the

intermediate results, we can still break down the assembly of the

original Gremlin query.

This strategy can avoid the disadvantages of parameter passing

strategy, e.g., the limited size of the parameters in Gremlin API

+ () and � (). Furthermore, the idea of storing the intermediate

result to a temporary table can be commonly used in other database

systems, e.g., it can be extended to disassemble SQL queries in

relational database systems (Section 5). However, for this strategy,

we must spend more time to test target GDBs, because it needs

more operations to store or drop the intermediate results in the

graph database. Besides, since we introduce extra atomic graph

traversals to retrieve and use the intermediate results, bugs related

to these traversals might be missed.

1 g.V().barrier ().has('person ','age',lt(30)).barrier ().

hasLabel('person ','book'); -- v:{1 ,4}

Figure 7: The execution of the disassembled atomic graph

traversals in Figure 4 using the barrier strategy.

3.3.3 Barrier Strategy. The core insight of this strategy is that the

Gremlin API10AA84A () can turn the lazy pipeline of a Gremlin query

into a bulk-synchronous pipeline. This indicates that the graph

traversals prior to a 10AA84A () operation need to be executed before

moving onto the graph traversals after the 10AA84A () operation.

Therefore, when we append a 10AA84A () operation after atomic

graph traversal)8−1, the assembly of)8−1 and)8 in the original

Gremlin query can be disabled by the10AA84A () operation. Note that

we do not need to append a10AA84A () operation after the last atomic

graph traversal. For example, in Figure 7, we �rst append 10AA84A ()

operations after the �rst and second atomic graph traversals to

construct the disassembled query, and then execute it to compute

the result set of the disassembled atomic graph traversal sequence.

Although this strategy can disable Gremlin API assembly and

prevent some optimizations from kicking in, it introduces bulk op-

eration and bulk optimization (when repeatedly touching many

of the same elements, 10AA84A () operations can only execute this

element once) itself. As such, this strategy cannot disable more com-

plex query assembly and optimizations as the other two execution

strategies do, so that some logic bugs may be omitted. However,

we �nd that one bug detected in our experiment by this strategy

cannot be detected by the other two strategies. This indicates that

the barrier strategy can complement the other two strategies.

4 Evaluation

We implement QuDi on Grand [64] with around 1000 lines of Java

code. Furthermore, we add some general GremlinAPIs, e.g., B0<?;4 ()

and 10AA84A (), to the traversal model used in Grand and add some

GDB-speci�c features, e.g., creating graph indexes for properties.

We modify the Gremlin query generation algorithm used in Grand

by appending Gremlin traversal steps instead of String values to a

Gremlin traversal source 6. Therefore, we can easily disassemble

Gremlin queries based on the assembly Gremlin traversal steps.

To evaluate the e�ectiveness of our approach, we apply QuDi on

six representative Gremlin-based GDBs and investigate the follow-

ing three research questions:

• RQ1: How e�ective is QuDi in detecting logic bugs in real-world

GDBs?

• RQ2: How do the proposed three execution strategies in QuDi

perform in detecting logic bugs?

• RQ3: How does QuDi compare with the existing state-of-the-art

approaches in bug detection capability?

We �rst introduce our experimental methodology (Section 4.1).

Then, we elaborate an overview of found bugs (Section 4.2) and

comparisons to existing approaches (Section 4.3). Finally, we discuss

some interesting bugs we discovered in detail (Section 4.4).

4.1 Methodology

Target GDBs.We evaluate QuDi on six widely-used Gremlin-based

GDBs, i.e., Neo4j [12], OrientDB [16], JanusGraph [8], HugeGraph

[6], TinkerGraph [22], and ArcadeDB [14]. Table 1 shows their

1700

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Target GDBs

GDB Ranking GitHub Stars Initial Release

Neo4j 1 12.4k 2007

OrientDB 6 4.7k 2010

JanusGraph 12 5.1k 2017

HugeGraph 33 2.5k 2018

TinkerGraph 34 1.9k 2009

ArcadeDB 37 434 2021

basic information, including DB-Engines Ranking of GDBs [3],

GitHub stars, and initial release date, which indicate that they are

all important and popular GDBs.

Among the six GDBs, four (i.e., Neo4j, JanusGraph, HugeGraph,

and TinkerGraph) only support the graph model, and the remaining

two target GDBs, i.e., OrientDB and ArcadeDB, support multiple

data models, e.g., document, graph, and key-value models. Fur-

thermore, these GDBs support Gremlin APIs in di�erent ways.

We access Neo4j through the Neo4j-Gremlin plugin [13], which is

provided by Apache TinkerPop1. JanusGraph, HugeGraph, and Tin-

kerGraph encapsulate a Gremlin server in their own servers. They

apply some special optimizations and can also natively use Grem-

lin to query graph data. OrientDB and ArcadeDB implement their

own TinkerPop3 interfaces, so that they can use Gremlin to query

graph data. Thus, the six GDBs used in our experiments can cover

di�erent kinds of Gremlin-based GDBs and are representative.

We test the latest release versions of these GDBs when we

start this work, i.e., Neo4j 3.4.11 (with the latest release version

Neo4j-Gremlin 3.6.1), OrientDB 3.2.10, JanusGraph 0.6.2, Huge-

Graph 0.12.0, TinkerGraph 3.6.1, and ArcadeDB 22.8.1.

Testing methodology. We run QuDi to test each target GDB

with each execution strategy (i.e., parameter passing strategy, tem-

porary ID table strategy, and barrier strategy) in 10 testing rounds.

In each testing round, a graph database with at most 50 vertices and

100 edges is randomly created for a target GDB, and 1,000 Gremlin

queries are randomly generated as original queries. Note that our

approach can be applied to �nd bugs involving large graph data, e.g.,

5,000 vertices and 10,000 edges. However, the parameter passing

strategy cannot be used for large graph data (e.g., more than 255

vertices or edges). Thus, we only generate at most 50 vertices and

100 edges to make sure that all of our three execution strategies

can work. All the numbers (i.e., 50 vertices, 100 edges, and 1,000

Gremlin queries) are con�gurable.

Simplify test cases. For each reported logic bug, we manually

reduce the test case to a smaller one so that we can easily understand

and diagnose the bug. Themanual reduction is conducted as follows.

(1) We remove the last unchecked traversal step in the original

query, and check whether the same bug can be still triggered by

the simpler test case. (2) If the bug can still be triggered, we have

obtained a simpler test case. We will continue step (1) on the simpler

test case for further reduction. (3) If the bug cannot be triggered,

we will continue step (1) on the original test case. (4) We continue

the above steps until we �nd a manageable and simpler test case.

Deduplicate test cases. For a simpli�ed test case, we manually

analyze its query pattern and bug consequences, and check whether

it occurs in previous test cases. If yes, we consider it as a duplicate

1We can test Neo4j and the Neo4j-Gremlin plugin at the same time.

test case and discard it. Otherwise, we further check whether its

possible root cause occurs in previous test cases. If yes, we also con-

sider it as a duplicate test case. For example, we detect an issue that

throws an exception 2><.1083D.ℎD646A0?ℎ.102:4=3.83.�3 when ex-

ecuting the simpli�ed query 6.+ () .>DC� (4;1, 4;2) .ℎ0B (′4?1′). We

analyze its root cause by trying to �nd which query pattern trig-

gers this exception. In this example, we �nd that ℎ0B () cannot be

queried after >DC� () with multiple labels in >DC� (), the graph pat-

tern >DC� (4;1, 4;2).ℎ0B (′4?1′) triggers the exception. After that, if

we �nd a simpli�ed test case that contains >DC� (0, 1).ℎ0B () and

throws an exception 2><.1083D.ℎD646A0?ℎ.102:4=3.83.�3 , then we

consider it as a duplicate. Finally, we submit unique issues to the

corresponding community on GitHub.

4.2 Detected Bugs

4.2.1 Bug Overview. We obtain 3,047 bug reports in the six tested

GDBs, which may be potential logic bugs. Speci�cally, there are 8,

20, 265, 2490, 87, and 177 bug reports in Neo4j, OrientDB, Janus-

Graph, HugeGraph, TinkerGraph, and ArcadeDB, respectively. We

carefully reproduce and analyze test cases in these 3,047 bug reports,

and deduplicate these test cases according to their query patterns

or root causes (Section 4.1). Finally, we obtain 25 unique real-world

logic bugs in the six target Gremlin-based GDBs. Table 2 shows the

overall bug statistics.

At the time of writing this paper, out of the 25 detected bugs,

17 logic bugs have been con�rmed by developers. Among these 17

con�rmed bugs, 10 logic bugs are classi�ed as previously-unknown

bugs and 7 logic bugs are considered as duplicate to existing bug

reports. For the 7 duplicate bugs, we generate di�erent test cases

that are di�erent from ones in the existing bug reports. For now, 8

out of the 17 con�rmed bugs have been �xed by GDB developers.

2 logic bugs are considered as intended by GDB developers. The

remaining 6 logic bugs have not been con�rmed yet.

Note that inNeo4j, we detect one logic bug. However, we carefully

investigate it and �nd that this bug is caused by the Neo4j-Gremlin

plugin instead of Neo4j itself. We further �nd that this bug is similar

to the bug report we have submitted to the TinkerPop community

earlier. Therefore, we do not generate a new bug report for it and

do not count it in Table 2.

Intended bugs. One intended bug OrientDB#9885 is introduced

because OrientDB forgets to throw an exception when sorting

vertices or edges for a not existing property. Although OrientDB

developers explained that OrientDB can return #*!! when access-

ing a not existing property, we still think it is a true bug because

OrientDB sometimes does not return #*!!. In another intended

bug HugeGraph#1966, HugeGraph returns an incorrect query re-

sult when querying vertices or edges by �ltering properties using

=>C (4@()). HugeGraph developers explained that HugeGraph does

not support not-eq index queries now. Nevertheless, HugeGraph

developers still plan to improve it in the future.

QuDi can e�ectively detect logic bugs, i.e., 10 out of 25 detected

logic bugs have been con�rmed as previously-unknown bugs.

4.2.2 Bug Analysis. We analyze logic bugs detected by QuDi in the

following two aspects, i.e., bug categories and bug consequences,

1701

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

Table 2: Logic Bugs Detected by QuDi

Detected Bugs Execution Strategies
GDB

Detected New Duplicate Intended Uncon�rmed
Fixed

ParaPass TempID Barrier

Neo4j 0 0 0 0 0 0 0 0 0
OrientDB 3 1 1 1 0 1 2 3 3
JanusGraph 3 2 0 0 1 0 3 2 1
HugeGraph 16 6 4 1 5 4 15 12 11
TinkerGraph 1 0 1 0 0 1 1 1 0
ArcadeDB 2 1 1 0 0 2 2 2 2
Total 25 10 7 2 6 8 23 20 17

to give an intuition of whether these logic bugs can seriously a�ect

the reliability of GDBs.

Bug categories. Among these 17 con�rmed logic bugs, 6 logic

bugs are caused by incorrect implementations of atomic graph tra-

versals, in which the related atomic graph traversals return incor-

rect results. For example, in HugeGraph#1946, HugeGraph cannot

support � (83!8BC) correctly when its parameter contains duplicate

edge IDs. 11 bugs are caused by incorrect implementations of the

assembly of atomic graph traversals (e.g., Figure 1). In these bugs,

all their used atomic graph traversals can return correct results,

but the assembly of the used atomic graph traversals returns an

incorrect result. Among these 11 bugs, 3 bugs are related to the

incorrect query optimizations of related assembly of atomic graph

traversals. For example, in TinkerGraph#2812, TinkerGraph returns

a wrong result for >A34A ().1~ (′?A>?′).2>D=C () because its optimiza-

tion mechanisms cannot properly process 2>D=C () operation.

Note that we can �nd logic bugs caused by the incorrect im-

plementations and optimizations because QuDi can prevent some

optimization strategies from kicking in by disassembling a complex

Gremlin query into atomic graph traversals. Furthermore, we can

also potentially detect logic bugs caused by incorrect implemen-

tations in atomic graph traversals. If an atomic graph traversal is

incorrectly implemented, but a Gremlin query that contains this

atomic graph traversal returns a correct result, QuDi can also iden-

tify the inconsistency and detect a logic bug.

Bug consequences. We summarize the 25 logic bugs into three

categories according to their bug consequences, i.e., incorrect query

result, lacking exception, and unexpected exception2. Table 3 shows

the detailed information. Speci�cally, incorrect query result means

the two compared results are not equal, and one of them is incorrect.

9 bugs belong to this category, including 4 previously-unknown

bugs (one has been �xed), 3 duplicate bugs (two of them have been

�xed) and two uncon�rmed bugs. Lacking exception means that a

Gremlin query should throw an exception (e.g., NumberFormatEx-

ception) but returns a query result instead. 5 bugs are related to

it, including 2 previously-unknown bugs (one has been �xed), one

intended bug, and two uncon�rmed bugs. These 14 bugs that cause

incorrect query result and lacking exception can easily go unnoticed

by developers because no exception or warning is thrown.

The remaining 11 bugs belong to unexpected exception, each

of which returns an unexpected exception for a valid query, but

they should not. In this case, users cannot get their expected re-

sults correctly. 8 out of 11 bugs have been con�rmed, including

4 previously-unknown bugs (two of them have been �xed). Note

2We consider lacking exception and unexpected exception as logic bugs since they can
return the incorrect results without crashing the GDBs.

Table 3: Bug Consequences

GDB
Incorrect Lacking Unexpected

Query Result Exception Exception

Neo4j 0 0 0

OrientDB 0 1 2

JanusGraph 2 0 1

HugeGraph 4 4 8

TinkerGraph 1 0 0

ArcadeDB 2 0 0

Total 9 5 11

that all these bugs return commonly-thrown exceptions, e.g., Il-

legalArgumentException, NumberFormatException, NoIndexEx-

ception, and IllegalStateException, which can also be returned by

invalid queries. Thus, these bugs are also easily ignored by GDB

developers and omitted by the existing GDB testing techniques.

Logic bugs detected by QuDi can lead to incorrect query results,

lacking exceptions, and unexpected exceptions, which can easily

go unnoticed by GDB developers.

4.2.3 Execution Strategies Comparison. We design three execution

strategies, i.e., parameter passing strategy (ParaPass for short),

temporary ID table strategy (TempID for short), and barrier strategy

(Barrier for short) for storing and using intermediate results of a

sequence of atomic graph traversals, aiming at �nding more logic

bugs using di�erent Gremlin features.

We count the logic bugs found by di�erent execution strategies

in the six target GDBs. Speci�cally, once we �nd a logic bug using

an execution strategy, we will manually analyze whether the other

two execution strategies can also detect it with this bug report. As

shown in Table 2, almost all (23/25) bugs can be found by ParaPass,

most (20/25) bugs can be detected by TempID, and 17 bugs can be

found by Barrier. ParaPass and TempID can �nd more bugs than

Barrier because they can disable atomic graph traversal assembly

more thoroughly by storing vertex (edge) ID list into an array list

or a temporary table. However, Barrier does not really store these

intermediate results, and executes each atomic graph traversal by

appending a 10AA84A () operation after this atomic graph traversal,

which can a�ect the bug detection capability of Barrier.

We further analyze the necessary of these three execution strate-

gies. As shown in Figure 8, according to the special Gremlin features,

ParaPass and Barrier can �nd four and one new bugs that other

two execution strategies cannot detect, respectively. Speci�cally,

four bugs only detected by ParaPass are all triggered by passing the

intermediate results as a parameter of the Gremlin API+ (83!8BC) or

� (83!8BC), which cannot be used in other two execution strategies.

One bug only detected by Barrier is triggered by the feature of

1702

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

%0A0%0BB �0AA84A

)4<?��

4 1

0

0

4 1
15

Figure 8: Venn diagram of the logic bugs detected by our three

execution strategies.

API 10AA84A (). TempID can �nd some logic bugs that are common to

ParaPass and Barrier. However, TempID is a general strategy that

can be potentially applied to test other database systems (Section 5),

and can also work with large graph data. Overall, since these three

execution strategies construct and execute the disassembled query

using di�erent Gremlin features, they have di�erent bug detection

capabilities, and thus do not detect exactly the same bugs. Thus,

our three execution strategies can complement each other.

Our three execution strategies can cover di�erent Gremlin features

and complement each other, thus detecting more logic bugs.

4.3 Comparing with Existing Approaches

Four related approaches, i.e., Grand [64], GDsmith [39], RD2 [62],

and GDBMeter [42], can �nd bugs in GDBs. Speci�cally, Grand,

GDsmith, and RD2 utilize di�erential testing [49] to reveal discrep-

ancies among multiple target GDBs. GDBMeter utilizes Ternary

Logic Partitioning (TLP), an invariant of query partitioning [52],

to reveal logic bugs in a target GDB. Therefore, we compare QuDi

with di�erential testing and query partitioning. Note that we cannot

compare QuDi with relational database testing tools, e.g., SQLancer

[51–53], since QuDi and SQLancer target di�erent types of database

systems, which utilize di�erent query languages (Gremlin vs. SQL)

and data models (graph model vs. relational model).

Comparison with di�erential testing. Di�erential testing

(e.g., Grand) requires more than one target GDB as input. If a Grem-

lin feature is not supported by all target GDBs, di�erential testing

will not be able to apply on this feature. Thus, di�erential testing

can only be used to test common features in the target GDBs. We

can encounter the following cases in di�erential testing.

• C1: At least two GDBs can return inconsistent results, then

di�erential testing reports a bug.

• C2: All GDBs return the same wrong results, then di�erential

testing can miss a bug.

• C3: All GDBs return the same results. However, some GDBs are

expected to return inconsistent results according to their special

semantics. In this case, di�erential testing can miss a bug.

• C4: At least two GDBs can return inconsistent results. However,

the inconsistency is caused by target GDBs’ special semantics.

In this case, di�erential testing can report a false positive.

Based on the above discussion, QuDi has the following advan-

tages over di�erential testing. (1) QuDi can detect bugs based on

an individual GDB. (2) QuDi can test Gremlin features that are

supported by only one GDB. (3) QuDi is used to detect internal

inconsistencies in an individual GDB, and will not encounter C3

and C4.

To compare QuDiwith di�erential testing, we �rst verify whether

di�erential testing in Grand can detect the 25 logic bugs detected by

QuDi. We run each test case in our 25 bug reports on our six target

GDBs and verify whether their query results are the same. Any

discrepancy among their query results will be considered as a logic

bug detected by Grand. We �nd that, Grand can detect 19 logic bugs

that QuDi �nd, but cannot detect the remaining 6 bugs. Besides,

Grand reports 2 false positives because the buggy GDBs return

di�erent query results from the other GDBs but their behaviors are

expected due to the GDBs’ special semantics.

Note that it is reasonable that Grand can detect many logic bugs

that QuDi can detect, since Grand use multiple GDBs as reference

implementations. It is interesting to know how e�ective QuDi is in

revealing logic bugs detected by Grand. We further verify whether

QuDi can detect the 21 logic bugs reported by Grand. Speci�cally,

for an original Gremlin query that triggers a bug in these 21 bug

reports, we disassemble it into atomic graph traversals and verify

whether they can compute di�erent query results as the original

query. If yes, we consider that QuDi can detect the logic bug. We

�nd that, QuDi can �nd 16 (76%) logic bugs detected by Grand. QuDi

misses the remaining 5 bugs because their original queries and the

corresponding disassembled queries return the same wrong results.

This result indicates that QuDi has the capability to detect most logic

bugs detected by Grand without su�ering from Grand’s drawbacks,

e.g., multiple GDBs as input and false positives.

Comparison with query partitioning. In query partitioning

(e.g., GDBMeter), a given query & can derive multiple disjoint sub-

queries (e.g., &
′

?=)'*�
, &
′

?=��!(�
, and &

′

? 8B #*!!
based on a ran-

dom predicate ? in TLP). These individual partitions are composed

to obtain a result set '(& ′ , which should be equal to '(& . How-

ever, query partitioning cannot prevent GDB optimizations from

kicking in and reveal assembly issues in GDBs, so that it can hardly

detect logic bugs that are caused by incorrect implementations and

optimizations of the assembly of atomic graph traversals, and our

query disassembling is complementary to query partitioning.

We �rst verify whether query partitioning in GDBMeter can

detect the 25 logic bugs detected by QuDi. For each test case in our

25 bug reports, we try to construct disjoint sub-queries according

to the TLP oracle and check whether these disjoint sub-queries can

report an inconsistency. We �nd that, only 6 bugs detected by QuDi

can be found by GDBMeter theoretically. Among these six bugs, 5

bugs are identi�ed by unexpected exceptions in disjoint sub-queries

and the remaining one is identi�ed by incorrect query results. The

remaining 19 bugs could not be detected by GDBMeter because the

original queries in these test cases can compute the same wrong

query results as the union query results of their disjoint sub-queries.

We further verify whether QuDi can detect the 3 logic bugs

reported by GDBMeter in JanusGraph, which adopt Gremlin as the

query language.We ignore the other 36 bugs reported by GDBMeter

since their test cases use Cypher queries, which we do not support

for now. We try to run each test case in these 3 bug reports via QuDi,

and check whether QuDi can reveal them. However, 2 of 3 bugs are

internal errors that are triggered by query generation instead of

the test oracles (e.g., query partitioning and query disassembling).

1703

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

1 v1 = g.addV('vL').next();

2 v2 = g.addV('vL').next();

3 e1 = g.addE('eL').from(v1).to(v2).next();

4 g.E(e1).property('p', new Float (0.94461));

5
6 // original query

7 g.E().has('p', 0.94461); -- e:{1} ✘

8
9 // disassembled queries

10 g.E(); -- e:{1}

11 g.E(1).has('p', 0.94461); -- {} ✔

Figure 9: JanusGraph inconsistently retrieves properties

without explicit data type in JanusGraph#3200.

1 v1 = g.addV('vL').property('p0', 1).next();

2 v2 = g.addV('vL').property('p1', 2).next();

3
4 // original query

5 g.V().order ().by('p0'); -- {The property does not exist as

the key has no associated value for the provided

element v[2]:p0.} ✘

6
7 // disassembled queries

8 g.V(); -- v:{1, 2}

9 g.V(1,2).order ().by('p0'); -- v:{1 ,2} ✘

Figure 10: JanusGraph incorrectly sorts vertices with proper-

ties in JanusGraph#3216 and JanusGraph#3269.

Since we cannot reproduce the remaining one bug, we do not know

whether QuDi can reveal it.

QuDi can �nd new bugs that existing approaches cannot detect.

QuDi also has the capability to detect most (76%) logic bugs de-

tected by Grand without su�ering from Grand’s drawbacks.

4.4 Selected Interesting Bugs

We explain some interesting bugs found by QuDi to give an intuition

of what kinds of bugs can be found via QuDi.

Inconsistent handling of data types. JanusGraph su�ers from

inconsistent behaviors when querying properties without giving

explicit data types. As shown in Figure 9, we �rst create two vertices

and one edge (Line 1-3). We then add a property ? with a value

0.94461 whose type is �;>0C to edge 4:1 (Line 4). When we query

edges by �ltering ? = 0.94461, we can retrieve edge 4:1 with the

original query of Line 7. However, when we disassemble it into two

atomic graph traversals 6.� () and ℎ0B (′?′, 0.94461) (Line 10-11), an

empty set is returned, which is inconsistent with the result of the

original query. JanusGraph developers have con�rmed this bug and

are trying to investigate the root cause of this issue.

Incorrect handling of order() operation.We �nd two bugs

where JanusGraph mistakenly sorts vertices or edges with prop-

erties using >A34A ().1~ (). As shown in Figure 10, two vertices E :1

and E :2 are created with property ?0 and ?1, respectively (Line 1-2).

When we sort vertices with property ?0 (Line 5), an exception is

thrown because vertex E :2 does not have a property ?0. But we can

get a result set E :{1, 2} for the disassembled query (Line 9). For the

bug triggered by the original query, JanusGraph developers think

they should �lter vertices based on property ?0 instead of throw-

ing an exception. The disassembled query triggers another bug, in

which the expected result is E :{1} instead of E :{1, 2}. Although this

bug has not been con�rmed, we still believe it is a true bug.

1 v1 = new Vertex('vL');

2 v2 = new Vertex('vL');

3 v3 = new Vertex('vL');

4 e1 = v1.addEdge('eL', v2);

5 e2 = v1.addEdge('eL', v3);

6
7 // original query

8 g.V().bothE ().count (); -- 4 ✔

9
10 // disassembled queries

11 g.V(); -- v:{1,2,3}

12 g.V(1,2,3).bothE (); -- e:{1,2,1,2}

13 g.E(1,2,1,2).count (); -- 2 ✘

Figure 11: HugeGraph retrieves wrongly edges when � ()’s

parameter contains duplicate edge IDs in HugeGraph#1946.

1 // original query

2 MATCH (p:Person) -[:Write]-> (b1:Book), (p) -[:Read]->(b2:Book

) RETURN b2 // -- {}

3
4 // disassembled queries

5 MATCH (p:Person) -[:Write]-> (b1:Book) RETURN p.id //--v:{1}

6 MATCH (p:Person) -[:Read]->(b2:Book) WHERE p.id=1 RETURN b2

// --{}

Figure 12: An example of extending QuDi to Cypher query

language.

Incorrect handling of E() operation. Figure 11 shows an ex-

ample of the incorrect implementation of Gremlin API � () in Huge-

Graph. In this test case, we create three vertices (i.e., E :1, E :2, and

E :3) and two edges (i.e., 4 :1 and 4 :2) (Line 1-5). We want to count the

number of the incoming and outgoing edges of all vertices (Line 8).

The expected result is 4 because each edge is retrieved twice. How-

ever, when we execute the disassembled query of Line 13, a wrong

result 2 is returned. Specially, the query 6.� (1, 2, 1, 2) returns an

edge list 4 :{1, 2} instead of 4 :{1, 2, 1, 2}, which causes the incorrect

result. HugeGraph developers have con�rmed this bug.

5 Discussion

Generalizing QuDi to other database systems. By disassembling

a complex query into multiple atomic queries, we can prevent some

optimizations from kicking in, thus revealing logic bugs caused by

the assembly of atomic queries and related optimizations. In this

paper, we apply the idea of query disassembling only on Gremlin-

based GDBs. However, query disassembling is a general idea, and

can be potentially applicable on other database systems.

First, some other graph query languages, e.g., Cypher [24] and

SPARQL [18], adopt the same philosophy as Gremlin (construct-

ing a subgraph through a graph traversal model) to query GDBs.

Therefore, we can also disassemble graph queries written in these

graph query languages into multiple atomic queries through query

disassembling. Figure 12 shows such an example, in which we dis-

assemble a Cypher query (Line 2) into a sequence of atomic queries

(Line 5-6) using query disassembling. Therefore, we can extend

QuDi on those GDBs that support other graph query languages.

Second, query disassembling can also be applied to disassemble

sub-queries and joins of SQL queries in relational database systems.

As shown in Figure 13, we can disassemble the SQL query (Line 2)

into two atomic queries. Speci�cally, one atomic query executes

the sub-query (SELECT c1, c2 FROM t1) and stores its query results

into a newly created table C2 (Line 5) and the other atomic query

1704

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

1 // original query

2 SELECT c1 FROM (SELECT c1 , c2 FROM t1);

3
4 // disassembled queries

5 CREATE TABLE t2 AS SELECT c1 , c2 FROM t1;

6 SELECT c1 FROM t2;

Figure 13: An example of extending QuDi to SQL queries in

relational database systems.

searches 21 from the newly created table C2 (Line 6). Thus, QuDi

can also help to test relational database systems.

Limitations. Three kinds of bugs cannot be found by QuDi. First,

QuDi cannot detect bugs in the Gremlin query APIs (e.g., ?0Cℎ()

and CA44 ()), whose outputs are a�ected by the entire execution of

a Gremlin query. Second, QuDi cannot detect bugs in the Gremlin

APIs related to vertex computations in Gremlin, such as ?064'0=: ()

and Bℎ>AC4BC%0Cℎ(). These APIs perform more complex operations,

which cannot be disassembled directly. Third, If the original query

and its disassembled queries retrieve the same wrong query result,

QuDi cannot detect it.

Threats to validity. First, we evaluate QuDi on six Gremlin-

based GDBs. These GDBs rank on the top of GDB popularity, and

all of them are well maintained. Thus, we believe they are repre-

sentative for Gremlin-based GDBs. Second, we manually reproduce

and deduplicate bug reports, which may introduce human errors. To

alleviate this threat, three authors study all reported bugs carefully

and reach a consensus for them. Third, the comparisons between

QuDi and the closest-related works are also threats. Although we

do not compare QuDiwith GDBMeter by actual evaluation, we have

made a careful analysis for them.

6 Related Work

Di�erential testing. Di�erential testing [49] is a common ap-

proach for �nding bugs in several research domains [29, 49, 55, 61,

64]. Some approaches [30, 41, 46, 55] have been proposed to test

relational database systems via di�erential testing. For example,

APOLLO [41] detects performance regression bugs with di�eren-

tial testing. DT2 [30] utilizes di�erential testing to �nd transaction

bugs in relational database systems. To test GDBs, Grand [64], GD-

smith [39], and RD2 [60] utilize di�erential testing to �nd logic

bugs in multiple GDBs with Gremlin, Cypher, and SPARQL query

languages, respectively. However, di�erential testing cannot pro-

vide a testing oracle for a target GDB, and can miss logic bugs and

encounter false positives due to target GDBs’ special semantics.

Metamorphic testing. Metamorphic testing [48] aims to ad-

dress the test oracle problem [28] by mutating test cases according

to metamorphic relations. Some metamorphic testing approaches

[37, 51, 52, 56, 57] for �nding bugs in relational database systems

have been proposed. For example, query partitioning [52] derives

a given query to multiple disjoint sub-queries, in which the result

of the given query is the same as the combination result of dis-

joint sub-queries. NoREC [51] transforms an optimized SQL query

to a non-optimized SQL query, and can �nd optimization bugs in

relational database systems. However, all the above approaches

target database systems with declarative SQL query language. They

cannot e�ectively test Gremlin-based GDBs because Gremlin and

SQL have totally di�erent syntaxes and query patterns.

To test GDBs, GDBMeter [42] derives a graph query into three

disjoint sub-queries by randomly generating a predicate, which

mainly focuses on predicate-related bugs. Gamera [65] designs

three types of graph-aware metamorphic relations, which can be

used to generate diverse and complex graph queries, and then re-

veal logic bugs in GDBs. Mang et al. [47] propose equivalent query

rewriting (EQR), which rewrites a graph query into equivalent

graph queries that trigger distinct query plans, to detect bugs in

GDBs. Given a graph query & , GraphGenie [40] derives a mutated

graph querywhose query result set is either semantically equivalent

to the result set of& or constitutes a subset or superset of the result

set of & , depending on the mutation applied. DOT [63] can detect

optimization bugs by testing a graph query with two di�erent opti-

mization con�gurations. However, these approaches cannot reveal

assembly issues in GDBs. Our approach proposes a new metamor-

phic rule to detect logic bugs related to incorrect implementations

and optimizations of the assembly of atomic graph traversals. Thus,

our approach is complementary to these approaches.

Other testing approaches of relational database systems.

SQLsmith [19] can test relational database systems by randomly

generating SQL queries. The generic fuzzing tools (e.g., AFL [1])

can also be used to test relational database systems. ADUSA [43,

44] uses a relational constraint solver, Alloy [2], to generate the

expected result of a given SQL query. PQS [53] tests the correctness

of relational database systems by randomly selecting a pivot row

and generating random SQL queries that contain the selected row.

QPG [27] can improve testing e�ciency by exploring a variety

of unique query plans. Troc [34] detects transaction bugs [31] by

inferring the expected results of concurrent transaction executions.

However, these approaches cannot be directly applied to test GDBs.

7 Conclusion

Buggy implementations and optimizations of Gremlin-based graph

database systems can introduce logic bugs, which can lead to se-

vere consequences, e.g., incorrect query results. In this paper, we

propose query disassembling (QuDi) to reveal logic bugs in graph

database systems by disassembling a complex Gremlin query into

an equivalent atomic graph traversal sequence. We evaluate QuDi

on six widely-used graph database systems, and have detected 25

unique logic bugs, 10 of which are previously-unknown bugs. We

expect that the e�ectiveness and generality of our technique can

greatly improve the robustness of graph database systems and other

database systems.

8 Data Availability

The source code of QuDi is available at Zenodo [20].

Acknowledgments

Wewould like to thank the anonymous reviewers for their thorough

and insightful comments. This work was partially supported by

National Natural Science Foundation of China (62072444, 62302493),

Major Project of ISCAS (ISCAS-ZD-202302), Major Program (JD)

of Hubei Province (2023BAA018), Youth Innovation Promotion

Association at Chinese Academy of Sciences (Y2022044, 2023121),

and Guangdong Power grid limited liability company under Project

037800KC23090006.

1705

ISSTA ’24, September 16–20, 2024, Vienna, Austria Y. Zheng, W. Dou, L. Tang, Z. Cui, Y. Gao, J. Song, L. Xu, J. Zhu, W. Wang, J. Wei, H. Zhong, and T. Huang

References
[1] 2024. AFL. https://github.com/google/AFL.
[2] 2024. Alloy. https://alloytools.org/.
[3] 2024. DB-Engines Ranking of Graph DBMS. https://db-engines.com/en/ranking/

graph+dbms.
[4] 2024. Gremlin Query Language. https://tinkerpop.apache.org/gremlin.html.
[5] 2024. Gremlin Traversal Strategy. https://tinkerpop.apache.org/docs/3.5.2/.
[6] 2024. HugeGraph. https://hugegraph.github.io/hugegraph-doc/.
[7] 2024. Introducing the new Cypher Query Optimizer. https://neo4j.com/blog/

introducing-new-cypher-query-optimizer/.
[8] 2024. JanusGraph. https://janusgraph.org.
[9] 2024. MariaDB. https://mariadb.org.
[10] 2024. MySQL. https://www.mysql.com.
[11] 2024. Nebula Graph Query Language (nGQL). https://docs.nebula-graph.io/2.0.

1/3.ngql-guide/1.nGQL-overview/1.overview/.
[12] 2024. Neo4j. https://neo4j.com/.
[13] 2024. Neo4j-Gremlin. https://github.com/thinkaurelius/neo4j-gremlin-plugin.
[14] 2024. The Next Generation Multi-Model Database Supporting Graphs Key/Value,

Documents and Time-Series. https://arcadedb.com/.
[15] 2024. Open Source, Distributed, Scalable, Lightning Fast. https://nebula-graph.

io/.
[16] 2024. OrientDB. https://orientdb.org.
[17] 2024. PostgreSQL. https://www.postgresql.org.
[18] 2024. SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query/.
[19] 2024. SQLsmith. https://github.com/anse1/sqlsmith.
[20] 2024. Testing Gremlin-Based Graph Database Systems via Query Disassembling.

Retrieved July 18, 2024 from https://doi.org/10.5281/zenodo.12771889
[21] 2024. TiDB, PingCAP. https://pingcap.com.
[22] 2024. TinkerGraph. https://github.com/tinkerpop/blueprints/wiki/tinkergraph.
[23] 2024. TinkerPop. https://tinkerpop.apache.org/.
[24] 2024. What is openCypher? http://www.opencypher.org/.
[25] Renzo Angles, Juan L. Reutter, and Hannes Voigt. 2019. Graph Query Languages.

In Encyclopedia of Big Data Technologies, Sherif Sakr and Albert Y. Zomaya (Eds.).
[26] Marcelo Arenas, Claudio Gutiérrez, and Juan F. Sequeda. 2021. Querying in

the Age of Graph Databases and Knowledge Graphs. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD). 2821–2828.
https://doi.org/10.1145/3448016.3457545

[27] Jinsheng Ba and Manuel Rigger. 2023. Testing Database Engines via Query
Plan Guidance. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). 2060–2071. https://doi.org/10.1109/ICSE48619.2023.00174

[28] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo.
2015. The Oracle Problem in Software Testing: A Survey. IEEE Trans. Software
Eng. 41, 5 (2015), 507–525.

[29] Sha�ul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant Gawsane,
Taylor T. Johnson, and Christoph Csallner. 2018. Automatically Finding Bugs in
a Commercial Cyber-Physical System Development Tool Chain with SLforge. In
Proceedings of International Conference on Software Engineering (ICSE). 981–992.
https://doi.org/10.1145/3180155.3180231

[30] Ziyu Cui, Wensheng Dou, Qianwang Dai, Jiansen Song, Wei Wang, Jun Wei, and
Dan Ye. 2022. Di�erentially Testing Database Transactions for Fun and Pro�t. In
Proceedings of International Conference on Automated Software Engineering (ASE).
35:1–35:12. https://doi.org/10.1145/3551349.3556924

[31] Ziyu Cui, Wensheng Dou, Yu Gao, Dong Wang, Jiansen Song, Yingying Zheng,
Tao Wang, Rui Yang, Kang Xu, Yixin Hu, Jun Wei, and Tao Huang. 2024. Un-
derstanding Transaction Bugs in Database Systems. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering (ICSE). 163:1–163:13.
https://doi.org/10.1145/3597503.3639207

[32] Alin Deutsch. 2018. Querying Graph Databases with the GSQL Query Language.
In Proceedings of Simpósio Brasileiro de Banco de Dados (SBBD). 313.

[33] Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support
for Modern Graph Analytics in TigerGraph. In Proceedings of ACM SIGMOD
International Conference on Management of Data (SIGMOD). 377–392. https:
//doi.org/10.1145/3318464.3386144

[34] Wensheng Dou, Ziyu Cui, Qianwang Dai, Jiansen Song, Dong Wang, Yu Gao,
Wei Wang, Jun Wei, Lei Chen, Hanmo Wang, Hua Zhong, and Tao Huang. 2023.
Detecting Isolation Bugs via Transaction Oracle Construction. In Proceedings of
IEEE/ACM International Conference on Software Engineering (ICSE). 1123–1135.
https://doi.org/10.1109/ICSE48619.2023.00101

[35] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Cha�, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The
LDBC Social Network Benchmark: Interactive Workload. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD). 619–630.
https://doi.org/10.1145/2723372.2742786

[36] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of ACM SIGMOD International Conference on Management of Data

(SIGMOD). 1433–1445. https://doi.org/10.1145/3183713.3190657
[37] Zongyin Hao, Quanfeng Huang, Chengpeng Wang, Jianfeng Wang, Yushan

Zhang, Rongxin Wu, and Charles Zhang. 2023. Pinolo: Detecting Logical Bugs
in Database Management Systems with Approximate Query Synthesis. In Pro-
ceedings of USENIX Annual Technical Conference (USENIX ATC). 345–358.

[38] Zhenzhen He, Jiong Yu, and Binglei Guo. 2022. Execution Time Prediction for
Cypher Queries in the Neo4j Database Using a Learning Approach. Symmetry
14, 1 (2022), 55.

[39] Ziyue Hua, Wei Lin, Luyao Ren, Zongyang Li, Lu Zhang, and Tao Xie. 2023.
GDsmith: Detecting Bugs in Cypher Graph Database Engines. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA). 163–174.
https://doi.org/10.1145/3597926.3598046

[40] Yuancheng Jiang, Jiahao Liu, Jinsheng Ba, Roland H. C. Yap, Zhenkai Liang, and
Manuel Rigger. 2024. Detecting Logic Bugs in Graph Database Management
Systems via Injective and Surjective Graph Query Transformation. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering (ICSE).
46:1–46:12. https://doi.org/10.1109/ICST60714.2024.00012

[41] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woon-Hak Kang. 2019.
APOLLO: Automatic Detection and Diagnosis of Performance Regressions in
Database Systems. Proceedings of the VLDB Endowment (VLDB) 13, 1 (2019),
57–70.

[42] Matteo Kamm, Manuel Rigger, Chengyu Zhang, and Zhendong Su. 2023. Testing
Graph Database Engines via Query Partitioning. In Proceedings of ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA). https://doi.
org/10.1145/3597926.3598044

[43] Shadi Abdul Khalek, Bassem Elkarablieh, Yai O. Laleye, and Sarfraz Khurshid.
2008. Query-Aware Test Generation Using a Relational Constraint Solver. In Pro-
ceedings of IEEE/ACM International Conference on Automated Software Engineering
(ASE). 238–247. https://doi.org/10.1109/ASE.2008.34

[44] Shadi Abdul Khalek and Sarfraz Khurshid. 2010. Automated SQL query gener-
ation for systematic testing of database engines. In International Conference on
Automated Software Engineering (ASE). 329–332. https://doi.org/10.1145/1858996.
1859063

[45] Baozhu Liu, Xin Wang, Pengkai Liu, Sizhuo Li, Qiang Fu, and Yunpeng Chai.
2021. UniKG: A Uni�ed Interoperable Knowledge Graph Database System. In
Proceedings of IEEE International Conference on Data Engineering (ICDE). 2681–
2684. https://doi.org/10.1109/ICDE51399.2021.00303

[46] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. 2022. Automatic Detec-
tion of Performance Bugs in Database Systems Using Equivalent Queries. In
Proceedings of International Conference on Software Engineering (ICSE). 225–236.
https://doi.org/10.1145/3510003.3510093

[47] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing
Graph Database Systems via Equivalent Query Rewriting. In Proceedings of the
46th IEEE/ACM International Conference on Software Engineering (ICSE). 143:1–
143:12. https://doi.org/10.1145/3597503.3639200

[48] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.
Metamorphic Testing of Datalog Engines. In Proceedings of ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 639–650. https://doi.org/10.1145/3468264.3468573

[49] William M. McKeeman. 1998. Di�erential Testing for Software. Digit. Tech. J. 10,
1 (1998), 100–107.

[50] Yuxiang Ren, Hao Zhu, Jiawei Zhang, Peng Dai, and Liefeng Bo. 2021. En-
semFDet: An Ensemble Approach to Fraud Detection based on Bipartite Graph.
In Proceedings of International Conference on Data Engineering (ICDE). 2039–2044.
https://doi.org/10.1109/ICDE51399.2021.00197

[51] Manuel Rigger and Zhendong Su. 2020. Detecting Optimization Bugs in Database
Engines via Non-Optimizing Reference Engine Construction. In Proceedings of
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE). 1140–1152. https://doi.org/10.
1145/3368089.3409710

[52] Manuel Rigger and Zhendong Su. 2020. Finding Bugs in Database Systems via
Query Partitioning. 4, Article 211 (2020), 30 pages.

[53] Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 667–682.

[54] Marko A. Rodriguez. 2015. The Gremlin Graph Traversal Machine and Lan-
guage (Invited Talk). In Proceedings of the Symposium on Database Programming
Languages (DBPL). 1–10. https://doi.org/10.1145/2815072.2815073

[55] Donald S. Slutz. 1998. Massive Stochastic Testing of SQL. In Proceedings of
International Conference on Very Large Data Bases (VLDB). 618–622.

[56] Jiansen Song, Wensheng Dou, Ziyu Cui, Qianwang Dai, Wei Wang, Jun Wei,
Hua Zhong, and Tao Huang. 2023. Testing Database Systems via Di�erential
Query Execution. In Proceedings of IEEE/ACM International Conference on Software
Engineering (ICSE). 2072–2084. https://doi.org/10.1109/ICSE48619.2023.00175

[57] Jiansen Song, Wensheng Dou, Yu Gao, Ziyu Cui, Yingying Zheng, Dong Wang,
Wei Wang, Jun Wei, and Tao Huang. 2024. Detecting Metadata-Related Logic
Bugs in Database Systems via Raw Database Construction. Proceedings of the
VLDB Endowment (VLDB) (2024).

1706

https://github.com/google/AFL
https://alloytools.org/
https://db-engines.com/en/ranking/graph+dbms
https://db-engines.com/en/ranking/graph+dbms
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/docs/3.5.2/
https://hugegraph.github.io/hugegraph-doc/
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/
https://neo4j.com/blog/introducing-new-cypher-query-optimizer/
https://janusgraph.org
https://mariadb.org
https://www.mysql.com
https://docs.nebula-graph.io/2.0.1/3.ngql-guide/1.nGQL-overview/1.overview/
https://docs.nebula-graph.io/2.0.1/3.ngql-guide/1.nGQL-overview/1.overview/
https://neo4j.com/
https://github.com/thinkaurelius/neo4j-gremlin-plugin
https://arcadedb.com/
https://nebula-graph.io/
https://nebula-graph.io/
https://orientdb.org
https://www.postgresql.org
https://www.w3.org/TR/sparql11-query/
https://github.com/anse1/sqlsmith
https://doi.org/10.5281/zenodo.12771889
https://pingcap.com
https://github.com/tinkerpop/blueprints/wiki/tinkergraph
https://tinkerpop.apache.org/
http://www.opencypher.org/
https://doi.org/10.1145/3448016.3457545
https://doi.org/10.1109/ICSE48619.2023.00174
https://doi.org/10.1145/3180155.3180231
https://doi.org/10.1145/3551349.3556924
https://doi.org/10.1145/3597503.3639207
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1145/3318464.3386144
https://doi.org/10.1109/ICSE48619.2023.00101
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3597926.3598046
https://doi.org/10.1109/ICST60714.2024.00012
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1145/3597926.3598044
https://doi.org/10.1109/ASE.2008.34
https://doi.org/10.1145/1858996.1859063
https://doi.org/10.1145/1858996.1859063
https://doi.org/10.1109/ICDE51399.2021.00303
https://doi.org/10.1145/3510003.3510093
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3468264.3468573
https://doi.org/10.1109/ICDE51399.2021.00197
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/3368089.3409710
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.1109/ICSE48619.2023.00175

Testing Gremlin-Based Graph Database Systems via�ery Disassembling ISSTA ’24, September 16–20, 2024, Vienna, Austria

[58] Ran Wang, Zhengyi Yang, Wenjie Zhang, and Xuemin Lin. 2020. An Empirical
Study on Recent Graph Database Systems. In Proceedings of International Con-
ference on Knowledge Science, Engineering and Management (KSEM). 328–340.
https://doi.org/10.1007/978-3-030-55130-8_29

[59] Min Wu, Xinglu Yi, Hui Yu, Yu Liu, and Yujue Wang. 2022. Nebula Graph: An
Open Source Distributed Graph Database. CoRR abs/2206.07278 (2022).

[60] Rui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.
2023. Randomized Di�erential Testing of RDF Stores. In Proceedings of IEEE/ACM
International Conference on Software Engineering (ICSE Demo). 136–140. https:
//doi.org/10.1109/ICSE-Companion58688.2023.00041

[61] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and
Understanding Bugs in C Compilers. In Proceedings of International Confer-
ence on Programming Language Design and Implementation (PLDI). 283–294.
https://doi.org/10.1145/1993316.1993532

[62] Yui Yang, Yingying Zheng, Lei Tang, Wensheng Dou, Wei Wang, and Jun Wei.
2023. Randomized Di�erential Testing of RDF Stores. In Proceedings of Interna-
tional Conference on Software Engineering: Companion Proceedings (ICSE Com-
panion). 136–140. https://doi.org/10.1109/ICSE-Companion58688.2023.00041

[63] Yingying Zheng, Wensheng Dou, Lei Tang, Ziyu Cui, Jiansen Song, Ziyue Cheng,
Wei Wang, Jun Wei, Hua Zhong, and Tao Huang. 2024. Di�erential Optimization
Testing of Gremlin-Based Graph Database Systems. In Proceedings of the 17th IEEE
International Conference on Software Testing, Veri�cation and Validation (ICST).
25–36.

[64] Yingying Zheng, Wensheng Dou, Yicheng Wang, Zheng Qin, Lei Tang, Yu Gao,
Dong Wang, Wei Wang, and Jun Wei. 2022. Finding Bugs in Gremlin-Based
Graph Database Systems via Randomized Di�erential Testing. In Proceedings
of International Symposium on Software Testing and Analysis (ISSTA). 302–313.
https://doi.org/10.1145/3533767.3534409

[65] Zeyang Zhuang, Penghui Li, Pingchuan Ma, Wei Meng, and Shuai Wang. 2023.
Testing Graph Database Systems via Graph-Aware Metamorphic Relations. Pro-
ceedings of the VLDB Endowment (VLDB) 17, 4 (2023), 836–848.

1707

https://doi.org/10.1007/978-3-030-55130-8_29
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1145/1993316.1993532
https://doi.org/10.1109/ICSE-Companion58688.2023.00041
https://doi.org/10.1145/3533767.3534409

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Labeled Property Graph Model
	2.2 Gremlin Query Language
	2.3 Gremlin Traversal Model
	2.4 Gremlin Query Execution

	3 Approach
	3.1 Graph Database and Query Generation
	3.2 Query Disassembling
	3.3 Atomic Traversal Execution

	4 Evaluation
	4.1 Methodology
	4.2 Detected Bugs
	4.3 Comparing with Existing Approaches
	4.4 Selected Interesting Bugs

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Data Availability
	Acknowledgments
	References

